ARCHITECTURE I PLANNING I INTERIORS BRANDING I CIVIL ENGINEERING

May 24, 2023

9500 Civic Center Drive Thornton, CO 80229 Attn: Grant Bloom

Re: Drainage Letter – Anythink Nature Library COT Infrastructure Phase

To: Grant Bloom,

This letter is written to address the effect that the proposed Anythink Nature Library infrastructure phase development will have on existing drainage patterns. The Anythink Nature Library site is located within a parcel of land in the southeast quarter section 20, township 1 south, range 67 west of the sixth principal meridian, City of Thornton, County of Adams, State of Colorado with an infrastructure phase site area of 3.31 acres. The current conditions of the site are undeveloped with native grasses. The scope of the infrastructure phase consists of an access drive, lane widening on 136th Ave, and utilities. Refer to exhibit in appendix.

The historic drainage patterns surrounding the access drive are generally sloping from the northwest to the southeast at an average slope of 8%. In the existing state of the site, all flows are directed overland to an existing Aylor Retention II Pond on the eastern side of the site. The infrastructure phase of the project includes a temporary sediment basin that is designed to capture and release water into the existing slope towards mentioned retention pond. See the appendix for associated sediment basin calculations.

This study has been prepared in conformance with the City of Thornton Standards and Specifications for the Design and Construction of Public and Private Improvements criteria manual and the Mile High Flood District Storm Drainage Criteria Manual.

The minor and major storm frequencies for design are the 5-year and 100-year storm events, respectively. The one-hour point rainfall for the 5-year event is 1.38 inches and 2.69 inches for the 100-year event in accordance with the City or Thornton Standards and Specifications for the Design and Construction of Public and Private Improvements criteria manual. The peak discharge for the storm sewer analysis was calculated using the rational method. Please reference the Drainage Map in the appendix for the basin location and calculations of the rational method and total flows at respective design points.

StormCAD was used to analyze the capacity and routing of the proposed storm sewer. StormCAD uses Manning's equation to conclude if pipe sizing is adequate to prevent unintentional pooling at grade anywhere in the system. Grate capacity charts and UD-Inlet were used to determine if the proposed inlets were adequate to handle 100-year storm levels.

The proposed design is in accordance with Mile High Flood District and City of Thornton design standards and will not affect historic drainage patterns.

Should you have any questions or comments, please feel free to contact me at (303) 561-3333.

Sincerely,

ARCHITECTURE I PLANNING I INTERIORS BRANDING I CIVIL ENGINEERING

Ware Malcomb,

Ted Swan, PE Director of Civil Engineering

CC: Ileana Contreras <u>icontreras@waremalcomb.com</u> (303) 689-1518

ARCHITECTURE I PLANNING I INTERIORS BRANDING I CIVIL ENGINEERING

Appendix

City of Thornton Storm Drainage Design Criteria – Table 400-1 Hydrology Calculations Hydraulic Calculations Temporary Sediment Basin Calculations Drainage Map

ARCHITECTURE I PLANNING I INTERIORS BRANDING I CIVIL ENGINEERING

Appendix

City of Thornton Storm Drainage Design Criteria – Table 400-1 Hydrology Calculations Hydraulic Calculations Temporary Sediment Basin Calculations Drainage Map

SECTION 400 - STORM DRAINAGE DESIGN, GRADING, AND WATER QUALITY TECHNICAL CRITERIA

401 GENERAL PROVISIONS

401.1 Purpose

- A. These standards are promulgated by the Public Works Director of the City in accordance with the authority contained in the City Code. Improvements shall also be in conformance with all applicable provisions of the City Code. B. This section presents the minimum design and technical criteria for the analysis and design of storm drainage facilities located within the City. All subdivisions or any other proposed construction, which increase drainage from historic levels or otherwise alters storm runoff shall be subject to these <u>Standards and Specifications</u>. The primary resource for stormwater drainage policy and design is the Urban Drainage and Flood Control District's (UDFCD) <u>Urban Storm Drainage Criteria Manual</u> (UDFCD Manual). The purpose of these <u>Standards and Specifications</u> is to further define the guidelines and/or to identify variations.
- C. In addition to the above, these regulations are to establish minimum design criteria for water quality control, flood control, and site grading, which are all closely related to stormwater management.
 - 1. Design Criteria

Storm drainage system analysis and design shall meet or exceed these <u>Standards and Specifications</u> which were developed to support and supplement the policies and standards set forth by the UDFCD. Policies and technical criteria not specifically addressed in this document shall follow the provisions of the UDFCD Manual. The Responsible Party is also referred to the Colorado Department of Transportation's Standard Plans ("M-Standards") for additional design details not covered in these <u>Standards and Specifications</u> or the UDFCD Manual.

- 2. Review and Approval
 - a. The Development Engineering Manager shall review submittals as necessary for general compliance with these <u>Standards and Specifications</u>. An approval by the Development Engineering Manager does not relieve the Responsible Party from the responsibility of ensuring that the calculations, plans, specifications, construction, and record drawings are in compliance with these <u>Standards and Specifications</u>.
 - b. The UDFCD shall approve reports and construction plans for regional detention ponds or Masterplan drainageway improvements as required by this Section or the UDFCD Manual. Where floodplain delineation is involved, UDFCD and FEMA approval is required. All submittals to either UDFCD or FEMA shall be made to the City, who will coordinate the submittal and approval.

402 STORM DRAINAGE DESIGN CRITERIA

402.1 Rainfall

- 1. Introduction
- A. Colorado Urban Hydrograph Procedure (CUHP) or an equivalent method shall be used to generate an inflow hydrographs from watersheds unless a variance is approved by the Development Engineering Manager.
- B. Design Storm Distribution

The one (1) hour design point rainfall values obtained from the NOAA Atlas for Thornton are as follows:

TABLE 400-1

ONE (1) HOUR POINT RAINFALL (IN.)

<u>2-YEAR</u>	5-YEAR	100-YEAR
.97	1.38	2.69

- 402.2 Runoff
 - A. Introduction

This subsection presents the criteria and methodology for approximating the storm runoff design peaks and volumes to be used in the City in the preparation of storm drainage studies, plans, and facility design.

ARCHITECTURE I PLANNING I INTERIORS

BRANDING I CIVIL ENGINEERING PROJECT: The Library JOB NO.: DCS22-4022 CALC. BY: SRV DATE: 5/10/2023 = FORMULA CELLS = USER INPUT CELLS

Project Location	
Thornton - Civic Center	•

IDF Rainfall Data

	P ₁ : 1-hour Ra	ainfa	II Depths (inches)	٦
	Minor Storm		Major Storm	
Td	5-Year	-	100-Year 🗸	P*
Minutes	1.38		2.69	
5	4.68		9.12	٦
10	3.73		7.28	
20	2.71		5.29	
30	2.17		4.22	
40	1.82		3.54	
50	1.57		3.07	
60	1.39		2.72	
120	0.86		1.67	

Equation 5-1 $I=(28.5*P_1)/(10+T_d)^{^{0.786}}$

I = rainfall intensity (inches per hour)

P₁ = 1-hour point rainfall depth (inches)

T_d = storm duration (minutes)

Reference:

1) Urban Drainage and Flood Control District - Urban Storm Drainage Criteria Manual Volume 1, 2017

2) NOAA Atlas 14, Volume 8, Version 2 http://hdsc.nws.noaa.gov/hdsc/pfds_map_cont.html?bkmrk=co PROJECT: The Library JOB NO.: DCS22-4022 CALC. BY: SRV DATE: 5/10/2023

WARE MALCOMB

ARCHITECTURE | PLANNING | INTERIORS BRANDING | CIVIL ENGINEERING

Impervious Percentages - from Urban Drainage Table 6-3

Land Use 1	95%
Land Use 2	2%
Land Use 3	0%
Land Use 4	0%

•	
Land Use 5	0%
Land Use 6	0%
Land Use 7	0%
Land Use 8	0%

SOIL TYPE: C or D

(use equation from Table 6-4)

PROPOSED COMPOSITE IMPERVIOUSNESS

V

		Weig	hted Imp	ervious	and C V	alues				Area	s (ac)			
Basin	Area (ac)	Imp.	C ₂	C₅	C ₁₀	C ₁₀₀	Land Use 1	Land Use 2	Land Use 3	Land Use 4	Land Use 5	Land Use 6	Land Use 7	Land Use 8
A1	5.40	26%	0.18	0.25	0.32	0.59	1.38	4.02						
A2	8.28	2%	0.01	0.05	0.15	0.49		8.28						
A3	2.02	25%	0.18	0.24	0.32	0.59	0.50	1.51		 				
A4	0.65	95%	0.78	0.81	0.84	0.87	0.65	(
В	8.07	50%	0.38	0.44	0.50	0.69	4.15	3.92		 				
								(
										*				
									 	•				
										• 				

= FORMULA CELLS = USER INPUT CELLS

ARCHITECTURE | PLANNING | INTERIORS

BRANDING I CIVIL ENGINEERING Calculated By: <u>SRV</u> Date: <u>5/10/2023</u>

STANDARD FORM SF-2

TIME OF CONCENTRATION SUMMARY

	SUB-E DA	BASIN			L/OVERL	AND		TR		ЛЕ			t₀ CHI			FINAL	REMARKS
Basin	L i	C ₅	AREA			ti	LENGTH		(t _t) SLOPE	VEL.	tt	COMP.		St St	tc (Equatio	<u>t</u> ₀ n 6-5)	
		- 0	Ac	Ft	%	Min	Ft	Cv	%	FPS	Min	t _c	Ft	%	Min	Min	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	
A1	0.26	0.25	5.40	500	3.5	22.80	892	20	1.5	2.45	6.07	28.9	892	1.50	31.2	28.87	
A2	0.02	0.05	8.28	500	3.3	28.55	100	7	2.9	1.19	1.40	29.9	100	2.90	26.7	26.71	
A3	0.25	0.24	2.02	285	3.2	17.82	458	20	2.2	2.97	2.57	20.4	458	2.20	25.8	20.39	
A4	0.95	0.81	0.65	10	3.9	1.04	798	20	2.3	3.03	4.38	5.4	798	2.30	13.8	5.43	
В	0.50	0.44	8.07	500	3.9	16.91	580	20	2.5	3.16	3.06	20.0	580	2.50	21.4	19.97	

Equation 6-3 Equation 6-5 ti=((0.395(1.1-C5)SQRT(L))/(So^0.33)) tc=(26-17i)+(Lt/(60(14i+9)SQRT(So)))

NRCS Conveyance Factor K 1	Table - Cv Value
Heavy Meadow	2.5
Tillage/Field	5
Short Pasture and Lawns	7
Nearly Bare Ground	10
Grassed Waterway	15
Paved Areas and Shallow Paved Swales	20

= FORMULA CELLS = USER INPUT CELLS Calculated By: Date: Checked By: 5-Year 1-hour rainfall=

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Project: The Library Job No.: DCS22-4022

Design Storm: 5-Year

= FORMULA CELLS = USER INPUT CELLS

TOTAL RUNOFF DIRECT RUNOFF STREET PIPE VELOCITY (FPS) DESIGN FLOW (CFS) PIPE DIAM. (IN.) LENGTH (FT) t_t (MIN) DESIGN POINT S (C * A) (CA) AREA DESIGN RUNOFF COEFF I (IN/HR) I (IN/HR) STREET FLOW SLOPE (%) SLOPE (%) AREA (AC) Q (CFS) (MIN) Q (CFS) $\underset{\text{(MIN)}}{\text{tc}}$ C * A (AC) BASIN REMARKS (16) (2) (9) (11) (12) (13) (14) (15) (17) (18) (19) (20) (21) (22) (3) (4) (5) (6) (7) (8) (10) A1 1 5.40 0.25 28.9 1.33 2.21 2.9 A1 local flows to DP1 2 0.05 26.7 A1 & A2 combined flow at DP2 A2 8.28 0.43 2.32 1.0 28.9 2.21 3.9 1.8 A3 3 2.02 0.24 20.4 0.49 2.69 28.9 2.2 A1, A2 & A3 combined flow at DP3 1.3 2.21 5.0 A1 thru A4 combined flow at DP4 A4 4 0.65 0.81 5.4 0.53 4.58 2.4 В 5 8.07 0.44 20.0 3.58 2.72 9.7 Local flow at DP5 6 28.9 2.21 Total flow from site at DP6 6.3 14.1

Calculated By: Date: Checked By: 100-Year 1-hour rainfall=

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Project: The Library Job No.: DCS22-4022 Design Storm: 100-Year

= FORMULA CELLS

1-hour	rainfall=																				= FORMULA CELLS = USER INPUT CELLS
			D	IRECT	RUNO	F			1	OTAL I	RUNOF	F	STR	EET		PIPE					
BASIN	DESIGN	AREA DESIGN	AREA (AC)	RUNOFF COEFF	t _c (MIN)	C * A (AC)	I (IN/HR)	Q (CFS)	te (MIN)	S (C * A) (CA)	I (IN/HR)	Q (CFS)	(%) SLOPE	STREET FLOW	DESIGN FLOW (CFS)	(%) SLOPE	PIPE DIAM. (IN.)	LENGTH (FT)	VELOCITY (FPS)	t _i (MIN)	REMARKS
	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
A1	1		5.40	0.59	28.9	3.19	4.32	13.8													A1 local flows to DP1
A2	2		8.28	0.49	26.7	4.08	4.51	18.4	28.9	7.3	4.32	31.4									A1 & A2 combined flow at DP2
A3	3		2.02	0.59	20.4	1.19	5.24	6.2	28.9	8.4	4.32	36.5									A1, A2 & A3 combined flow at DP3
A4	4		0.65	0.87	5.4	0.56	8.92	5.0													A1 thru A4 combined flow at DP4
В	5		8.07	0.69	20.0	5.56	5.30	29.4													Local flow at DP5
	6								28.9	14.6	4.32	62.9									Total flow from site at DP6

PROJECT: The Library JOB NO.: DCS22-4022 CALC. BY: SRV DATE: 5/10/2023

WARE MALCOMB

ARCHITECTURE | PLANNING | INTERIORS BRANDING | CIVIL ENGINEERING

RUNOFF SUMMARY														
BASIN LABEL DESIGN POINT AREA LOCAL (CFS) ACCUMULATIVE (CFS) Q5 Q100 Q5 Q100														
BASIN LABEL		AREA	Q5	Q100										
A1	1	5.40	2.95	13.76										
A2	2	8.28	1.0	18.4	3.9	31.4								
A3	3	2.02	1.3	6.2	5.0	36.5								
A4	4	0.65	2.4	5.0										
В	5	8.07	9.7	29.4										
					14.1	62.9								

ARCHITECTURE | PLANNING | INTERIORS BRANDING | CIVIL ENGINEERING PROJECT : Anythink Library

PROJECT NO. : DEN22-0022

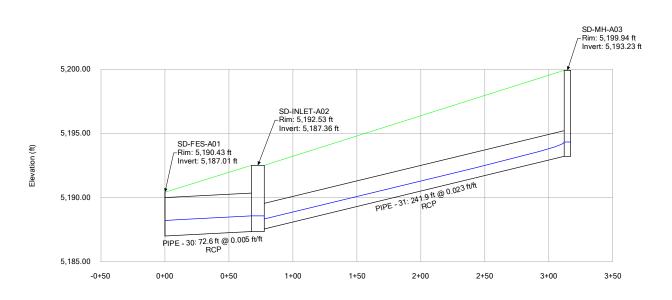
DATE : 5/19/2023 BY : ICA

			Se	ediment B	asin		
Required S	adiment	Pond					
•	utary Area (a		turbed Area	(ac) Und	isturbed Are	ea (ac)	
	28.00		2.74		25.26		
	20.00				25.20		
1/3	Volume =	0.172	ac-ft				
	1/3 V =	7,498	cu-ft				
Volu	me Req =	0.516	ac-ft	3600 CF / d	listurbed Ac	+ 500 CF / un	ndisturbed AC
	V =	22,494	cu-ft		-	r Tributary ar	
L.25' Above B		0.287	ac-ft	(Use this va	lue because	it's greater ti	he 1/3V)
	1.25' V=	12,505	cu-ft				
Total Volum	e Req'd =	0.689	ac-ft				
Total Volum	e Req'd =	29,992	cu-ft				
Note: Invert	of lowest o whichever	-	be at the e	levation coo	presponding	g to 1/3 V or	1.25'
Provided V	olume		·				
Contour Elevation	F	t ²		1 + A2 + 2) ^{1/2}) D	Total Vo	olume (ft ³)	Total Volume (ac-ft)
5187.00	8,7	'99				0	0.00
5188.00	10,	729	9,	748	9,	748	0.22
5188.25	11,:			757		,505	0.29
5189.00	13,			,915		,663	0.50
5190.00	15,			,323		,986 084	0.83
5191.00 5192.00	21,4	429 468		,421 ,848		,084 .,834	1.67
0102.00	21,	100	0	,010		,001	1.07
			WSEL	Depth (ft)			
		1/3 VOL=		0.77	- Invert of L	oottom Outlet	t Hole to be 1.25' (El
1.25'	ABOVE BOT			1.25	_	518	88.25')
		FOTAL VOL=	5189.58	2.58			
Riser Pipe	Orifice Si	zing					
•		•	zing equation f	or EURV and W	QCV detetion l	basins, dated July	y 13, 2010)
	88Vol(0.95	/H ^{0.085})					
$A_0 =$	$\frac{88Vol^{(0.95)}}{T_D S^{0.09} H^2}$	$2.6(S^{0.3})$				Equation 9	
Where						_	
			row in squar			_	
		tical / feet ho olume in acre		stitute 0.0001	for zero),	_	
S is slo	the storage ve					_	
 S is slo Vol is T_D is the state of the sta	ne prescribed						
 S is slo Vol is T_D is the state of the sta	ne prescribed			owest orifice, i	in feet.		
 S is slo Vol is T_D is th H is th 	ne prescribed		et above the lo	owest orifice, i H=	in feet. 2.75 0.0001	Ft	n approximation)

WARE MALCOMB 990 S. BROADWAY STE 230, DENVER CO 80209 PH: 303-561-3333

Scenario: 5-YEAR Current Time Step: 0.000 h FlexTable: Conduit Table

ID	Label	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
122	PIPE - 31	SD-MH-A03	5,193.23	SD-INLET-A02	5,187.56	241.9	0.023	24.0	0.015	5,194.34	5,188.34
123	PIPE - 53	SD-INLET-A02.3	5,188.60	SD-INLET-A02.2	5,188.34	51.5	0.005	24.0	0.015	5,189.23	5,188.95
124	PIPE - 54	SD-INLET-A02.2	5,188.14	SD-INLET-A02.1	5,187.93	41.0	0.005	24.0	0.015	5,188.86	5,188.63
125	PIPE - 34	SD-INLET-A02.1	5,187.73	SD-INLET-A02	5,187.56	34.0	0.005	24.0	0.015	5,188.63	5,188.58
126	PIPE - 30	SD-INLET-A02	5,187.36	SD-FES-A01	5,187.01	72.6	0.005	36.0	0.015	5,188.58	5,188.20

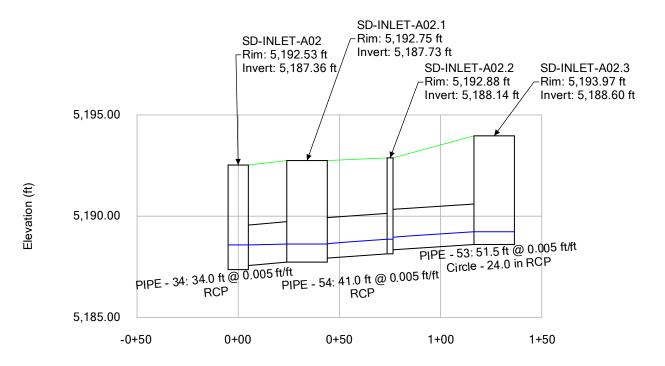

W:\DCS\22\4022\00\Civil\ENG\Storm Drainage\Hydraulic Calcs\StormCAD\DCS22-4022_StormCAD.stsw

Scenario: 5-YEAR Current Time Step: 0.000 h FlexTable: Manhole Table

ID	Label	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Depth (Out) (ft)	Hydraulic Grade Line (Out) (ft)	Notes
101	SD-MH-A03	5,199.94	5,199.94	(N/A)	9.72	1.12	5,194.34	5' MANHOLE
102	SD-INLET-A02.3	5,193.97	5,193.97	(N/A)	3.01	0.63	5,189.23	20' TYPE R INLET
104	SD-INLET-A02.2	5,192.88	5,192.88	5,188.34	3.92	0.72	5,188.86	TYPE C INLET w/ CLOSED MESH GRATE
105	SD-INLET-A02.1	5,192.75	5,192.75	5,187.93	4.98	0.90	5,188.63	20' TYPE R INLET
106	SD-INLET-A02	5,192.53	5,192.53	5,187.56	13.96	1.22	5,188.58	10' TYPE R INLET

W:\DCS\22\4022\00\Civil\ENG\Storm Drainage\Hydraulic Calcs\StormCAD\DCS22-4022_StormCAD.stsw

Profile Report Engineering Profile - A (DCS22-4022_StormCAD.stsw)


Station (ft)

DCS22-4022_StormCAD.stsw 5/19/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

StormCAD [10.03.02.04] Page 1 of 1

Profile Report Engineering Profile - A2 (DCS22-4022_StormCAD.stsw)

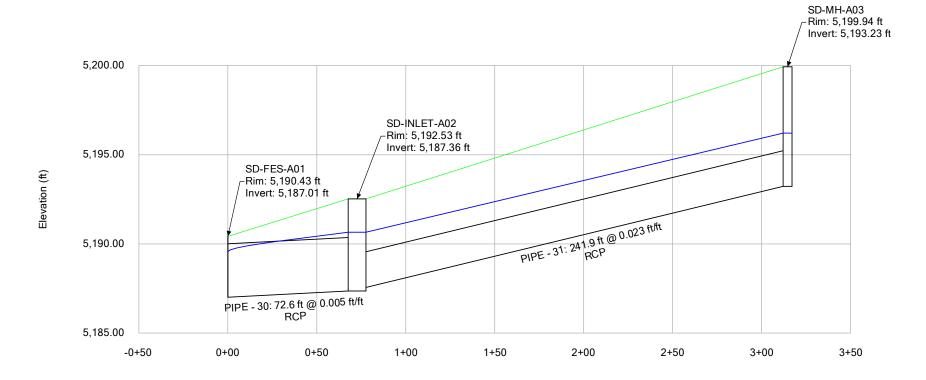
Station (ft)

DCS22-4022_StormCAD.stsw 5/19/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 StormCAD [10.03.02.04] Page 1 of 1

Scenario: 100-YEAR Current Time Step: 0.000 h FlexTable: Conduit Table

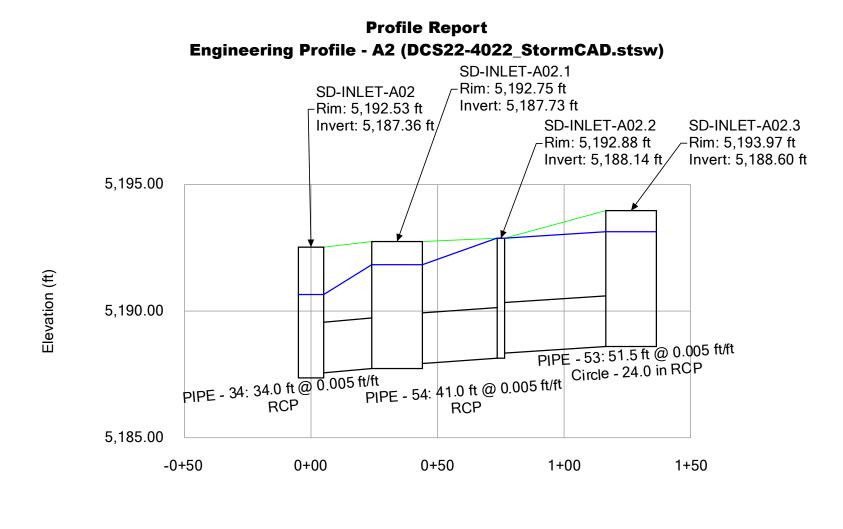
ID	Label	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
122	PIPE - 31	SD-MH-A03	5,193.23	SD-INLET-A02	5,187.56	241.9	0.023	24.0	0.015	5,196.22	5,190.66
123	PIPE - 53	SD-INLET-A02.3	5,188.60	SD-INLET-A02.2	5,188.34	51.5	0.005	24.0	0.015	5,193.14	5,192.88
124	PIPE - 54	SD-INLET-A02.2	5,188.14	SD-INLET-A02.1	5,187.93	41.0	0.005	24.0	0.015	5,192.89	5,191.83
125	PIPE - 34	SD-INLET-A02.1	5,187.73	SD-INLET-A02	5,187.56	34.0	0.005	24.0	0.015	5,191.83	5,190.66
126	PIPE - 30	SD-INLET-A02	5,187.36	SD-FES-A01	5,187.01	72.6	0.005	36.0	0.015	5,190.66	5,189.56


W:\DCS\22\4022\00\Civil\ENG\Storm Drainage\Hydraulic Calcs\StormCAD\DCS22-4022_StormCAD.stsw

Scenario: 100-YEAR Current Time Step: 0.000 h FlexTable: Manhole Table

ID	Label	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Depth (Out) (ft)	Hydraulic Grade Line (Out) (ft)	Notes
101	SD-MH-A03	5,199.94	5,199.94	(N/A)	29.72	2.99	5,196.22	5' MANHOLE
102	SD-INLET-A02.3	5,193.97	5,193.97	(N/A)	13.86	4.54	5,193.14	20' TYPE R INLET
104	SD-INLET-A02.2	5,192.88	5,192.88	5,188.34	31.39	4.74	5,192.88	TYPE C INLET w/ CLOSED MESH GRATE
105	SD-INLET-A02.1	5,192.75	5,192.75	5,187.93	36.51	4.10	5,191.83	20' TYPE R INLET
106	SD-INLET-A02	5,192.53	5,192.53	5,187.56	63.00	3.30	5,190.66	10' TYPE R INLET

W:\DCS\22\4022\00\Civil\ENG\Storm Drainage\Hydraulic Calcs\StormCAD\DCS22-4022_StormCAD.stsw


Profile Report Engineering Profile - A (DCS22-4022_StormCAD.stsw)

Station (ft)

DCS22-4022_StormCAD.stsw 5/19/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 StormCAD [10.03.02.04] Page 1 of 1

Station (ft)

DCS22-4022_StormCAD.stsw 5/19/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 StormCAD [10.03.02.04] Page 1 of 1

MHFD-Inlet, Version 5.02 (August 2022)

INLET MANAGEMENT

Worksheet Protected

INLET NAME	SD-INLET-A02.3	SD-INLET-A02.1	SD-INLET-A02.2
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	AREA
Hydraulic Condition	On Grade	In Sump	Swale
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type C (Depressed)

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	2.9	1.3	1.0
Major Q _{Known} (cfs)	13.8	6.5	18.1

Bypass (Carry-Over) Flow from Upstream Inlets must be organized from upstream (left) to downstream (right) in order for bypass flows to be linked.

Receive Bypass Flow from:	No Bypass Flow Received	User-Defined	No Bypass Flow Received
Minor Bypass Flow Received, Qb (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Qb (cfs)	0.0	0.7	0.0

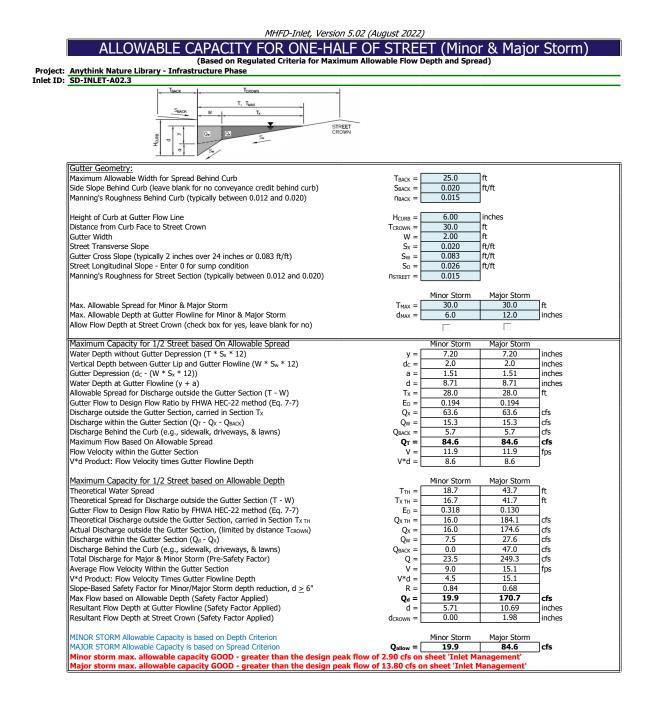
Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

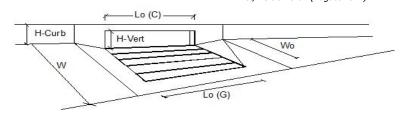
Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

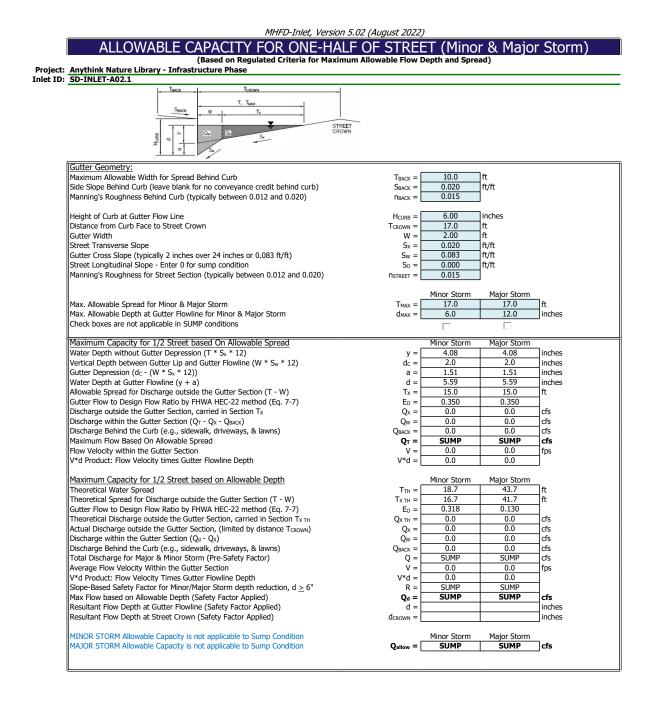
Minor Storm Rainfall Input


Design Storm Return Period, Tr (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input


Tujor otorini Kunnan Input		
Design Storm Return Period, Tr (years)		
One-Hour Precipitation, P ₁ (inches)		

CALCULATED OUTPUT


Minor Total Design Peak Flow, Q (cfs)	2.9	1.3	1.0
Major Total Design Peak Flow, Q (cfs)	13.8	7.2	18.1
Minor Flow Bypassed Downstream, Qb (cfs)	0.0	N/A	0.0
Major Flow Bypassed Downstream, Qb (cfs)	0.7	N/A	0.0

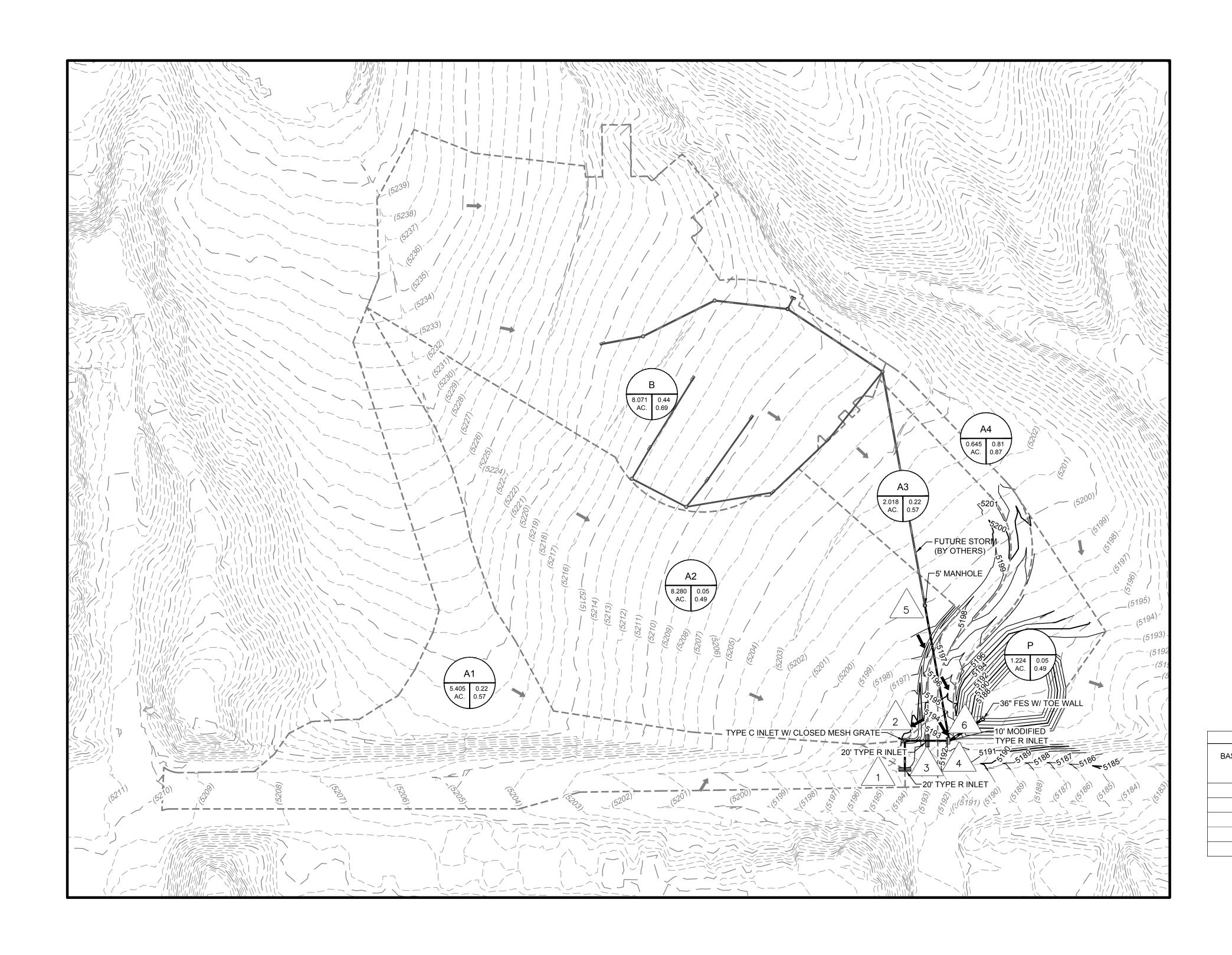
INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.02 (August 2022)

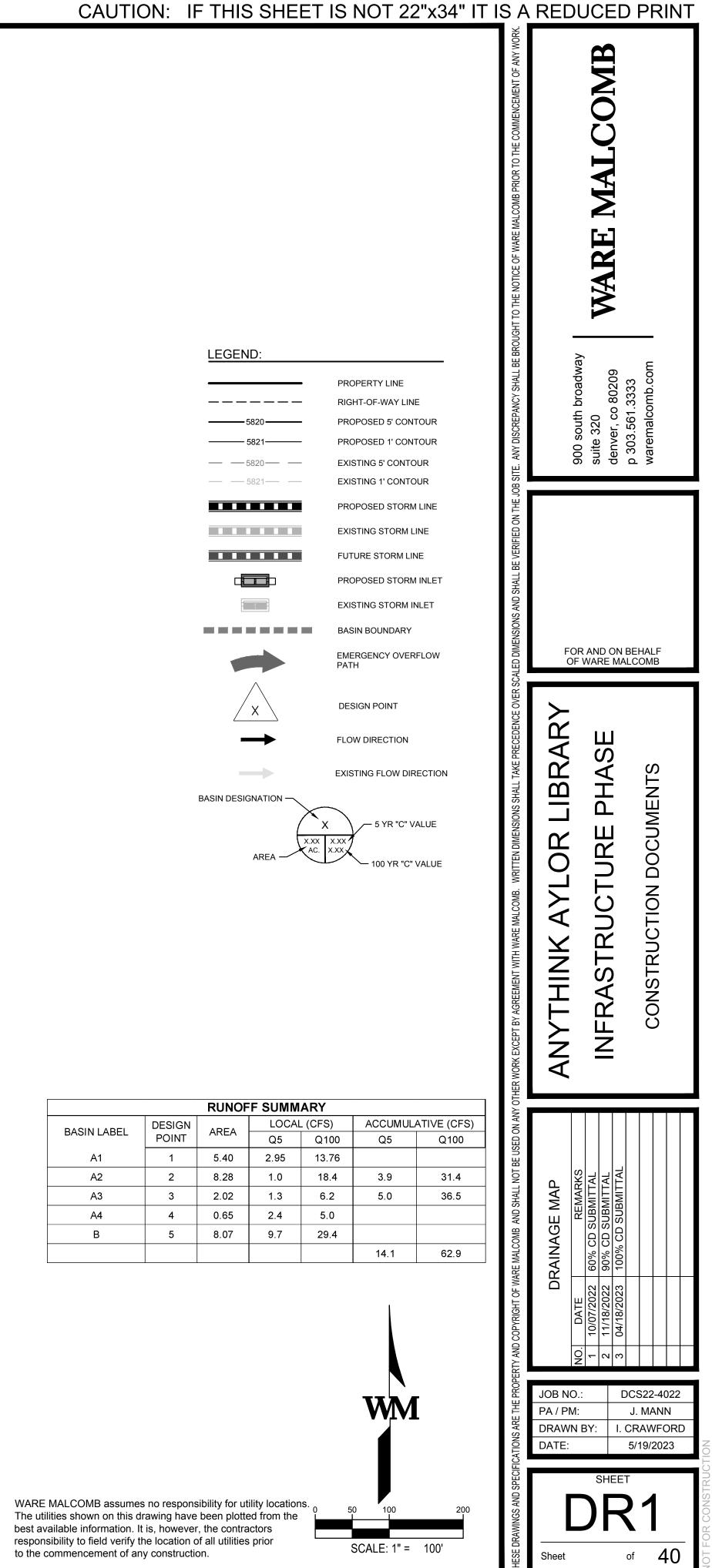
Local Depression (additional to continuous gutter depression 'a') $a_{LCAL} = 3.0$ 3.0 inches Total Number of Units in the Inlet (Grate or Curb Opening) No = 4 4 Length of a Single Unit Inlet (Grate or Curb Opening) Lo = 5.00 5.00 Width of a Unit Grate (cannot be greater than W, Gutter Width) $W_o =$ N/A N/A Clogging Factor for a Single Unit Grate (typical min. value = 0.5) C_f (C) = 0.10 0.10 Street Hydraulics: OK - Q < Allowable Street Capacity'	
Total Number of Units in the Inlet (Grate or Curb Opening) No = 4 4 Length of a Single Unit Inlet (Grate or Curb Opening) Lo = 5.00 5.00 ft Width of a Unit Grate (cannot be greater than W, Gutter Width) Wo = N/A N/A ft Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Ct (G) = N/A N/A ft Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Cr (C) = 0.10 0.10 Street Hydraulics: OK - Q < Allowable Street Capacity'	
Length of a Single Unit Inlet (Grate or Curb Opening) Lo = 5.00 5.00 ft Width of a Unit Grate (cannot be greater than W, Gutter Width) Wo = N/A N/A ft Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Cr (G) = N/A N/A Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Cr (C) = 0.10 0.10 Street Hydraulics: OK - Q < Allowable Street Capacity'	
Width of a Unit Grate (cannot be greater than W, Gutter Width) $W_o = \frac{N/A}{N/A}$ N/A ft Clogging Factor for a Single Unit Grate (typical min. value = 0.5) C_r (G) = N/A N/A Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) C_r (C) = 0.10 0.10 Street Hydraulics: OK - Q < Allowable Street Capacity	
Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Cr (G) = N/A N/A Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Cr (C) = 0.10 0.10 Street Hydraulics: OK - Q < Allowable Street Capacity	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Cr (C) = 0.10 0.10 Street Hydraulics: OK - Q < Allowable Street Capacity	
Street Hydraulics: OK - Q < Allowable Street Capacity' MINOR MAJOR	
Water Speed Width $T = 7.4$ 15.1 ft	
Water Depth at Flowline (outside of local depression) $d = \frac{7.7}{3.3}$ 5.1 inches	
Water Depth at Street Crown (or at T _{MAX}) $d_{COVM} = \frac{3.3}{0.0} \frac{3.1}{0.0}$ inches	
water Deput at Subject Clowin (or at Max) $C_{RAW} = \frac{0.0}{0.724} \frac{0.0}{0.394}$ incluses	
·····	
Flow Area within the Gutter Section W Aw = 0.38 0.69 sq ft Velocity within the Gutter Section W Vw = 5.5 7.9 fos	
Water Depth for Design Condition dLocaL 6.3 8.1 inches	
Grate Analysis (Calculated) MINOR MAJOR	
Total Length of Inlet Grate Opening L = N/A N/A ft	
Ratio of Grate Flow to Design Flow E _{0-GRATE} = N/A N/A	
Under No-Clogging Condition MAJOR MAJOR	
Minimum Velocity Where Grate Splash-Over Begins Vo = N/A N/A fps	
Interception Rate of Frontal Flow R _f = N/A N/A	
Interception Rate of Side Flow R _x = N/A N/A	
Interception Capacity Q _i = N/A N/A cfs	
Under Clogging Condition MINOR MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet GrateCoeff N/A N/A	
Clogging Factor for Multiple-unit Grate Inlet GrateClog = N/A N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet $L_e =$ N/A N/A ft	
Minimum Velocity Where Grate Splash-Over Begins Vo N/A N/A fps	
Interception Rate of Frontal Flow R _f = N/A N/A	
Interception Rate of Side Flow R _x = N/A N/A	
Actual Interception Capacity Qa = N/A N/A cfs	
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet) Q_b =N/AN/A	
Curb Opening or Slotted Inlet Analysis (Calculated) MINOR MAJOR	
Equivalent Slope S _e $S_e = 0.156$ 0.094 ft/ft	
Required Length L _T to Have 100% Interception $L_T = \frac{8.58}{23.98}$ ft	
Under No-Clogging Condition MINOR MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T) L = 8.58 20.00 ft	
Interception Capacity Q _i = 2.9 13.3 cfs	
Under Clogging Condition MINOR MAJOR	
Clogging Coefficient CurbCoeff = 1.33 1.33	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet CurbClog = 0.03 0.03	
Effective (Unclogged) Length $L_e = 8.58$ 19.34 ft	
Actual Interception Capacity $Q_a = 2.9$ 13.1 cfs	
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_{a} Q_{b} = 0.0 0.7 cfs	
Summary MINOR MAJOR	
Total Inlet Interception Capacity Q = 2.9 13.1 cfs	
Total Inlet Carry-Over Flow (flow bypassing inlet) $Q_b = 0.0 0.7 cfs$	
Capture Percentage = O_a/O_o C% = 100 95 %	

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	alocal =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	4	4	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	$W_0 =$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	-
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{0}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	_
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	_
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	(MINOR	MAJOR	_
Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	_
Clogging Factor for Multiple Units	Clog =	0.03	0.03	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)	0	MINOR	MAJOR	–
Interception without Clogging	Q _{wi} =	9.0	9.0	cfs
Interception with Clogging	Q _{wa} =	8.7 MINOR	8.7	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)	0		MAJOR	-
Interception without Clogging	Q _{oi} =	37.7	37.7	cfs
Interception with Clogging	Q _{oa} =	36.5 MINOR	36.5 MAJOR	cfs
Curb Opening Capacity as Mixed Flow Interception without Clogging		17.1	MAJOR 17.1	lcfs
Interception with Clogging	Q _{mi} =	17.1	17.1	crs cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{ma} = Qcurb =	16.6 8.7	16.6 8.7	
Resultant Street Conditions	QCurb =	MINOR	MAJOR	
Total Inlet Length	L = [20.00	20.00	feet
Resultant Street Flow Spread (based on street geometry from above)	L = T =	17.0	17.0	ft
Resultant Sueet now Spread (based on sueet geometry nom above) Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	UCROWN =	0.0	0.0	
Low Head Performance Reduction (Calculated)	. 1	MINOR	MAJOR	٦
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.30	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	-
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.76	-
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a = [8.7	MAJOR 8.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_a = Q_a$ Q peak required =	1.3	7.2	cfs
	2 PEAK REQUIRED -	1.J	1.2	0.5

MHFD-Inlet, Version 5.02 (August 2022) AREA INLET IN A SWALE


SD-INLET-A02.2						
	-	- T _{MAX}		This worksheet use	s the NRCS venet:	al
				retardance method		
		_ /			to determine	
			•	Manning's n.		
	1	= 1	à			
	Z	d Z _e	d MAX	For more information	on see	
	2.	G	+	Section 7.2.3 of the	USDCM.	
				5000017.2.5 01 the	0000011	
	-	-1-в				
Analysis of Trapezoida	l Grass-Lined Channel Usi	ng SCS Method				
NRCS Vegetal Retardance		<u> </u>	A, B, C, D, or E =	D	1	
	D16 blank to manually enter			see details below	-	
	D16 Diarik to manually enter	an n value)	n =			
Channel Invert Slope			S0 =	0.0115	ft/ft	
Bottom Width			B =	0.00	ft	
Left Side Slope			Z1 =	3.00	ft/ft	
			Z2 =			
Right Side Sloe			22 =	3.00	_ft/ft	
	neck one of the following soil			-Choose One:		٦
Soil Type:	Max. Velocity (V _{MAX})	Max Froude No. (F _{MAX})		Non-Cohesive	、	
Non-Cohesive	5.0 fps	0.60				
				Cohesive		
Cohesive	7.0 fps	0.80		Paved		
Paved	N/A	N/A				
				Minor Storm	Major Storm	
Maximum Allowable Ton	Width of Channel for Minor	& Major Storm	T _{MAX} =	9.00	9.00	ft
	er Depth in Channel for Mind		d _{MAX} =	1.50	1.50	ft
			UMAX -	1.50	1.50	
Mariana Cl. 10		T 14/2-14-				
	pacity Based On Allowable	i op wiath		Minor Storm	Major Storm	
Maximum Allowable Top	Width		T _{MAX} =	9.00	9.00	ft
Water Depth			d =	1.50	1.50	ft
Flow Area			4 =	6.75	6.75	sq ft
Wetted Perimeter			P =	9.49	9.49	ft
Hydraulic Radius			R =	0.71	0.71	ft
Manning's n based on NI	RCS Vegetal Retardance		n =	0.045	0.045	
Flow Velocity			V =	2.84	2.84	fps
Velocity-Depth Product			VR =	2.02	2.02	ft^2/s
Hydraulic Depth			D =	0.75	0.75	ft
Froude Number			Fr =	0.58	0.58	7
Maximum Flow Based or	Allowable Water Denth		Q _T =	19.2	19.2	cfs
Maximum Channel Ca	ascity Racod On Allowski	Water Depth		Minor Charma	Major Charma	
	pacity Based On Allowable	water Depth	-	Minor Storm	Major Storm	
Maximum Allowable Wat	er Depth		d _{MAX} =	1.50	1.50	ft
Top Width			T =	9.00	9.00	ft
Flow Area			A =	6.75	6.75	sq ft
Wetted Perimeter			P =	9.49	9.49	ft
Hydraulic Radius			R =	0.71	0.71	ft
Manning's n based on NI	RCS Vegetal Retardance		n =	0.045	0.045	
Flow Velocity			V =	2.84	2.84	fps
Velocity-Depth Product			VR =	2.02	2.02	ft^2/s
Hydraulic Depth			D =	0.75	0.75	ft 2/3
Froude Number			Fr =	0.58	0.58	
Maximum Flow Based Or	n Allowable Water Depth		$Q_d =$	19.2	19.2	cfs
Allowable Channel Car	acity Based On Channel (Seometry		Minor Storm	Major Storm	
	e Capacity is based on Depth		^			
			Q _{allow} =	19.2	19.2	cfs
MAJOR STORM Allowable	e Capacity is based on Depth	Criterion	d _{allow} =	1.50	1.50	ft
Water Depth in Chann	el Based On Design Peak	Flow				
			o -	10	101	ofe
Design Peak Flow			$Q_0 =$	1.0	18.1	CTS
Water Depth			d =	0.73	1.48	ft
Top Width			T =	4.38	8.87	ft
Flow Area			A =	1.60	6.55	sq ft
Wetted Perimeter			P =	4.61	9.35	ft
Hydraulic Radius			R =	0.35	0.70	ft
Manning's n based on M	RCS Vegetal Retardance		n =	0.126	0.046	
1. In the second s			V =	0.63	2.76	fps
Flow Velocity				0.22	1.94	ft^2/s
Flow Velocity			VP -			
Flow Velocity Velocity-Depth Product			VR =			
Flow Velocity			VR = D = Fr =	0.36	0.74	ft ft


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

MHFD-Inlet, Version 5.02 (August 2022) AREA INLET IN A SWALE

Anythink Nature Library - Infrastruct	ure Phase				
SD-INLET-A02.2					
		I			
Inlet Design Information (Input)					
ype of Inlet C	DOT Type C (Depressed)	 Inlet Type = 	CDOT Type C	(Depressed)	
Angle of Inclined Grate (must be <= 30 d	egrees)		θ = [0.00	degrees
Vidth of Grate			W =	3.00	ft -
ength of Grate			L =	3.00	ft
pen Area Ratio			A _{RATIO} =	0.70	
eight of Inclined Grate			H _B =	0.00	ft
Clogging Factor	X		Cf =	0.50	
rate Discharge Coefficient			нь C _d =	0.84	
Drifice Coefficient			Co =	0.56	
Veir Coefficient			C _w =	1.81	
		21	-		
	FLOW				
	Dire		MINOR	MAJOR	
/ater Depth at Inlet (for depressed inlets	, 1 foot is added for depression)	d = [1.73	2.48	
		-			
Frate Capacity as a Weir					
ubmerged Side Weir Length		X =	3.00	3.00	ft
nclined Side Weir Flow		Q _{ws} =	21.6	37.0	cfs
ase Weir Flow		Q _{wb} =	30.8	52.8	cfs
terception Without Cloggging		Q _{wi} =	73.9	126.8	cfs
nterception With Clogging		Q _{wa} =	37.0	63.4	cfs
		_			
Grate Capacity as an Orifice					
nterception Without Clogging		Q _{oi} =	37.4	44.8	cfs
nterception With Clogging		Q _{oa} =	18.7	22.4	cfs
otal Inlet Interception Capacity (assumes	closed condition)	Q _a = [18.7	22.4	cfs
ypassed Flow		$Q_a = Q_b = $	0.0	0.0	cfs
apture Percentage = Qa/Qo		Qb = C% =	100	100	%
apture rercentage = Qa/Q0		C% = [100	100	-/0

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

