FINAL DRAINAGE REPORT FOR WESTWOOD

Job Number: D-1104

August 9, 2019 Revised: February 10, 2020 Revised: May 5, 2020 Revised: September 4, 2020 Revised: November 25, 2020 Revised: December 30, 2020 **Revised: February 2, 2021**

RICK ENGINEERING COMPANY ENGINEERING COMPANY RICK ENGINEERING CO

FINAL DRAINAGE REPORT

FOR

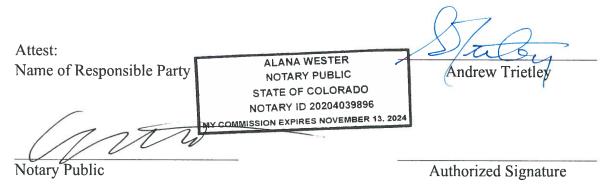
WESTWOOD

CITY OF THORNTON, COLORADO

Job Number: D-1104

Developer:

VENTANA CAPITAL, INC. 9801 East Easter Avenue Centennial, Colorado 80112 (303) 346-7006


Engineer: RICK ENGINEERING COMPANY 9801 East Easter Avenue Centennial, Colorado 80112 (303) 537-8020

> August 9, 2019 Revised: February 10, 2020 Revised: May 5, 2020 Revised: September 4, 2020 Revised: November 25, 2020 Revised: December 30, 2020 **Revised: February 2, 2021**

Certification

Developer:

"Andrew Trietley hereby certifies that the drainage facilities for Westwood will be constructed according to the design presented in this report. I understand that the City of Thornton does not and shall not assume liability for the drainage facilities designed and/or certified by my engineer. I understand that the City of Thornton reviews drainage plans but cannot, on behalf of Westwood, guarantee that final drainage design review will absolve Andrew Trietley and/or their successors and/or assigns of future liability for improper design. I further understand that approval of the Plat and/or Development Permit does not imply approval of my engineer's drainage design."

Professional Engineer:

"I hereby certify that this report (plan) for the final drainage design of Westwood was prepared by me (or under by direct supervision) in accordance with the provisions of the City of Thornton Standards and Specifications for the Design and Construction of Public and Private Improvements for the Responsible Parties thereof. I understand that the City of Thornton does not and shall not assume liability for drainage facilities designed by others."

Troy Bales Registered Professional Engineer State of Colorado No. 50961

TABLE OF CONTENTS

I.	GENERAL LOCATION AND DESCRIPTION 1
А	Location1
В	Description of Property 1
II.	DRAINAGE BASINS AND SUB-BASINS 2
А	Major Basin Description 2
В	Sub-Basin Description
III.	DRAINAGE DESIGN CRITERIA 13
А	. Regulations
В	Development Criteria Reference and Constraints
C	Hydrological Criteria
D	. Hydraulic Criteria
E	Variances from Criteria15
IV.	WETLAND MITIGATION AND PRESERVATION 15
V.	DRAINAGE FACILITY DESIGN 15
А	. General Concept
В	Specific Details
VI.	CONCLUSIONS
А	Compliance with Standards
В	Drainage Concept
VII	REFERENCES

APPENDICES

- A. Hydrologic Computations
- B. Hydraulic Computations
- C. References
- D. Drainage Plan

I. GENERAL LOCATION AND DESCRIPTION

A. Location

The Westwood residential subdivision is in the City of Thornton, Adams County, Colorado. Westwood subdivision is in the Northwest one-quarter of Section 8, Township 1 South, Range 67 West of the Sixth Principal Meridian. North Holly Street (150' ROW) is located along the western boundary. North Monaco Street (80' ROW) is located along the eastern boundary. Talon Pointe, a proposed residential subdivision, is located east of Westwood.

Westwood is part of the Todd Creek watershed. Todd Creek Tributary 2 originates at the southeast corner of the Westwood property. There is an existing 12-inch drainage culvert located under North Monaco Street conveying Todd Creek Tributary 2 runoff to the east through the proposed Talon Pointe subdivision.

Major facilities and easements within and adjacent to the site includes an existing oil and gas infrastructure at the southeastern corner of the property, another existing oil and gas infrastructure just outside the southern edge of the property and an irrigation ditch namely, Signal Ditch that runs along the northern property line.

Westwood is bounded by Brighton Farms property to the west and northwest, Laurie Winters property to the northeast, Talon Pointe subdivision to its east and Harvey & Marilyn Brown property to its south.

B. Description of Property

The current zoning on the property is SFD. There are 161 single family detached residential lots proposed for the Westwood development with associated "local" streets to provide vehicle and pedestrian circulation. The southeast portion of the site is where the proposed detention facility will be located. The eastern half of North Holly Street and the western of North Monaco Street will be constructed as well as the southern half of 156th Avenue (80' ROW). Please note that 156th Avenue will be cash-in-lieu. However, the construction drawings will include the design for reference purposes.

Westwood subdivision is 61.45 acres. Currently, the property hosts two natural gas production sites. The production sites will be abandoned prior to construction activity. The property also hosts agriculture activity.

Located at the northeast corner of the property, there is a farmhouse, out buildings with a small livestock operation. The property is sparsely populated with deciduous trees. The land slopes gently from the northwest to the southeast at grades varying between 1% and 4%. There are tilled fields present.

Signal Ditch is an irrigation ditch that meanders along the north property line from North Holly Street to the northeast and is assumed to flow in full capacity. Portions of Signal Ditch occur within the Westwood property. Signal Ditch will not be altered to accommodate the Westwood Subdivision and it is assumed to flow in full capacity. The project however proposes to replace the existing irrigation culvert underneath Holly Street. Westwood contains Hydrologic Group Type "C" soils. Type "C" soils are described to having a slow infiltration rate when thoroughly wet. Type "C" soils have a very slow rate of water transmission. According to the Natural Resources Conservation Service (NRCS), the predominate soil type is "Planter Loam". Please refer to Appendix C for the NRCS Web Soil Survey.

II. DRAINAGE BASINS AND SUB-BASINS

A. Major Basin Description

The Westwood development is in the Todd Creek watershed. There is an existing Outfall Systems Planning Study (OSP) (Ref 2), December 2003 for Todd Creek. Relevant excerpts from the OSP are provided in Appendix C for reference. Based on Figure III-1 of the OSP the eastern and western edges of the property is 15% impervious and the remainder is 5% impervious. However, based on site visit and aerial imagery the existing onsite imperviousness was calculated to be 3% and the project uses this value to be more conservative. Figure III-2 of the OSP assigns Westwood development area (Basin 50) a future imperviousness of 50% for the purposes of estimating developed runoff from this area. The project conforms with the OSP assumption with a calculated post-project composite percent imperviousness of 45%. The OSP does not contain any recommended improvements for the Westwood property. The Westwood development is upstream of any proposed Todd Creek improvements per Figure ES-2 of the OSP.

The existing land use of the project is agriculture and per the future planned land use map of City of Thornton (included in Appendix C), the site is categorized as Single-Family Neighborhoods (SFN). The proposed project honors this classification by proposing a single-family neighborhood with 161 single family detached residential lots.

Based on Figures III-3 of the OSP, the project area is split between Basin 50 and Basin 41. The project area is a portion of a larger Basin 50 and 41. Basins 50 and 41 consists of 104.6 acres and 102.4 acres, respectively while the Westwood subdivision is approximately 61.45 acres. Basin 50 is tributary to Design Point (DP) 122 and Basin 41 is tributary to DP 120. DP 122 is upstream of DP 120.

The SWMM flow routing in the OSP Figure III-4 do not represent the intricate drainage patterns and flow routing in and around the project site. However, based on site investigation and best available survey information all basins are delineated to reflect the existing site drainage patterns in and around the project site. The project site maintains the overall major drainage patterns post-project and routes the flows to their historic locations.

Westwood has one (1) historic onsite major basin, H1 and seven (7) offsite basins namely O1 thru O7. The project analyzes all onsite basins, offsite basins to be either disturbed by the project development and any offsite basins that contribute run-on flows to the project site. Additional adjacent offsite basins are shown in the Historic Drainage Map included in Appendix D of this report to clearly show and verify that the flows from these basins do not

flow on-site. However, these additional offsite basins have not been analyzed and are not a part of this project.

Historic Basin H1: Historic Basin 1 encompasses approximately 63.1 acres and covers majority of the project area. The existing percent imperviousness was calculated to be 3% and this corresponds to a 5-year and 100-year runoff of 5.1 cfs and 88.1 cfs respectively. Runoff from this basin generally sheet flows from northwest to southeast to an existing culvert beneath Monaco Street identified as Existing Monaco Culvert 1 in the Historic Drainage Map. This culvert further conveys the flows east to the Talon Pointe Subdivision. Majority of the project development occurs in this major basin. In the post-project condition, this major basin is broken down to multiple minor basins and sub-basins. This is discussed in more detail in Section II.B.

Offsite Basin O1: This historic offsite basin is on the northwestern corner of the site. It comprises approximately 0.4 acres and includes portions of the signal ditch. The Signal Ditch could intercept runoff from this area. For the purposes of this drainage report, it is assumed that Signal Ditch does not intercept storm runoff, to replicate the ditch flowing full; therefore, the tributary runoff from this area is calculated to route through the Westwood development to Basin H1. The 5-year and 100-year runoff from this basin is approximately 0.1 cfs and 1.8 cfs. The project proposes no improvements in this basin and the post-project peak flow remains the same as the pre-project peak flow.

Offsite Basins O2, O3 & O4: These historic offsite basins are north of the property boundary and signal ditch runs along their southern edge. Basin O2, O3, and O4 are approximately 2.8 acres, 2.4 acres and 1.6 acres respectively. These basins contribute to a 5-year peak flow of 0.3 cfs each. Their 100-year peak flow is 6.3 cfs, 5.2 cfs and 3.5 cfs respectively. The signal ditch is assumed to flow full (same as Basin O1) and the runoff from these basins are assumed to flow south onsite to Basin H1. The project proposes no improvements in these basins. However, the project provides storm drain stub for any future developments in these basins (more detail discussion included at the end Section II.A).

Offsite Basin O5: This historic offsite basin is approximately 0.8 acres and lies along the southern eastern perimeter of the project site. Basin H1 and Basin O5 confluence at existing Monaco Culvert 1 and gets conveyed to Talon Pointe subdivision east of Monaco St. The 5-year and 100-year runoff from this basin is approximately 0.1 cfs and 2.0 cfs. In the post-project condition, the project proposes minor grading improvements to facilitate the conveyance of the flows from the proposed detention basin and the post-project peak flow remains the same as the pre-project peak flow.

Offsite Basin O6: Offsite basin O6 is located on northwestern corner of the site and west of Holly Street. It encompasses approximately 0.8 acres and flows north in a roadside ditch west of Holly St. The 5-year and 100-year runoff is approximately 0.6 cfs and 3.0 cfs respectively. In the post-project condition, the project proposes improvements to the Holly Street, but the peak flows remain the same.

Offsite Basin O7: Offsite basin O7 is located on northwestern corner of the site and east of Holly Street. It encompasses approximately 0.5 acres in the pre-project condition and 0.6 acres in the post-project condition. The runoff from this basin flows north in a roadside ditch east of Holly St. The pre-project 5-year and 100-year runoff is approximately 1.0 cfs and 2.6 cfs. The post-project 5-year and 100-year runoff is approximately 1.3 cfs and 3.1 cfs respectively. The increase in 100-year peak flow is 0.5 cfs and is due to the increase (+0.1 acres) in post-project area. This increase is considered negligible and adverse impacts to downstream drainage facilities are not anticipated at this time.

Offsite Basin O10: This offsite basin is located southwest of the intersection between E 152nd Avenue and Holly Street and encompasses approximately 8.2 acres. Flow from this basin sheet flows east to an existing culvert beneath Holly Street identified as Existing Holly Culvert 2 in the Historic Drainage Map. The culvert further conveys the flows east to offsite basin O12. The project proposes no improvements to this basin and the basin is only delineated to show the area is not tributary to the project site. No hydrologic analysis has been performed for this basin.

Offsite Basin O11: This offsite basin is located West of Holly Street and along the western edge of the project boundary. It encompasses approximately 43.3 acres. Flow from this basin generally sheet flows east to an existing culvert beneath Holly Street identified as Existing Holly Culvert 1 in the Historic Drainage Map. The culvert further conveys the flows east to offsite basin O12. The 5-year and 100-year runoff from this basin is approximately 5.3 cfs and 79.4 cfs. The project proposes minor surface improvements to the Holly Street. However, the pre-project and post-project peak flow remains the same for both minor and major storms.

Offsite Basin O12: This offsite basin is located south of the property boundary and encompasses approximately 89.2 acres and receives flows from Basins O10 and O11. The flow generally flows east to an existing culvert beneath Monaco Street identified as Existing Monaco Culvert 2 in the Historic Drainage Map. This culvert further conveys the flows east to the Talon Pointe Subdivision. It is important to note that there are two different Monaco Culverts. Basin H1, O1, O2, O3, O4 and O5 are all tributary to Existing Monaco Culvert 1. Basins O10, O11 and O12 are tributary to Existing Monaco Culvert 2. The project proposes no improvements to Basin O12, and the basin is only delineated to show the area is not tributary to the project site. No hydrologic analysis has been performed for this basin.

Offsite Basin O13: This offsite basin is located northeast of the property and encompasses approximately 36.8 acres. The flow generally flows southeast and crosses the Monaco Street overland to Talon Pointe Subdivision. The project proposes no improvements to Basin O13, and the basin is only delineated to show the area is not tributary to the project site. No hydrologic analysis has been performed for this basin.

For more information on the drainage area tributary to Talon Pointe Subdivision please refer to the report titled, "Final Drainage Report for Talon Pointe", prepared by Manhard Consulting. The project provides storm drain stub for any future developments in the offsite basins that are tributary to Westwood development specifically Basins O1, O2, O3 and O4. The storm drain stub runs through proposed Tract B and are designed to convey the historic flows of the offsite tributary area and not their developed flows. Any future development in these offsite basins would have to provide their own on-site detention prior to discharge into the Westwood storm drains.

There is a small portion of Zone A FEMA floodplain located at the southeast corner of the property, where the existing culvert is under North Monaco Street. The FEMA floodplain location is also the upper limit of the study. Zone A is defined as "areas subject to inundation by the 1-percent-annual-chance flood event generally determined using approximate methodologies. Because detailed hydraulic analysis has not been performed, no Base Flood Elevations (BFEs) or flood depths are shown." FEMA FIRM maps are included in the reference section.

B. Sub-Basin Description

Developed Basins: The following drainage basins are a portion of the Historic Basin H1 and the project proposes various developments as shown in the Post-Project Drainage Map in Appendix D. Basins 1 through 51 discussed below together make up historical drainage basin H1.

Basin 1: This basin lies in the western portion of the project site and is proposed to have single family residential lots, local street Ivanhoe Ct and sidewalk. The area of the basin is approximately 0.7 acres. The 5-year and 100-year runoff from the basin is 1.3 cfs and 3.6 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP1 (SDI-31). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin. Please refer to the post-project drainage map in Appendix D.

Basin 2: This basin lies in the western portion of the project site and is proposed to have single family residential lots, local street Ivy St, minor collector street E 154th Ave and sidewalk. The area of the basin is approximately 1.5 acres. The 5-year and 100-year runoff from the basin is 2.7 cfs and 7.6 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP2 (SDI-42). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin. This basin is further subdivided to differentiate the flows between E 154th Ave and Ivy St. The Sub-Basin 2A carries the flow from E 154th Ave and Sub-Basin 2B carries the flow from Ivy St. Peak flow is calculated for the longest flow path to DP2 (SDI-42) using rational method and prorated for the Sub-Basins 2A and 2B. Please refer to Appendix A for the peak flow calculation and the prorated peak flow backup.

Basin 3: This basin lies in the central portion of the project site and is proposed to have single family residential lots, local street Jersey Ct and sidewalk. The area of the basin is approximately 1.1 acres. The 5-year and 100-year runoff from the basin is 1.7 cfs and 5.0 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted

by the on-grade curb inlet at DP3 (SDI-39). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 4: This basin lies in the central portion of the project site and is proposed to have single family residential lots, local street Jasmine St and sidewalk. The area of the basin is approximately 1.2 acres. The 5-year and 100-year runoff from the basin is 1.5 cfs and 5.0 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the in-sump curb inlet at DP4 (SDI-48). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 5: This basin lies in the western portion of the project site and is proposed to have single family residential lots, local street Ivanhoe Ct and sidewalk. The area of the basin is approximately 2.5 acres. The 5-year and 100-year runoff from the basin is 2.9 cfs and 9.4 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP5 (SDI-30). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 6: This basin lies in the central portion of the project site and is proposed to have single family residential lots, local street E 153^{rd} Pl and sidewalk. The area of the basin is approximately 1.5 acres. The 5-year and 100-year runoff from the basin is 2.4 cfs and 6.8 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP6 (SDI-34). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 7: This basin lies in the central portion of the project site and is proposed to have single family residential lots, local street Jasmine St and sidewalk. The area of the basin is approximately 1.0 acres. The 5-year and 100-year runoff from the basin is 1.6 cfs and 4.8 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the in-sump curb inlet at DP7 (SDI-47). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 8: This basin lies along the western edge of the project site and is proposed to house an arterial street North Holly Street and sidewalk. The area of the basin is approximately 0.3 acres. The 5-year and 100-year runoff from the basin is 0.9 cfs and 2.1 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP8 (SDI-45). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 9: This basin lies in the western portion of the project site and is proposed to house a minor collector street E 154th Ave and sidewalk. The area of the basin is approximately 0.5 acres. The 5-year and 100-year runoff from the basin is 1.4 cfs and 3.2 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP9 (SDI-40). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 10: This basin lies in the central portion of the project site and is proposed to have single family residential lots, sidewalk, local streets E 154th Pl and Jasmine St. The area of the basin is approximately 1.2 acres. The 5-year and 100-year runoff from the basin is 2.0 cfs and 5.9 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the in-sump curb inlet at DP10 (SDI-12). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 11: This basin lies in the central portion of the project site and is proposed to house just a small portion of the Jasmine St and its sidewalk. The area of the basin is approximately 0.1 acres. The 5-year and 100-year runoff from the basin is 0.3 cfs and 0.7 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the in-sump curb inlet at DP11 (SDI-13). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 12: This basin lies in the central portion of the project site and is proposed to have single family residential lots, sidewalk and local street E 154th Pl. The area of the basin is approximately 1.4 acres. The 5-year and 100-year runoff from the basin is 2.1 cfs and 6.5 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP12 (SDI-07). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 13: This basin lies in the northern portion of the project site and is proposed to have single family residential lots, sidewalk and western half of the local Kearney St. The area of the basin is approximately 1.2 acres. The 5-year and 100-year runoff from the basin is 2.2 cfs and 6.3 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP13 (SDI-24). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 14: This basin lies in the northern portion of the project site and is proposed to have single family residential lots, sidewalk and eastern half of the local Kearney St. The area of the basin is approximately 0.7 acres. The 5-year and 100-year runoff from the basin is 1.4 cfs and 3.9 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP14 (SDI-11). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 15: This basin lies in the northern portion of the project site and is proposed to have single family residential lots, sidewalk and western half of the local Krameria St. The area of the basin is approximately 1.6 acres. The 5-year and 100-year runoff from the basin is 2.4 cfs and 7.1 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP15 (SDI-27). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 16: This basin lies in the northern portion of the project site and is proposed to have single family residential lots, sidewalk and eastern half of the local Krameria St. The area of the basin is approximately 0.9 acres. The 5-year and 100-year runoff from the basin is 1.9 cfs and 5.0 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets

intercepted by the on-grade curb inlet at DP16 (SDI-16). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 17: This basin lies in the northeastern portion of the project site and is proposed to have single family residential lots, sidewalk and western half of the local Leyden St. The area of the basin is approximately 1.5 acres. The 5-year and 100-year runoff from the basin is 2.4 cfs and 6.9 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP17 (SDI-10). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 18: This basin lies in the central portion of the project site and is proposed to have single family residential lots, sidewalk and western half of the local Leyden St. The area of the basin is approximately 1.1 acres. The 5-year and 100-year runoff from the basin is 1.7 cfs and 5.0 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP18 (SDI-08). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 19: This basin lies in the south-central portion of the project site and is proposed to have single family residential lots, sidewalk and minor collector E 154th Ave. The area of the basin is approximately 0.9 acres. The 5-year and 100-year runoff from the basin is 1.5 cfs and 4.3 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP19 (SDI-46). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 20: This basin lies in the southeastern portion of the project site and is proposed to have single family residential lots, sidewalk, local E 154th Pl and minor collector E 154th Ave. The area of the basin is approximately 1.6 acres. The 5-year and 100-year runoff from the basin is 2.9 cfs and 7.7 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the upstream flanking inlet (SDI-04) and a sump inlet (SDI-05) at DP20. After being intercepted by the inlets, runoff enters the storm drain system and eventually enters the proposed detention basin. This basin is further subdivided to differentiate the flows between E 154th Pl and E 154th Ave. The Sub-Basin 20A carries the flow from E 154th Pl and Sub-Basin 20B carries the flow from E 154th Ave. Peak flow is calculated for the longest flow path to DP20 using rational method and prorated for the Sub-Basins 20A and 20B. Please refer to Appendix A for the peak flow calculation and the prorated peak flow backup.

Basin 21: This basin lies on the northern portion of the project site and is proposed to have single family residential lots, sidewalk and local street E 155th Pl. The area of the basin is approximately 1.9 acres. The 5-year and 100-year runoff from the basin is 2.7 cfs and 8.5 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP21 (SDI-03). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 22: This basin lies on the northeastern portion of the project site and is proposed to have single family residential lots, sidewalk, local streets E 155th Pl and Locust St. The area of the basin is approximately 1.7 acres. The 5-year and 100-year runoff from the basin is 2.6 cfs and

7.5 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP22 (SDI-23). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 23: This basin lies on the eastern portion of the project site and is proposed to have single family residential lots, sidewalk and local street Locust St. The area of the basin is approximately 1.2 acres. The 5-year and 100-year runoff from the basin is 2.1 cfs and 6.2 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP23 (SDI-22). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 24: This basin lies on the eastern portion of the project site and is proposed to have single family residential lots, sidewalk, local streets Locust St and E 154th Pl. The area of the basin is approximately 1.2 acres. The 5-year and 100-year runoff from the basin is 1.8 cfs and 5.3 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP24 (SDI-21). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin

Basin 25: This basin lies in the eastern portion of the project site and is proposed to have single family residential lots, sidewalk and eastern half of the local Leyden St. The area of the basin is approximately 1.0 acres. The 5-year and 100-year runoff from the basin is 1.9 cfs and 5.3 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP25 (SDI-09). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 26: This basin lies in the southeastern portion of the project site and is proposed to have single family residential lots, sidewalk, local streets E 154th Pl & Leyden St. The area of the basin is approximately 0.4 acres. The 5-year and 100-year runoff from the basin is 1.1 cfs and 2.4 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the in-sump curb inlet at DP26 (SDI-06). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 30: This basin lies in the southeastern portion of the project site and is proposed to have single family residential lots, sidewalk, minor collector E 154th Ave, major collector E 156th Ave and Monaco St. The area of the basin is approximately 5.4 acres. The 5-year and 100-year runoff from the basin is 5.0 cfs and 16.2 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the upstream flanking inlet (SDI-20) and a sump inlet (SDI-02) at DP30. After being intercepted by the inlets, runoff enters the storm drain system and eventually enters the proposed detention basin. This basin is further subdivided to differentiate the flows between E 154th Pl, E 154th Ave and Monaco St. The Sub-Basin 30A carries the flow from E 156th Ave, Sub-Basin 30B from Monaco St and Sub-Basin 30C from E 154th Ave. Peak flow is calculated for the longest flow path to DP30 using rational method and prorated for the Sub-Basins 30A, 30B and 30C. Please refer to Appendix A for the peak flow calculation and the prorated peak flow backup.

Basin 31: This basin lies in the southern portion of the project site and is proposed to have single family residential lots, sidewalk, local street Krameria Ct and minor collector E 154th Ave. The area of the basin is approximately 1.8 acres. The 5-year and 100-year runoff from the basin is 2.6 cfs and 6.5 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP31 (SDI-26). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin. This basin is further subdivided to differentiate the flows between E 154th Ave, western half of Krameria Ct and the eastern half of Krameria Ct. The Sub-Basin 31A carries the flow from E 154th Ave, Sub-Basin 31B from western half of Krameria Ct and Sub-Basin 31C from eastern half of Krameria Ct. Peak flow is calculated for the longest flow path to DP31 using rational method and prorated for the Sub-Basins 31A, 31B and 31C. Please refer to Appendix A for the peak flow calculation and the prorated peak flow backup.

Basin 32: This basin lies in the southeastern corner of the project site and is proposed to house the Monaco Street south of the E 154th Ave and Monaco St intersection. The area of the basin is approximately 0.3 acres. The 5-year and 100-year runoff from the basin is 0.9 cfs and 2.2 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP32 (SDI-49). After being intercepted by the inlet, runoff outlets directly east of Monaco without any storm water quality control measures. Detailed discussion on the MS4 exemption is provided in Section III.A.

Basin 33: This basin lies along the southwestern edge of the project site and is proposed to house arterial street North Holly Street and sidewalk. The area of the basin is approximately 0.9 acres. The 5-year and 100-year runoff from the basin is 1.9 cfs and 4.1 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the ongrade curb inlet at DP33 (SDI-44). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 34: This basin lies along the southern edge of the project boundary and is proposed to house a park and small portions of single-family residential lots. The area of the basin is approximately 6.1 acres. The 5-year and 100-year runoff from the basin is 2.3 cfs and 16.4 cfs respectively. Runoff from this basin sheet flows across the park and gets intercepted by the insump grate inlet at DP34 (SDI-32). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 35: This basin lies along the southeastern edge of the project boundary and is proposed to house the proposed detention facility and small portions of single-family residential lots. The area of the basin is approximately 4.3 acres. The 5-year and 100-year runoff from the basin is 12.0 cfs and 25.3 cfs respectively. Runoff from this basin sheet flows across the park and gets intercepted by the in-sump grate inlet at DP34 (SDI-32). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 36: This basin lies along the northwestern edge of the project boundary and is proposed to house a park. The area of the basin is approximately 3.3 acres. The 5-year and 100-year runoff from the basin is 0.9 cfs and 8.0 cfs respectively. Runoff from this basin sheet flows

across the park and gets intercepted by two in-sump grate inlets at DP36 (SDI-25 and SDI-41). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin. This basin is further subdivided to differentiate the flows between the eastern and western half of the park. The Sub-Basin 36A carries the flow from western half and Sub-Basin 36B carries the flow from eastern half. Peak flow is calculated for the longest flow path to DP36 using rational method and prorated for the Sub-Basins 36A and 36B. Please refer to Appendix A for the peak flow calculation and the prorated peak flow backup.

Basin 41: This basin lies along the northern boundary of the project site and is proposed to house a park. The area of the basin is approximately 2.5 acres. The 5-year and 100-year runoff from the basin is 0.7 cfs and 6.3 cfs respectively. Runoff from this basin sheet flows across the park and gets intercepted by two in-sump grate inlets at DP41 (SDI-28 and SDI-50). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin. This basin is further subdivided to differentiate the flows between the eastern and western half of the park. The Sub-Basin 41A carries the flow from western half and Sub-Basin 41B carries the flow from eastern half. Peak flow is calculated for the longest flow path to DP41 using rational method and prorated for the Sub-Basins 41A and 41B. Please refer to Appendix A for the peak flow calculation and the prorated peak flow backup.

Basin 42: This basin lies in the central portion of the project site and is proposed to have single family residential lots, sidewalk and local street E 154th Pl. The area of the basin is approximately 1.4 acres. The 5-year and 100-year runoff from the basin is 2.4 cfs and 6.6 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP42 (SDI-17). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 43: This basin lies in the southern portion of the project site and is proposed to have single family residential lots, sidewalk, local streets Ivy St and E 153rd Pl. The area of the basin is approximately 1.0 acres. The 5-year and 100-year runoff from the basin is 2.2 cfs and 5.9 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP43 (SDI-33). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 44: This basin lies in the southern portion of the project site and is proposed to have single family residential lots, sidewalk, local streets Jersey Ct and E 153rd Pl. The area of the basin is approximately 0.9 acres. The 5-year and 100-year runoff from the basin is 2.1 cfs and 5.5 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the on-grade curb inlet at DP44 (SDI-35). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 45: This basin lies in the central portion of the project site and is proposed to house the southern half of the minor collector from Ivy Street to Jasmine St. The area of the basin is approximately 0.4 acres. The 5-year and 100-year runoff from the basin is 1.0 cfs and 2.4 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted

by the in-sump curb inlet at DP45 (SDI-37). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 46: This basin lies in the central portion of the project site and is proposed to house the northern half of the minor collector from Ivy Street to Jasmine St and few portions of single family residential lots. The area of the basin is approximately 0.7 acres. The 5-year and 100-year runoff from the basin is 1.2 cfs and 3.1 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the in-sump curb inlet at DP46 (SDI-38). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 47: This basin lies in the central portion of the project site and is proposed to have single family residential lots, sidewalk and local street E 154th Pl. The area of the basin is approximately 0.9 acres. The 5-year and 100-year runoff from the basin is 1.5 cfs and 4.3 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the in-sump curb inlet at DP47 (SDI-14). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 48: This basin lies in the central portion of the project site and is proposed to have single family residential lots, sidewalk, local streets Kearney St and E 154th Pl. The area of the basin is approximately 0.8 acres. The 5-year and 100-year runoff from the basin is 1.5 cfs and 4.1 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the in-sump curb inlet at DP48 (SDI-15). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 49: This basin lies in the central portion of the project site and is proposed to have single family residential lots, sidewalk and local streets Krameria St & E 154th Pl. The area of the basin is approximately 1.2 acres. The 5-year and 100-year runoff from the basin is 2.2 cfs and 5.9 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the in-sump curb inlet at DP49 (SDI-18)). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 50: This basin lies in the eastern portion of the project site and is proposed to have single family residential lots, sidewalk and local street E 154th Pl. The area of the basin is approximately 1.1 acres. The 5-year and 100-year runoff from the basin is 2.2 cfs and 5.9 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the in-sump curb inlet at DP50 (SDI-19)). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

Basin 51: This basin lies in the southeastern portion of the project site and is proposed to have sidewalk and E 154th Ave. The area of the basin is approximately 0.4 acres. The 5-year and 100-year runoff from the basin is 1.2 cfs and 2.7 cfs respectively. Runoff from this basin flows along the street curb and gutter and gets intercepted by the in-sump curb inlet at DP51 (SDI-01). After being intercepted by the inlet, runoff enters the storm drain system and eventually enters the proposed detention basin.

III. DRAINAGE DESIGN CRITERIA

A. Regulations

Due to horizontal and vertical constraints Basin 32, which consists of North Monaco Street improvements south of the intersection between North Monaco Street and East 154th Avenue, will outlet directly east of North Monaco Street without any storm water quality control measures. The Colorado Department of Public Safety General Permit Order No. COR09000, Section 4.IV.A.I (page 29 of 63) (issued March 30th, 2018 effective May 1, 2018), explicitly states that the "permittee may exclude up to 20 percent not to exceed 1 acre of the applicable development site area when the permittee has determined that it is not practicable to capture runoff from portions of the site that will not drain towards control measures". In compliance with the permit, Basin 32 proposes an impervious area of approximately 0.25 acres and is well within the 1-acre threshold. The various variances sought in the Construction Documents are discussed in Section III.E to follow.

B. Development Criteria Reference and Constraints

The City of Thornton's "Standards and Specifications for the Design and Construction of Public and Private Improvements" (Ref 1) provides the standards to which the Westwood development will follow. The project also follows and refers to the Mile High Flood District's, "Urban Storm Drainage Criteria Manual Volumes 1, 2 and 3" for additional guidance. This drainage report also references and conforms to, "Todd Creek and DFA 0052 Watersheds Outfall Systems Planning Study", prepared by Kiowa Engineering Corporation, 2003 as discussed earlier in the report.

The project proposes to replace the Existing Monaco Culvert 1 (12-inch) located under North Monaco Street conveying Todd Creek Tributary 2 runoff to the east through the proposed Talon Pointe subdivision for the interim condition. The interim condition assumes the completion of Westwood development and as-is condition for the Talon Pointe subdivision. The interim culvert has been designed to convey only the on-site un-detained 100-year flow without overtopping. Upon coordination, Talon Pointe has agreed to design the ultimate condition culvert which will convey the flows from the entire Todd Creek Tributary 2 area including the Westwood development. The project also proposes to replace the existing irrigation culvert along the Signal irrigation ditch underneath Holly Street. The design requirements were provided by the Signal Ditch Company. Design flow for the culvert is 60 CFS. Required freeboard inside the culvert is 2 feet. Constant tailwater elevation is 2 feet above channel invert. Moreover, a HEC-RAS riprap analysis was required to demonstrate hydraulic jump within the proposed riprap apron and velocity less than 3 FPS. The proposed Signal Ditch Irrigation culvert has been designed to meet all these requirements.

C. Hydrological Criteria

The one-hour design rainfalls for Thornton are 0.97" for the 2-year storm event; 1.38" for the 5-year storm; 2.69" for the 100-year storm. The minor storm is the 5-year storm recurrence interval. The major storm is the 100-year storm recurrence interval. Storm runoff has been

calculated using the Rational Method. The Rational Method is acceptable to use for urban catchments smaller than 90 acres.

The detention basin volume is calculated using the inbuilt CUHP inflow hydrograph generator in the MHFD's UD-Detention spreadsheet. The project proposes full-spectrum detention for the Water Quality Control Volume (WQCV), Excess Urban Runoff Volume (EURV), 5-year (minor) storm, and the 100-year (major) storm as required per the Section 402.12 of the City of Thornton's Standards and Specifications. The outlet works of the proposed detention basin are also designed using the latest version of the UD-Detention spreadsheet.

D. Hydraulic Criteria

Street capacity, street corner capacity, curb and grate inlets have been designed utilizing the latest version of Mile High Flood District (MHFD) Street and Inlet Hydraulics spreadsheet UD-Inlet. Inlets are provided at all the locations where runoff exceeds street capacity. Streets are designed per Table 7-2 and 7-3 in Chapter 7 of the MHFD's Urban Storm Drainage Criteria Manual (USDCM) Volume 1. Cross-Pans are designed per Table 7-4 in Chapter 7 of the USDCM.

Swales and roadside ditches have been designed using the Federal Highway Administrations (FHWA) Hydraulic Toolbox 4.4 computer program. All swales are designed to have at least 1-foot of freeboard for the major storm, per City of Thornton Criteria. It is important to note that the stability charts provided in Section 6 of Chapter 8 USDCM are only applicable for swales with side slopes 5:1 or flatter. Therefore, the proposed swales have been designed to maintain velocities less than 7 fps and maximum shear stress less than 1.2 lb/sf per Table 8-3 in Section 5.8 of the USDCM, Volume 1 (page 8-50) to preserve bank stability. This eliminates the need for any additional armoring in the swales.

Roadside ditches are designed to meet the criteria per Section 402.6 of the City of Thornton's Standard and Specifications. They are designed to adequately carry the minor storm with 6-inches of freeboard. Maximum proposed side slope of 4:1 has been maintained and maximum velocity for all roadside ditches is less than 5 fps. Roadside ditches have been designed to maintain velocities less than 5 fps (during minor storm) and maximum shear stress less than 1.2 lb/sf per Table 8-3 in Section 5.8 of the USDCM, Volume 1 (page 8-50) to preserve bank stability. This eliminates the need for any additional armoring in the swales.

The proposed storm drain system has been designed using the Hydraflow Storm Sewers Extension for Autodesk Civil3D. A minimum pipe size of 18-inches has been used. Applicable storm sewer losses have been calculated and hydraulic grade lines have been computed for the proposed storm sewers per criteria set forth by the USDCM. The proposed interim culvert under Monaco Street and the Signal Irrigation Culvert under Holly Street have been designed using HY-8 software per Chapter 11 of the USDCM Volume 2.

Riprap apron for pipe and culvert outlets, have been designed per Chapter 8 and Chapter 9 of the USDCM. Emergency overflow spillway riprap has been designed per Chapter 12 of the USDCM.

E. Variances from Criteria

CITY SPEC. NO.	DESCRIPTION OF VARIANCE	SPECIFIC LOCATIONS
Section 303(G)	Reduce the required horizontal separation between storm and sewer to 7ft	Local Streets
Section 402.13(E)	Reduce the minimum pond bottom slope to 2%	Detention Pond
Section 402.7(B)(1)	Reduce the allowable cover on storm drain with a roadway to be 18in to finish surface	Temporary culvert in Monaco and storm drain in 154th Ave west of Monaco intersection
Section 402.5(B)	Reduce the minimum pavement cross slope to 1.00%	Cul de sacs, knuckles and intersections
Section 203.6(B)	Place the waterline on the west side of the street	Holly Street
Section 203.13(A)(1)	Place the water service on the low side of the lot and reduce the min separation to lot line to 3ft	Throughout Westwood subdivision Filing 1
Section 303(G)	Reduce the allowable cover between sewer and future storm drain	Monaco at culvert crossing
Section 402.8.1	Drainage easements on residential lots to convey stormwater flows in clogged inlet scenario	Block 1, Lot 18 & Block 6, Lots 29 and 30
Section 303.9 (E)	Reduction in 0.3ft drop in sewer manhole	Sew MH # 1 and 63 in Monaco St

IV. WETLAND MITIGATION AND PRESERVATION

There are no jurisdictional wetlands on the areas disturbed by the Westwood development.

V. DRAINAGE FACILITY DESIGN

A. General Concept

The drainage concept of the Westwood development is to maintain existing drainage patterns by routing developed runoff via curb and gutter in local and collector roads to proposed storm sewer to the southeast portion of the property where a Full Spectrum Extended Detention Basin (EDB-1), will detain developed runoff and release the runoff at near historic rates to Todd Creek Tributary 2. Full spectrum detention is the process where a detention pond controls peak discharges over the range of storm events from frequently occurring storms up to the 100-year flood. Full spectrum detention facilities are designed to produce outflow hydrographs that replicate the shape of pre-development hydrographs.

Runoff from offsite basins, O1, O2, O3 and O4 will be conveyed through the Westwood Development by side lot swales (Section 3 and 4) and will be intercepted by grate inlets connected to the proposed storm sewer. In case of an emergency, when the grate inlets fail the flow from the side lot swales will be conveyed through Tract B to Kearney Street.

The proposed improvements to North Holly Street (Basins 8 and 33) and North Monaco Street (Basin 30) will convey developed runoff onto the Westwood development. All onsite and offsite sub-basins tributary to the Westwood development will be conveyed to the proposed full spectrum detention facility except for Basin 32. Due to horizontal and vertical constraints Basin 32, which consists of North Monaco Street improvements south of the intersection between North Monaco Street and East 154th Avenue, will outlet directly east of North Monaco Street without any storm water quality control measures as discussed earlier in section III.A.

Appendix A contains Hydrologic Computations that quantify the peak runoff for the minor and major storm. Impervious calculations tabulate the existing and proposed land use characteristics that are used to calculate the Rational runoff coefficients and percent impervious that are dependent variables to calculate peak runoff and required full spectrum detention volumes. Times of Concentration are calculated to estimate the relative duration of peak storm events to quantify, at design points, the peak runoff. It also includes full spectrum detention basin design backup.

Appendix B contains the Hydraulic Computations which includes, street capacity calculations, inlet design, emergency sump overflow design, cross-pan design, swale design, roadside ditch design, culvert design, hydraulic grade line calculations and riprap apron sizing. All relevant reference documents are included in Appendix C.

Westwood development is divided into 52 design points. All design points except for Design Point 32 ultimately discharges to the Full Spectrum Detention Basin (EDB-1) through a combination of natural sheet flow, urban street drainage and proposed storm sewers. Tract H includes the proposed extended detention basin facility and will house an emergency overflow spillway in case the detention outlet structure fails. Please refer to Appendix B for the emergency spillway sizing. Tract B will contain a storm sewer stub for future adjacent development to connect to the Westwood storm drain system. Please refer to Appendix D for the Proposed Drainage Plan.

B. Specific Details

The full spectrum extended detention basin (EDB-1) has been designed per the City of Thornton and USDCM criteria. The detention basin has a side slope of 4:1 and a micropool is also provided within the outlet structure per City of Thornton criteria. The pond contains a trickle channel that routes minor storm runoff to the proposed detention pond outlet structure. The trickle channel is sized for 2% of the undetained 100-year flow per USDCM Volume 3. An external concrete pool is provided for the initial surcharge volume. Initial surcharge volume is 0.3% of the WQCV per USDCM Volume 3. The emergency spillway for the proposed detention basin has been designed to convey twice the onsite un-detained 100-year storm while maintaining the minimum freeboard of 1 foot within the spillway embankment. A maintenance path has been included in the design of the detention basin to allow utility trucks access to the detention basin.

In accordance with the Detention Criteria for the City of Thornton, the detention basin has been designed to provide detention of the Water Quality Capture Volume (WQCV), Excess Urban Runoff Volume (EURV), 5-Year and the 100-Year storm event. The post-project flow rate for the 100-year storm event will be detained back to historic rates per the USDCM criteria.

Detention basin (EDB-1) has been designed utilizing the latest version of the UD-Detention spreadsheet for all design return periods to mitigate for the additional impervious area in the proposed condition.

The proposed detention basin provides 1.02 ac-ft of storage for the WQCV, 1.89 ac-ft for the EURV, 2.06 ac-ft for the 5-year and 5.89 ac-ft for the 100-year storm event. The undetained 100-year peak flow rate from the pond is 182.4 cfs. The detained 100-year peak flow rate is 110.3 cfs.

Riprap for pipe outlets into the extended detention basin has been designed to mitigate high exit velocities and reduce erosion. Type M Soil Riprap has been designed for the emergency overflow spillway pursuant to Chapter 12 of the USDCM Volume 2.

Maximum length of 10 feet has been maintained for all the proposed CDOT Type R curb inlets in residential areas per City request. Upstream flanking inlets have been used where necessary to meet the requirement.

Street corner capacity checks have been included wherever flows turn corner. Capacity checks are also provided upstream of sump, upstream of cross-pan.

VI. CONCLUSIONS

A. Compliance with Standards

The drainage plan and concept for the Westwood development follow the City of Thornton Standards and Specifications and the Mile High Flood District Urban Storm Drainage Criteria Manuals.

B. Drainage Concept

The drainage design will be effective in controlling damage from storm runoff by safely conveying developed runoff to local and collector roads where curb and gutter and storm sewer will route runoff to the proposed full spectrum detention facility. The detention facility will store developed runoff and release runoff downstream at rates that mimic historic drainage volumes and rates.

VII. REFERENCES

- 1. "Standards and Specifications for the Design and Construction of Public and Private Improvements". City of Thornton, 2012.
- 2. "Todd Creek and DFA 0052 Watersheds Outfall Systems Planning Study" Preliminary Design Report. Kiowa Engineering Corporation, 2003.
- 3. "Urban Storm Drainage Criteria Manual Volumes 1, 2 and 3". Urban Drainage and Flood Control District, 2016.

Appendix A

Hydrologic Computations

- Pre-Project
- Post-Project
- Detention Design

Appendix A - Hydrologic Computations Pre-Project

Runoff Coefficients Pre-Project

Basin ID /	Total	Area		Single Fa	amily (<0.25 A	(cres)			Single Family (0.25 - 0.75 Acres)				Streets (Paved) / Storage Areas					Historic / Undeveloped / Landscape					Composite		
Design Point	sq-ft	acres	sq-ft	acres	Impervious ness ¹	C5 ²	C100 ²	sq-ft	acres	Imperviousn ess ¹	C5 ²	C100 ²	sq-ft	acres	Imperviousn ess ¹	C5 ²	C100 ²	sq-ft	acres	Imperviousn ess ¹	C5 ²	C100 ²	Imperviousn ess ³	C5 ⁴	C100 ⁵
Column2	Column3	Column4	Column5	Column6	Column7	Column8	Column9	Column10	Column11	Column12	Column13	Column14	Column15	Column16	Column17	Column18	Column19	Column30	Column31	Column32	Column33	Column34	Column35	Column36	Column37
H1	2748111	63.1		0.00	45	0.40	0.67		0.00	30	0.28	0.61	14666	0.34	100	0.86	0.89	2733445	62.75	2	0.05	0.49	0.03	0.06	0.49
O1	17725	0.4		0.00	45	0.40	0.67		0.00	30	0.28	0.61		0.00	100	0.86	0.89	17725	0.41	2	0.05	0.49	0.02	0.05	0.49
O2	123102	2.8		0.00	45	0.40	0.67		0.00	30	0.28	0.61		0.00	100	0.86	0.89	123102	2.83	2	0.05	0.49	0.02	0.05	0.49
O3	103568	2.4		0.00	45	0.40	0.67		0.00	30	0.28	0.61		0.00	100	0.86	0.89	103568	2.38	2	0.05	0.49	0.02	0.05	0.49
O4	67958	1.6		0.00	45	0.40	0.67		0.00	30	0.28	0.61	3206	0.07	100	0.86	0.89	64752	1.49	2	0.05	0.49	0.07	0.09	0.51
O5	36371	0.8		0.00	45	0.40	0.67		0.00	30	0.28	0.61		0.00	100	0.86	0.89	36371	0.83	2	0.05	0.49	0.02	0.05	0.49
O6	33046	0.8		0.00	45	0.40	0.67		0.00	30	0.28	0.61	6451	0.15	100	0.86	0.89	26595	0.61	2	0.05	0.49	0.21	0.21	0.57
07	21976	0.5		0.00	45	0.40	0.67		0.00	30	0.28	0.61	12783	0.29	100	0.86	0.89	9193	0.21	2	0.05	0.49	0.59	0.52	0.73
011	1885162	43.3		0.00	45	0.40	0.67		0.00	30	0.28	0.61	30322	0.70	100	0.86	0.89	1854839	42.58	2	0.05	0.49	0.04	0.06	0.50

Refer to Table 6-3 Urban Storm Drainage Criteria Manual, March 2017 Edition Refer to Table 6-5 Urban Storm Drainage Criteria Manual, March 2017 Edition Refer to Table 6-5 Urban Storm Drainage Criteria Manual, March 2017 Edition

Weighted imperviosuness Weighted C5 Weighted C100

[1] [2] [3] [4] [5] [6]

Job Name:	Westwood	
Job Number:	D1104	
Date:		
_		

Time of Concentration Pre-Project

	Basin I	Data			Initial Overland Time (t _i)			Travel/Channelized Time (t_t)							Minimum Time of Concentration (t _c)					
Basin ID / Design Point	Area	Composite Imperviousness	C_5^{1}	Starting Elevation	Ending Elevation	Length (If length of Overland Flow is > 300 ft, use 300 ft)	Slope	t_i^2	-	Ending Elevation	Length	Slope	Conveyance Factor, K ³	Channel Velocity ⁴	t_t^5	$t_{c}^{6} = t_{i} + t_{t}$	Comp. t_c^7	Final t _c ⁸ (If <5, use 5)	Final t _c	Remarks
	ac			ft	ft	ft	ft/ft	min	ft	ft	ft	ft/ft		ft/s	min	min	min	min	min	
H1	63.1	0.03	0.06	5211	5204	300	0.023	24.69	5204	5169	2200	0.016	5	0.63	58.14	82.83	56.65	56.65	56.65	
01	0.4	0.02	0.05					5.00	0							5.00		5.00	5.00	
O2	2.8	0.02	0.05	5211	5201.5	300	0.032	22.42	5201.5	5195	220	0.030	5	0.86	4.27	26.68	27.96	26.68	26.68	
03	2.4	0.02	0.05	5210	5201	300	0.030	22.82	5201	5195	215	0.028	5	0.84	4.29	27.11	27.97	27.11	27.11	
O4	1.6	0.07	0.09	5211	5204	300	0.023	23.90	5204	5194	305	0.033	5	0.91	5.61	29.51	27.70	27.70	27.70	
05	0.8	0.02	0.05	5176.5	5176	50	0.010	13.39	5176	5161	1120	0.013	15	1.74	10.75	24.14	43.04	24.14	24.14	
O6	0.8	0.21	0.21	5209	5208	50	0.020	9.06	5208	5193	400	0.038	15	2.90	2.30	11.35	25.29	11.35	11.35	
07	0.5	0.59	0.52	5209	5208	50	0.020	5.90	5208	5189	665	0.029	15	2.54	4.37	10.27	19.77	10.27	10.27	
O11	43.3	0.04	0.06	5243	5238	300	0.017	27.36	5238	5198	1247	0.032	5	0.90	23.21	50.57	37.61	37.61	37.61	

[1] Refer to C spreadsheet

[2] Refer to Equation 6-3 Urban Storm Drainage Criteria Manual, March 2017 Edition

[3] Refer to Table 6-2 Urban Storm Drainage Criteria Manual, March 2017 Edition

[4] $Vt = K\sqrt{S_0}$ $S_0 =$ Waterway Slope

[5] Refer to Equation 6-4 Urban Storm Drainage Criteria Manual, March 2017 Edition

[6] Refer to Equation 6-2 Urban Storm Drainage Criteria Manual, March 2017 Edition

[7] Refer to Equation 6-5 Urban Storm Drainage Criteria Manual, March 2017 Edition

[8] Smaller of the two t_c values

Job Name: Westwood

Job Number:	D1104
Date:	

Job Name:	Westwood
Job Number:	D1104
Date:	

5-Year 1-Hr Point Rainfall =

1.38 in

		Q5		
Basin ID /		I^2	А	Q^3
Design	$C5^1$	in/hr	aeras	cfs
Point		111/111	acres	CIS
H1	0.06	1.4	63.1	5.1
01	0.05	4.7	0.4	0.1
O2	0.05	2.3	2.8	0.3
O3	0.05	2.3	2.4	0.3
O4	0.09	2.3	1.6	0.3
05	0.05	2.5	0.8	0.1
O6	0.21	3.5	0.8	0.6
07	0.52	3.7	0.5	1.0
O11	0.06	1.9	43.3	5.3

[1]	Refer to Post-Project Runoff Coefficients spreadsheet
[2]	Refer to Equation 5-1 Urban Storm Drainage Criteria Manual, March 2017
[3]	Refer to Equation 6-1 Urban Storm
L- J	Drainage Criteria Manual, March 2017

Job Name:	Westwood
Job Number:	D1104

Date:

100-Year 1-Hr Point Rainfall =

2.69 in

		Q100		
Basin ID /		I^2	А	Q^3
Design	$C100^1$	in/hr	aanaa	ofa
Point		111/11	acres	cfs
H1	0.49	2.8	63.1	88.1
01	0.49	9.1	0.4	1.8
O2	0.49	4.5	2.8	6.3
O3	0.49	4.5	2.4	5.2
O4	0.51	4.4	1.6	3.5
O5	0.49	4.8	0.8	2.0
O6	0.57	6.9	0.8	3.0
07	0.73	7.2	0.5	2.6
011	0.50	3.7	43.3	79.4

[1]	Refer to Post-Project Runoff Coefficients spreadsheet
[2]	Refer to Equation 5-1 Urban Storm Drainage Criteria Manual, March 2017
[3]	Refer to Equation 6-1 Urban Storm Drainage Criteria Manual, March 2017

Appendix A - Hydrologic Computations Post-Project

Runoff Coefficients Post-Project

Basin ID /	Total Area		Basin ID / Total Area Single Family (<0.25 Acres)					Single Fa	mily (0.25 - 0.	75 Acres)			Streets (Pa	aved) / Stora	ge Areas				Parks				Historic / U	Indeveloped / Landscape			Composite	
Point	sq-ft acres	sq-ft	acres	Impervious ness ¹	C5 ²	C100 ²	sq-ft	acres	Imperviousn ess ¹	C5 ²	C100 ²	sq-ft	acres	mperviousn ess ¹	C5 ²	C100 ²	sq-ft	acres	Imperviousn ess ¹	C5 ²	C100 ²	sq-ft	acres	Imperviousn ess ¹ C5 ²	C100 ²	Imperviousn ess ³	C5 ⁴	C100 ⁵
Column2	Column3 Column	Column5			Column8	Column9		Column11	Column12	Column13	Column14		Column16	Column17		Column19	Column25	Column26	Column27	Column28	Column29	Column30	Column31	Column32 Column33	Column34		Column36	Column37
1	28714 0.	13016	0.30		0.40	0.67	5401	0.12	30	0.28	0.61	10297	0.24	100	0.86	0.89		0.00	10	0.12	0.53	4010	0.00	2 0.05	0.49	0.62	0.54	0.74
2	64092 1. 48403 1.	38623 42230	0.89	-	0.40	0.67	2135	0.05	30	0.28	0.61	19324 6172	0.44	100	0.86	0.89		0.00	10	0.12	0.53	4010	0.09	2 0.05 2 0.05	0.49	0.58	0.51	0.72
4	51093 1.		0.97		0.40	0.67	38719	0.00		0.28	0.61	10932	0.14	100	0.86	0.89		0.00	10	0.12	0.53	1442	0.00	2 0.05	0.49	0.32	0.40	0.67
5	107092 2.		1.41	-	0.40	0.67	17176	0.39		0.28	0.61	15811	0.36	100	0.86	0.89		0.00	10	0.12	0.53		0.29	2 0.05	0.49	0.46	0.41	0.67
6	63670 1.	52892	1.21		0.40	0.67		0.00		0.28	0.61	10778	0.25	100	0.86	0.89		0.00	10	0.12	0.53		0.00	2 0.05	0.49	0.54	0.48	0.71
7	44119 1.	26108	0.60		0.40	0.67	5036	0.12		0.28	0.61	9916	0.23	100	0.86	0.89		0.00	10	0.12	0.53	3059	0.07	2 0.05	0.49	0.53	0.46	0.70
8	12513 0.1		0.00		0.40	0.67		0.00		0.28	0.61	10506	0.24	100	0.86	0.89		0.00	10	0.12	0.53	2008	0.05	2 0.05	0.49	0.84	0.73	0.83
9	21724 0. 53747 1.	·	0.00		0.40	0.67	15531	0.00		0.28	0.61	17808 13149	0.41	100	0.86	0.89		0.00	10	0.12	0.53	3916	0.09	2 0.05 2 0.05	0.49	0.82	0.71	0.82
10			0.38	-	0.40	0.67	15551	0.36		0.28	0.61	3299	0.30	100	0.86	0.89		0.00	10	0.12	0.53	359	0.00	2 0.05	0.49	0.54	0.48	0.71
12			0.94		0.40	0.67	11895	0.00		0.28	0.61	8321	0.19	100	0.86	0.89		0.00	10	0.12	0.53	557	0.00	2 0.05	0.49	0.50	0.44	0.69
13	52228 1.	44296	1.02	2 45	0.40	0.67		0.00	30	0.28	0.61	7932	0.18	100	0.86	0.89		0.00	10	0.12	0.53		0.00	2 0.05	0.49	0.53	0.47	0.70
14			0.35	-	0.40	0.67	6441	0.15		0.28	0.61	9503	0.22	100	0.86	0.89		0.00	10	0.12	0.53	1044	0.02	2 0.05	0.49	0.57	0.50	0.72
15			0.81		0.40	0.67	21210	0.49		0.28	0.61	12769	0.29	100	0.86	0.89		0.00	10	0.12	0.53		0.00	2 0.05	0.49	0.51	0.45	0.69
16	38073 0.		0.62	-	0.40	0.67		0.00		0.28	0.61	10878	0.25	100	0.86	0.89		0.00	10	0.12	0.53		0.00	2 0.05	0.49	0.61	0.53	0.73
17	63988 1. 47519 1.		1.17		0.40	0.67		0.00		0.28	0.61	12820 5189	0.29	100	0.86	0.89		0.00	10	0.12	0.53		0.00	2 0.05 2 0.05	0.49	0.56	0.49	0.71
19	37547 0.		0.53		0.40	0.67		0.00		0.28	0.61	10950	0.12	100	0.86	0.89		0.00	10	0.12	0.53	3475	0.08	2 0.05	0.49	0.57	0.45	0.09
20	71386 1.	-	0.91		0.40	0.67		0.00		0.28	0.61	26499	0.61	100	0.86	0.89		0.00	10	0.12	0.53	5067	0.12	2 0.05	0.49	0.62	0.54	0.74
21	80989 1.	53576	1.23	3 45	0.40	0.67	12579	0.29	30	0.28	0.61	10610	0.24	100	0.86	0.89		0.00	10	0.12	0.53	4224	0.10	2 0.05	0.49	0.48	0.42	0.68
22			1.20		0.40	0.67	3763	0.09		0.28	0.61	16917	0.39	100	0.86	0.89		0.00	10	0.12	0.53	1553	0.04	2 0.05	0.49	0.56	0.49	0.71
23	51813 1.		0.48	-	0.40	0.67	20216	0.46		0.28	0.61	10575	0.24	100	0.86	0.89		0.00	10	0.12	0.53		0.00	2 0.05	0.49	0.50	0.45	0.69
24			1.05		0.40	0.67	((50)	0.00		0.28	0.61	8008	0.18	100	0.86	0.89		0.00	10	0.12	0.53		0.00	2 0.05	0.49	0.53	0.47	0.70
25			0.58	-	0.40	0.67	6650	0.15		0.28	0.61	12395 9760	0.28	100	0.86	0.89		0.00	10	0.12	0.53		0.00	2 0.05 2 0.05	0.49	0.58	0.51	0.72
30			1.25	-	0.40	0.67	21152	0.00		0.28	0.61	72093	1.66	100	0.86	0.89		0.00	10	0.12	0.53	85945	1.97	2 0.05	0.49	0.80	0.09	0.67
31	79484 1.		0.74		0.40	0.67	21102	0.00		0.28	0.61	39363	0.90	100	0.86	0.89		0.00	10	0.12	0.53	8045	0.18	2 0.05	0.49	0.68	0.59	0.76
32	14110 0.1		0.00) 45	0.40	0.67		0.00		0.28	0.61	10592	0.24	100	0.86	0.89		0.00	10	0.12	0.53	3519	0.08	2 0.05	0.49	0.76	0.65	0.79
33	37166 0.		0.00		0.40	0.67		0.00		0.28	0.61	32864	0.75	100	0.86	0.89		0.00	10	0.12	0.53	4303	0.10	2 0.05	0.49	0.89	0.76	0.85
34			0.52		0.40	0.67	7034	0.16		0.28	0.61		0.00	100	0.86	0.89	237778	5.46	10	0.12	0.53		0.00	2 0.05	0.49	0.14	0.15	0.54
35			0.51		0.40	0.67		0.00		0.28	0.61	164555	3.78	100	0.86	0.89	143707	0.00	10	0.12	0.53		0.00	2 0.05	0.49	0.93	0.80	0.87
01			0.00		0.40	0.67		0.00		0.28	0.61		0.00	100	0.86	0.89	143707	0.00	10	0.12	0.53		0.00	2 0.05	0.49	0.10	0.12	0.33
02			0.00		0.40	0.67		0.00		0.28	0.61		0.00	100	0.86	0.89		0.00	10	0.12	0.53	123102	2.83	2 0.05	0.49	0.02	0.05	0.49
03			0.00		0.40	0.67		0.00	30	0.28	0.61		0.00	100	0.86	0.89		0.00	10	0.12	0.53		2.38	2 0.05	0.49	0.02	0.05	0.49
04			0.00		0.40	0.67		0.00		0.28	0.61	3206	0.07	100	0.86	0.89		0.00	10	0.12	0.53	64752	1.49	2 0.05	0.49	0.07	0.09	0.51
41	107795 2.		0.00	-	0.40	0.67		0.00		0.28	0.61		0.00	100	0.86	0.89	107795	2.47	10	0.12	0.53		0.00	2 0.05	0.49	0.10	0.12	0.53
42			1.00		0.40	0.67	4570	0.00		0.28	0.61	16921 14306	0.39	100	0.86	0.89		0.00	10	0.12	0.53	1379	0.00	2 0.05	0.49	0.60	0.53	0.73
43			0.39		0.40	0.67	7759	0.10		0.28	0.61	14306	0.33	100	0.86	0.89		0.00	10	0.12	0.53	13/9	0.03	2 0.05	0.49	0.60	0.52	0.75
45			0.00		0.40	0.67	1137	0.10		0.28	0.61	12555	0.29	100	0.86	0.89		0.00	10	0.12	0.53	3664	0.08	2 0.05	0.49	0.78	0.67	0.80
46	29522 0.	13454	0.31	-	0.40	0.67		0.00		0.28	0.61	12668	0.29	100	0.86	0.89		0.00	10	0.12	0.53	3400	0.08	2 0.05	0.49	0.64	0.56	0.75
47	37349 0.	30829	0.71	45	0.40	0.67		0.00		0.28	0.61	6520	0.15	100	0.86	0.89		0.00	10	0.12	0.53		0.00	2 0.05	0.49	0.55	0.48	0.71
48			0.52	-	0.40	0.67		0.00		0.28	0.61	9837	0.23	100	0.86	0.89		0.00	10	0.12	0.53	957	0.02	2 0.05	0.49	0.60	0.52	0.73
49			0.89	-	0.40	0.67	2504	0.00		0.28	0.61	13439	0.31	100	0.86	0.89		0.00	10	0.12	0.53		0.00	2 0.05	0.49	0.59	0.52	0.73
50	47362 1. 17672 0.	_/ * * * *	0.68		0.40	0.67	3504	0.08		0.28	0.61	14352 13954	0.33	100	0.86	0.89		0.00	10	0.12	0.53	3718	0.00	2 0.05 2 0.05	0.49	0.61	0.53	0.73 0.81
05			0.00	-	0.40	0.67		0.00		0.28	0.61	15954	0.32	100	0.86	0.89		0.00	10	0.12	0.53	36371	0.09	2 0.05	0.49	0.79	0.69	0.81
06			0.00		0.40	0.67		0.00		0.28	0.61	6451	0.15	100	0.86	0.89		0.00	10	0.12	0.53	26595	0.61	2 0.05	0.49	0.02	0.03	0.49
07	25550 0.		0.00		0.40	0.67		0.00		0.28	0.61	16177	0.37	100	0.86	0.89		0.00	10	0.12	0.53	9373	0.22	2 0.05	0.49	0.64	0.56	0.75
08			0.00		0.40	0.67		0.00		0.28	0.61	6187	0.14	100	0.86	0.89		0.00	10	0.12	0.53	9606	0.22	2 0.05	0.49	0.40	0.37	0.65
09			0.00	-	0.40	0.67		0.00		0.28	0.61	23741	0.55	100	0.86	0.89		0.00	10	0.12	0.53	31106	0.71	2 0.05	0.49	0.44	0.40	0.67
011	1885162 43.	5	0.00	45	0.40	0.67		0.00	30	0.28	0.61	30322	0.70	100	0.86	0.89		0.00	10	0.12	0.53	1854839	42.58	2 0.05	0.49	0.04	0.06	0.50

Refer to Table 6-3 Urban Storm Drainage Criteria Manual, March 2017 Edition Refer to Table 6-5 Urban Storm Drainage Criteria Manual, March 2017 Edition Refer to Table 6-5 Urban Storm Drainage Criteria Manual, March 2017 Edition

Weighted imperviosuness

[1] [2] [3] [4] [5] [6]

Weighted C5 Weighted C100

Job Name:	Westwood	
Job Number:	D1104	
Date:		

Time of Concentration Post-Project

Job Name: Westwood Job Number: D1104

Date:

Basin ID / Design Point 1 2 3 4	Area ac 0.7 1.5	Composite Imperviousness	C_5^{-1}	Starting							11	aver/Clia	nnelized Time	:(4)			Concentr	ration (t _c)	Final	
3	0.7		0,	Elevation		Length (If length of Overland Flow is > 300 ft, use 300 ft)	Slope	t_i^2		Ending Elevation	Length	Slope	Conveyance Factor, K ³	Channel Velocity ⁴	t_t^5	$t_{c}^{6} = t_{i} + t_{t}$	Comp. t_e^7	Final t _c ⁸ (If <5, use 5)	t _c	Remarks
3				ft	ft	ft	ft/ft	min	ft	ft	ft	ft/ft		ft/s	min	min	min	min	min	
3	15		0.54	5196	5195	60		6.61	5195	5191.5	365	0.010	20		3.11	9.72	18.99	9.72	9.72	
-		0.58		5200	5199	50	0.020	5.98	5199	5188	700	0.016	20		4.65	10.63	21.49	10.63	10.63	
	1.1		0.46	5191 5186	5187 5183	185 150	0.022	12.22	5187 5183	5183 5178	200 230	0.020	20		1.18	13.40	18.61 20.20	13.40 13.67	13.40 13.67	
5	2.5	0.44		5198	5196	130	0.020	12.37	5196	5192	460	0.022	20		4.11	17.27	20.20	17.27	17.27	
6	1.5	0.40		5198	5190	140	0.014	9.11	5190	5185.5	400	0.009	20		3.62	12.73	23.38	12.73	12.73	
7	1.0		0.46	5188	5185	115	0.025	8.97	5185	5182	320	0.009	20		2.75	11.72	20.41		11.72	
8	0.3	0.84		5209	5208	75	0.013	5.32	5208	5202	180	0.033	20		0.82	6.14	12.46	6.14	6.14	
9	0.5	0.82	0.71	5202	5201	75	0.013	5.54	5201	5192	475	0.019	20		2.88	8.42	14.81	8.42	8.42	
10	1.2	0.54	0.48	5193	5189.8	130	0.025	9.53	5189.8	5184	375	0.015	20	2.49	2.51	12.05	19.83	12.05	12.05	
11	0.1	0.90	0.78					5.00	0							5.00		5.00	5.00	
12	1.4	0.50		5193		130	0.025	10.11	5189.8	5185	320	0.015	20		2.18	12.29	20.30	12.29	12.29	
13	1.2	0.53		5191	5188	90	0.033	7.26	5188	5180	350	0.023	20		1.93	9.19	19.27	9.19	9.19	
14	0.7		0.50	5188	5187	60	0.017	7.11	5187	5181	420	0.014	20		2.93	10.03	19.80	10.03	10.03	
15	1.6	0.51		5190.7	5187.5	150	0.021	11.24	5187.5	5180	350	0.021	20		1.99	13.24	19.89	13.24	13.24	
16	0.9	0.61		5189	5187.5	60	0.025	5.89	5187.5	5176	460	0.025	20		2.42	8.32	18.45	8.32	8.32	
17	1.5	0.56		5184	5180	175	0.023	11.07	5180	5174	300	0.020	20		1.77	12.84	18.58	12.84	12.84	
18	1.1	0.51		5179 5183	5173 5182	175	0.034	10.34 8.05	5173 5182	5169 5177	300 425	0.013	20 20		2.17 3.27	12.51	20.01 20.14	12.51 11.32	12.51	
20	1.6	0.37		5177	5176	100	0.014	8.03	5176	5168	565	0.012	20		3.96	11.32 13.99	19.86	-	13.99	
20	1.0		0.34	5197	5188	160	0.010	8.75	5188	5182	475	0.014	20		3.52	12.27	22.40	12.27	12.27	
21	1.7	0.56		5185	5183	140	0.030	10.13	5182	5175	600	0.013	20		4.63	14.76	22.40	14.76	14.76	
23	1.2	0.50		5182	5179	90	0.033	7.53	5179	5175	230	0.012	20		1.45	8.98	19.25	8.98	8.98	
24	1.2	0.53		5177	5174	170	0.018	12.34	5174	5169.5	345	0.013	20		2.52	14.85	20.02		14.85	
25	1.0	0.58	0.51	5181	5180	60	0.017	6.98	5180	5169	535	0.021	20	2.87	3.11	10.09	19.74	10.09	10.09	
26	0.4	0.80	0.69	5172.6	5171	65	0.025	4.46	5171	5170	185	0.005	20	1.47	2.10	6.56	14.52	6.56	6.56	
30	5.4	0.45		5196	5195	100	0.010	12.62	5195	5167	2000	0.014	20		14.09	26.70	36.83	26.70	26.70	
31	1.8		0.59	5183	5182	185	0.005	15.34	5182	5175	1000	0.007	20		9.96	25.30	25.23	25.23	25.23	
32	0.3	0.76		5167.5	5166	50	0.030	3.96	5166	5163	300	0.010	20		2.50	6.46	15.71	6.46	6.46	
33	0.9	0.89		5204	5203	150	0.007	8.54	5203	5201	600	0.003	20		8.66	17.21	19.02	17.21	17.21	
34	6.1	-	0.15	5183	5180.5	110	0.023	13.79	5180.5	5172	492	0.017	7	0.92	8.91	22.70	29.43	22.70		
35	4.3	0.93		5171 5206.3	5170 5196.5	75	0.013	4.26	5170 5196.5	5161 5193	450 240	0.020	7	0.99	7.58 4.73	11.83	12.52	11.83 25.53	11.83 25.53	
01	3.3 0.4		0.12	5206.3	5190.5	300	0.033	20.80	5190.5	5193	240	0.015	/	0.85	4./3	25.53 5.00	27.48	25.53	25.53	
01	2.8	0.02		5211	5201.5	300	0.032	22.42	5201.5	5195	220	0.030	5	0.86	4.27	26.68	27.96		26.68	
02	2.4		0.05	5210	5201.5	300	0.032	22.82	5201.5	5195	215	0.030	5	0.84	4.29	20.00	27.90	20.00		
04	1.6		0.09	5211	5204	300	0.023	23.90	5204	5194	305	0.033	5	0.91	5.61	29.51	27.70	27.70		
41	2.5	0.10		5196	5185	300	0.037	20.02	5185	5183	170	0.012	7	0.76	3.73	23.75	26.81	23.75		
42	1.4	0.60		5182	5181	70	0.014	7.69	5181	5171.5	730	0.013	20		5.33	13.02	21.84		13.02	
43	1.0	0.60	0.52	5193.5	5192	60	0.025	5.98	5192	5185	360	0.019	20		2.15	8.13	18.35	8.13	8.13	
44	0.9		0.55	5188.9	5187	75		6.27	5187	5180	305	0.023	20		1.68	7.95	17.06	7.95	7.95	
45	0.4	0.78		5193.5	5192.5	45	0.022	3.97	5192.5	5186	480	0.014	20		3.44	7.41	16.22	7.41	7.41	
46	0.7	0.64		5193.6	5193	100	0.006	11.64	5193	5186	505	0.014	20		3.57	15.22	19.17	15.22	15.22	
47	0.9		0.48	5187.9	5185	117	0.025	8.98	5185	5180	270	0.019	20		1.65	10.64	18.70	10.64	10.64	
48	0.8	0.60		5186.4	5183.5	117	0.025	8.33	5183.5	5177	235	0.028	20		1.18	9.51	17.15	9.51	9.51	
49 50	1.2	0.59		5183.8 5178.6	5179.5 5177	175 65	0.025	10.35	5179.5	5173 5171	275 475	0.024	20 20		1.49	11.84 9.70	17.67 19.74	11.84 9.70	9.70	
50	0.4		0.53	5178.6	5177	30	0.025	3.26	5177 5171	51/1	475	0.013	20		3.52 3.78	9.70	19.74	9.70	9.70	
05	0.4	0.79		5176.5	5176	50	0.020	13.39	5176	5167	1120	0.009	15		10.75	24.14	43.04		24.14	
06	0.8	0.02		5209	5208	50	0.010	9.06	5208	5193	400	0.013	15	-	2.30	11.35	25.29		11.35	

	Basin Data Initial Overland Time (t _i)						Travel/Channelized Time (t _t)								n Time of ration (t _c)	Final				
Basin ID / Design Point	Area	Composite Imperviousness	C_5^{-1}	Starting Elevation	Ending Elevation	$ Length ({\rm If \ length \ of \ Overland} \\ {\rm Flow \ is > 300 \ ft, \ use \ 300 \ ft}) $	Slope	t_i^2	Starting Elevation	Ending Elevation	Length	Slope	Conveyance Factor, K ³		t_t^5	$t_{c}^{6} = t_{i} + t_{t}$	Comp. t_c^7	Final t _c ⁸ (If <5, use 5)	t _c	Remarks
07	0.6	0.64	0.56	5207	5205	75	0.027	6.11	5205	5187	665	0.027	15	2.47	4.49	10.60	18.86	10.60	10.60	
08	0.4	0.40	0.37	5198.8	5198	50	0.016	8.02	5198	5196.5	290	0.005	15	1.08	4.48	12.50	23.72	12.50	12.50	1
09	1.3	0.44	0.40	5177.5	5176	60	0.025	7.24	5176	5160	1300	0.012	15	1.66	13.02	20.26	31.28	20.26	20.26	1
011	43.3	0.04	0.06	5243	5238	300	0.017	27.36	5238	5198	1247	0.032	5	0.90	23.21	50.57	37.61	37.61	37.61	

Refer to C spreadsheet Refer to Equation 6-3 Urban Storm Drainage Criteria Manual, March 2017 Edition Refer to Table 6-2 Urban Storm Drainage Criteria Manual, March 2017 Edition

[1] [2] [3] [4] [5] [6] [7] [8] $Vt = K\sqrt{S_0}$ S₀ = Waterway Slope

Refer to Equation 6-4 Urban Storm Drainage Criteria Manual, March 2017 Edition Refer to Equation 6-2 Urban Storm Drainage Criteria Manual, March 2017 Edition Refer to Equation 6-5 Urban Storm Drainage Criteria Manual, March 2017 Edition

Smaller of the two t_c values

Job Name: Westwood

Job Number: D1104

Date:

5-Year 1-Hr Point Rainfall =

1.38 in

		Q5		
Basin ID /	orl	I^2	А	Q^3
Design	$C5^1$	in/hr	acres	cfs
1	0.54	3.8	0.7	1.3
2	0.51	3.6	1.5	2.7
3	0.46	3.3	1.1	1.7
4	0.40	3.3	1.2	1.5
5	0.41	2.9	2.5	2.9
6	0.48	3.4	1.5	2.4
7	0.46	3.5	1.0	1.6
8	0.73	4.4	0.3	0.9
9	0.71	4.0	0.5	1.4
10	0.48	3.5	1.2	2.0
11	0.78	4.7	0.1	0.3
12	0.44	3.4	1.4	2.1
13	0.47	3.9	1.2	2.2
14	0.50	3.7	0.7	1.4
15	0.45	3.3	1.6	2.4
16	0.53	4.0	0.9	1.9
17	0.49	3.4	1.5	2.4
18	0.45	3.4	1.1	1.7
19	0.50	3.6	0.9	1.5
20	0.54	3.2	1.6	2.9
21	0.42	3.4	1.9	2.7
22	0.49	3.2	1.7	2.6
23	0.45	3.9	1.2	2.1
24	0.47	3.1	1.2	1.8
25	0.51	3.7	1.0	1.9
26	0.69	4.3	0.4	1.1
30	0.40	2.3	5.4	5.0
31	0.59	2.4	1.8	2.6
32	0.65	4.4	0.3	0.9
33	0.76	2.9	0.9	1.9
34	0.15	2.5	6.1	2.3
35	0.80	3.5	4.3	12.0
36	0.12	2.4	3.3	0.9
O1	0.05	4.7	0.4	0.1
O2	0.05	2.3	2.8	0.3
O3	0.05	2.3	2.4	0.3

5-Year 1-Hr Point Rainfall =

1.38 in

		Q5		
Basin ID /		I^2	А	Q^3
O4	0.09	2.3	1.6	0.3
41	0.12	2.5	2.5	0.7
42	0.53	3.3	1.4	2.4
43	0.52	4.0	1.0	2.2
44	0.55	4.1	0.9	2.1
45	0.67	4.2	0.4	1.0
46	0.56	3.1	0.7	1.2
47	0.48	3.6	0.9	1.5
48	0.52	3.8	0.8	1.5
49	0.52	3.5	1.2	2.2
50	0.53	3.8	1.1	2.2
51	0.69	4.2	0.4	1.2
O5	0.05	2.5	0.8	0.1
O6	0.21	3.5	0.8	0.6
O7	0.56	3.6	0.6	1.2
O8	0.37	3.4	0.4	0.5
O9	0.40	2.7	1.3	1.4
011	0.06	1.9	43.3	5.3

- Refer to Post-Project Runoff Coefficients [1] spreadsheet
- Refer to Equation 5-1 Urban Storm [2]
- Drainage Criteria Manual, March 2017
- Refer to Equation 6-1 Urban Storm [3]
- Drainage Criteria Manual, March 2017

Job Name:	Westwood
Job Number:	D1104

Date:

100-Year 1-Hr Point Rainfall =

2.69 in

		Q100		
Basin ID /	cial	I^2	А	Q ³
Design Point	C100 ¹	in/hr	acres	cfs
1	0.74	7.4	0.7	3.6
2	0.72	7.1	1.5	7.6
3	0.70	6.4	1.1	5.0
4	0.67	6.4	1.2	5.0
5	0.67	5.7	2.5	9.4
6	0.71	6.6	1.5	6.8
7	0.70	6.8	1.0	4.8
8	0.83	8.6	0.3	2.1
9	0.82	7.8	0.5	3.2
10	0.71	6.7	1.2	5.9
11	0.85	9.1	0.1	0.7
12	0.69	6.7	1.4	6.5
13	0.70	7.5	1.2	6.3
14	0.72	7.3	0.7	3.9
15	0.69	6.5	1.6	7.1
16	0.73	7.8	0.9	5.0
17	0.71	6.6	1.5	6.9
18	0.69	6.6	1.1	5.0
19	0.72	6.9	0.9	4.3
20	0.74	6.3	1.6	7.7
21	0.68	6.7	1.9	8.5
22	0.71	6.2	1.7	7.5
23	0.69	7.6	1.2	6.2
24	0.70	6.1	1.2	5.3
25	0.72	7.3	1.0	5.3
26	0.81	8.4	0.4	2.4
30	0.67	4.5	5.4	16.2
31	0.76	4.7	1.8	6.5
32	0.79	8.5	0.3	2.2
33	0.85	5.7	0.9	4.1
34	0.54	4.9	6.1	16.4
35	0.87	6.8	4.3	25.3
36	0.53	4.6	3.3	8.0
O1	0.49	9.1	0.4	1.8
O2	0.49	4.5	2.8	6.3

100-Year 1-Hr Point Rainfall =

2.69 in

		Q100		
Basin ID /	$C100^{1}$	I^2	А	Q^3
O3	0.49	4.5	2.4	5.2
O4	0.51	4.4	1.6	3.5
41	0.53	4.8	2.5	6.3
42	0.73	6.5	1.4	6.6
43	0.73	7.9	1.0	5.9
44	0.75	7.9	0.9	5.5
45	0.80	8.1	0.4	2.4
46	0.75	6.1	0.7	3.1
47	0.71	7.1	0.9	4.3
48	0.73	7.4	0.8	4.1
49	0.73	6.8	1.2	5.9
50	0.73	7.4	1.1	5.9
51	0.81	8.3	0.4	2.7
05	0.49	4.8	0.8	2.0
O6	0.57	6.9	0.8	3.0
07	0.75	7.1	0.6	3.1
08	0.65	6.6	0.4	1.6
09	0.67	5.3	1.3	4.4
011	0.50	3.7	43.3	79.4

- [1] Refer to Post-Project Runoff Coefficients spreadsheet Refer to Equation 5-1 Urban Storm
- [2] Drainage Criteria Manual, March 2017
- Refer to Equation 6-1 Urban Storm
- [3] Drainage Criteria Manual, March 2017

Job Number: D1104

Date:

			Pro-Rated	Sub-Basin Q5 Backup		
Basin ID	Basin Area	Basin Q5	Sub-Basin ID	Inlet ID	Sub-Basin Area	Sub-Basin Pro- Rated Q5
[1]	[2]	[3]	[4]	Inice ID	[5]	[6]
Unit	acres	cfs			acres	cfs
2	1.5	2.7	2A	-	0.4	0.8
2	1.3	2.1	2B	SDI-42	1.1	2.0
20	1.6	2.9	20A	SDI-4 (U/S Flanking Inlet)	0.8	1.3
20	1.0	2.9	20B	SDI-5 (Sump)	0.9	1.6
36	3.3	0.9	36A	SDI-25	2.7	0.7
50	3.3	0.9	36B	SDI-41	0.6	0.2
41	2.5	0.7	41A	SDI-50	1.7	0.5
41	2.3	0.7	41B	SDI-28	0.8	0.2
			30A	-	1.6	1.5
30	5.4	5.0	30B	-	2.8	2.6
50	3.4	5.0	30C	SDI-20 (U/S Flanking Inlet) & SDI-2 (Sump)	1.0	0.9
			31A	-	0.6	0.8
31	1.8	2.6	31B	-	0.5	0.7
			31C	SDI-26	0.8	1.1

- [1] Refer to Post-Project Q5 spreadsheet
- [2] Refer to Post-Project Q5 spreadsheet
- [3] Refer to Post-Project Q5 spreadsheet
- [4] Refer to Post-Project Drainage Map
- [5] Refer to Post-Project Drainage Map
- [6] ([5]/[2])*[3]

Job Number: D1104

Date:

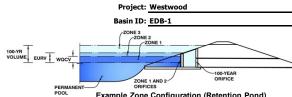
			Pro-Rated Su	ub-Basin Q100 Backup		
Basin ID [1]	Basin Area	Basin Q100	Sub-Basin ID	Inlet ID	Area	Sub-Basin Pro- Rated Q100
[*]	[2]	[3]	[4]		[5]	[6]
Unit	acres	cfs			acres	cfs
2	1.5	7.6	2A	-	0.4	2.1
2	1.5	7.0	2B	SDI-42	1.1	5.5
20	1.6	7.7	20A	SDI-4 (U/S Flanking	0.8	3.5
20	1.0	1.1	20B	SDI-5 (Sump)	0.9	4.2
36	3.3	8.0	36A	SDI-25	2.7	6.6
50	5.5	8.0	36B	SDI-41	0.6	1.5
41	2.5	6.3	41A	SDI-50	1.7	4.3
41	2.3	0.5	41B	SDI-28	0.8	1.9
			30A	-	1.6	4.8
30	5.4	16.2	30B	-	2.8	8.3
50	3.4	10.2	30C	SDI-20 (U/S Flanking Inlet) & SDI-2 (Sump)	1.0	3.1
			31A	_	0.6	2.0
31	1.8	6.5	31B	-	0.5	1.7
			31C	SDI-26	0.8	2.8

- [1] Refer to Post-Project Q100 spreadsheet
- [2] Refer to Post-Project Q100 spreadsheet
- [3] Refer to Post-Project Q100 spreadsheet
- [4] Refer to Post-Project Drainage Map
- [5] Refer to Post-Project Drainage Map
- [6] ([5]/[2])*[3]

JN-1104 Westwood

Design Point	Inlet ID	Contributin g Area (acres)	Direct Q5 (CFS)	Direct Q100 (CFS)	Total Q5 (CFS)	Total Q100 (CFS)	Notes
1	SDI-31	0.7	1.3	3.6	1.3	3.6	No bypass flow received
2A	-	0.4	0.8	2.1	0.8	2.1	No bypass flow received
2B	SDI-42	1.1	2.0	5.5	2.7		Bypass flow from Sub-Basin 2A
3	SDI-39	1.1	1.7	5.0	1.7	5.0	No bypass flow received
4	SDI-48	1.2	1.5	5.0	1.5	6.5	Bypass flow from Basin 44 (SDI-35)
5	SDI-30	2.5	2.9	9.4	2.9		No bypass flow received
6	SDI-34	1.5	2.4	6.8	2.4	8.7	Bypass flow from Basin 5 (SDI-30)
7	SDI-47	1.0	1.6	4.8	1.6	6.4	Bypass flow from Basin 6 (SDI-34)
8	SDI-45	0.3	0.9	2.1	0.9	2.1	No bypass flow received
9	SDI-40	0.5	1.4	3.2	1.4	3.2	No bypass flow received
10	SDI-12	1.2	2.0	5.9	2.0	5.9	No bypass flow received
11	SDI-13	0.1	0.3	0.7	0.3	0.7	No bypass flow received
12	SDI-07	1.4	2.1	6.5	2.1	6.5	No bypass flow received
13	SDI-24	1.2	2.2	6.3	2.2	6.3	No bypass flow received
14	SDI-11	0.7	1.4	3.9	1.4	3.9	No bypass flow received
15	SDI-27	1.6	2.4	7.1	2.4	7.1	No bypass flow received
16	SDI-16	0.9	1.9	5.0	1.9	5.0	No bypass flow received
17	SDI-10	1.5	2.4	6.9	2.4	6.9	No bypass flow received
18	SDI-08	1.1	1.7	5.0	1.7	5.7	Bypass flow from Basin 17 (SDI-10)
19	SDI-46	0.9	1.5	4.3	1.5	4.3	No bypass flow received
20A	SDI-4 (U/S Flanking Inlet)	0.8	1.3	3.5	2.9	10.3	Bypass flow from Basin 18 (SDI-08) + Basin 42 (SDI-17) + Basin 49 (SDI-18)
20B	SDI-5 (Sump)	0.9	1.6	4.2	0.5	6.2	Bypass flow from Basin 19 (SDI-46) + Sub-Basin 20A (SDI-04)
21	SDI-03	1.9	2.7	8.5	2.7	7.0	No bypass flow received
22	SDI-23	1.7	2.6	7.5	2.6	7.1	Bypass flow from Basin 21 (SDI-03)
23	SDI-22	1.2	2.1	6.2	2.1	6.2	No bypass flow received
24	SDI-21	1.2	1.8	5.3	2.0	8.0	Bypass flow from Basin 23 (SDI-22)
25	SDI-09	1.0	1.9	5.3	1.9		No bypass flow received
26	SDI-06	0.4	1.1	2.4	1.1	5.0	Bypass flow from Basin 24 (SDI-21) + Basin 25 (SDI-09) + Basin 50 (SDI-19)
30A	-	1.6	1.5	4.8	1.5	4.8	No bypass flow received
30B	-	2.8	2.6	8.3	4.1	13.1	Bypass flow from Sub-Basin 30A
30C	SDI-20 (U/S Flanking Inlet)	1.0	1.0	2.1	4.0	8.1	Bypass flow from Sub-Basin 30B (this already includes flow from Sub-Basin 30A)
30C	SDI-2 (Sump)	1.0	1.0	3.1	1.0	8.0	Bypass flow from SDI-20 (U/S Flanking Inlet)
31A	-	0.6	0.8	2.0	0.8	2.0	No bypass flow received
31B	-	0.5	0.7	1.7	0.7		No bypass flow received
31C	SDI-26	0.8	1.1	2.8	2.6		Bypass flow from Sub-Basin 31A & 31B
32	SDI-49	0.3	0.9	2.2	0.9		No bypass flow received
33	SDI-44	0.9	1.9	4.1	1.9		No bypass flow received
34	SDI-32	6.1	2.3	16.4	2.3	16.4	No bypass flow received
35	-	4.3	12.0	25.3	64.0	182.4	Total Flow = Peak inflow for the detention basin from UD-Detention Spreadsheet

JN-1104 Westwood


Design Point	Inlet ID	Contributin g Area (acres)	Direct Q5 (CFS)	Direct Q100 (CFS)	Total Q5 (CFS)	Total Q100 (CFS)	Notes
36A	SDI-25	2.7	0.7	6.6	0.8	8.4	Bypass flow from Offsite Basin O1
36B	SDI-41	0.6	0.2	1.5	0.2	1.5	No bypass flow received
01	-	0.4	0.1	1.8	0.1	1.8	No bypass flow received
O2	-	2.8	0.3	6.3	0.3	6.3	No bypass flow received
03	-	2.4	0.3	5.2	0.3	5.2	No bypass flow received
04	-	1.6	0.3	3.5	0.3	3.5	No bypass flow received
41A	SDI-50	1.7	0.5	4.3	0.8	10.6	Bypass flow from Offsite Basin O2
41B	SDI-28	0.8	0.2	1.9	0.8	10.6	Bypass flow from Offsite Basin O3 & O4
42	SDI-17	1.4	2.4	6.6	2.4	6.6	No bypass flow received
43	SDI-33	1.0	2.2	5.9	2.2	7.8	Bypass flow from Basin 1 (SDI-31) + Basin 2 (SDI-42)
44	SDI-35	0.9	2.1	5.5	2.1	8.4	Bypass flow from Basin 43 (SDI-33) + Basin 3 (SDI-39)
45	SDI-37	0.4	1.0	2.4	1.0	2.4	No bypass flow received
46	SDI-38	0.7	1.2	3.1	1.2	4.0	Bypass flow from Basin 9 (SDI-40)
47	SDI-14	0.9	1.5	4.3	1.7	7.2	Bypass flow from Basin 12 (SDI-07)
48	SDI-15	0.8	1.5	4.1	1.7	8.7	Bypass flow from Basin 13 (SDI-24) + Basin 14 (SDI-11) + Basin 47 (SDI-14)
49	SDI-18	1.2	2.2	5.9	2.2	8.3	Bypass flow from Basin 15 (SDI-27) + Basin 16 (SDI-16) + Basin 48 (SDI-15)
50	SDI-19	1.1	2.2	5.9	2.2	6.6	Bypass flow from Basin 22 (SDI-23)
51	SDI-01	0.4	1.2	2.7	1.2	3.7	Bypass flow from Basin 31 (SDI-26)
05		0.8	0.1	2.0	64.1	184.4	Total Flow = Undetained Q100 from the detention basin + Flow from Offsite Basin
06		0.8	0.6	3.0	0.6	3.0	No bypass flow received
07		0.6	1.2	3.1	1.2	3.1	No bypass flow received
08		0.4	0.5	1.6	0.5	1.7	Bypass flow from Basin 33 (SDI-44)
09		1.3	1.4	4.4	1.4		No bypass flow received
011		43.3	5.3	79.4	5.3	79.4	No bypass flow received

Appendix A - Hydrologic Computations Detention Design

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.00 (December 2019)

Depth Increment =

Example Zone Configuration (Retention Pond)

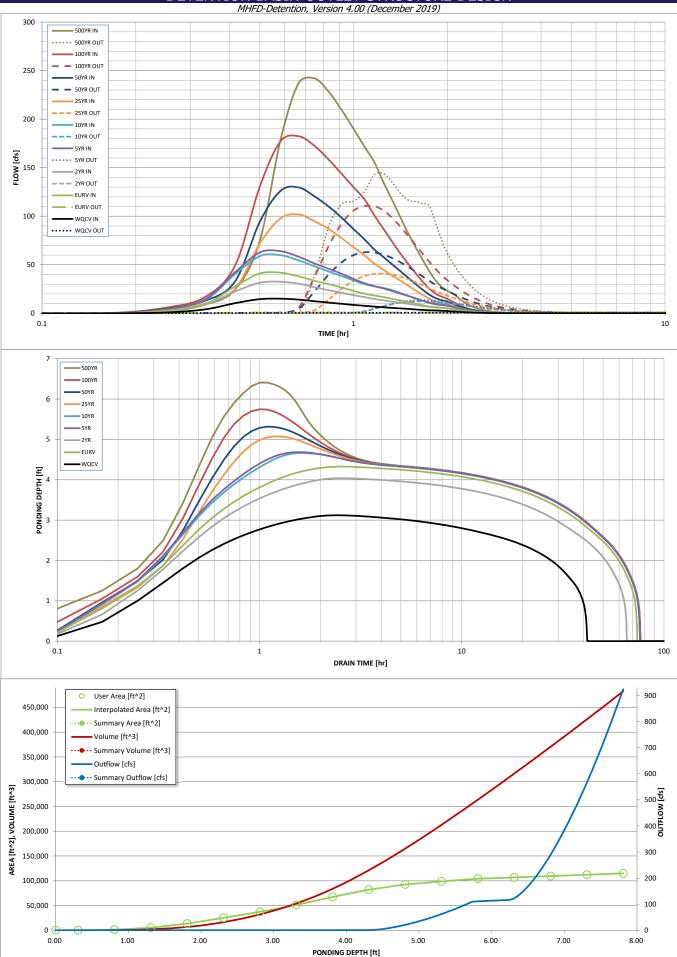
Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	69.90	acres
Watershed Length =	2,500	ft
Watershed Length to Centroid =	1,250	ft
Watershed Slope =	0.015	ft/ft
Watershed Imperviousness =	45.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	100.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	Thornton - Civ	ic Center

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydro	graph Proced	ure.	Optional Use	r Overrides
Water Quality Capture Volume (WQCV) =	1.124	acre-feet		acre-feet
Excess Urban Runoff Volume (EURV) =	2.951	acre-feet		acre-feet
2-yr Runoff Volume (P1 = 0.97 in.) =	2.428	acre-feet	0.97	inches
5-yr Runoff Volume (P1 = 1.38 in.) =	4.518	acre-feet	1.38	inches
10-yr Runoff Volume (P1 = 1.37 in.) =	4.387	acre-feet		inches
25-yr Runoff Volume (P1 = 1.77 in.) =	6.980	acre-feet		inches
50-yr Runoff Volume (P1 = 2.1 in.) =	8.951	acre-feet		inches
100-yr Runoff Volume (P1 = 2.69 in.) =	12.767	acre-feet	2.69	inches
500-yr Runoff Volume (P1 = 3.4 in.) =	17.121	acre-feet		inches
Approximate 2-yr Detention Volume =	2.111	acre-feet		
Approximate 5-yr Detention Volume =	3.629	acre-feet		
Approximate 10-yr Detention Volume =	3.524	acre-feet		
Approximate 25-yr Detention Volume =	4.341	acre-feet		
Approximate 50-yr Detention Volume =	4.754	acre-feet		
Approximate 100-yr Detention Volume =	6.285	acre-feet		

Define Zones and Basin Geometry


Zone 1 Volume (WQCV) =	1.124	acre-feet
Zone 2 Volume (EURV - Zone 1) =	1.827	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	3.334	acre-feet
Total Detention Basin Volume =	6.285	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S_{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	
		_
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

Depth Increment =		ft	1	1		Ontional	1		
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft ³)	(ac-ft)
Top of Micropool		0.00				139	0.003	<u> </u>	
		0.31				159	0.004	46	0.001
								399	
		0.81				1,253	0.029		0.009
		1.31				5,302	0.122	2,038	0.047
		1.81				13,591	0.312	6,761	0.155
		2.31				25,147	0.577	16,445	0.378
		2.81				37,336	0.857	32,066	0.736
		3.31				51,104	1.173	54,176	1.244
		3.81				67,400	1.547	83,802	1.924
		4.31				82,225	1.888	121,208	2.783
		4.81				92,560	2.125	164,905	3.786
		5.31				98,858	2.269	212,759	4.884
		5.81				104,280	2.394	263,544	6.050
		6.31				106,903	2.454	316,339	7.262
		6.81				109,552	2.515	370,453	8.504
		7.31				112,227	2.576	425,898	9.777
		7.81				114,928	2.638	482,687	11.081
									-
									-

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.00 (December 2019) Project: Westwood Basin ID: EDB-1 Estimated Estimated Stage (ft) Volume (ac-ft) Outlet Type Zone 1 (WQCV) 3.21 1.124 Orifice Plate Drifice Plate Zone 2 (EURV) 4.40 1.827 100-YEAR ZONE 1 AND 2 ORIFICES Weir&Pipe (Restrict) 5.91 3.334 Zone 3 (100-year) Example Zone Configuration (Retention Pond) Total (all zones) 6.285 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain ft (distance below the filtration media surface) Underdrain Orifice Invert Depth N/A Underdrain Orifice Area N/A ft² Underdrain Orifice Diameter = Underdrain Orifice Centroid = feet N/A inches N/A User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) N/A ft Elliptical Half-Width = Depth at top of Zone using Orifice Plate = 4.46 ft (relative to basin bottom at Stage = 0 ft) N/A feet Orifice Plate: Orifice Vertical Spacing = N/A inches Elliptical Slot Centroid = N/A feet Orifice Plate: Orifice Area per Row = N/A Elliptical Slot Area = N/A ft² inches User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 1.50 2.67 Orifice Area (sq. inches) 4 00 4 00 6 25 Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 9 (optional) Row 10 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sq. inches User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Not Selected Not Selected Not Selected Not Selected Invert of Vertical Orifice ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area N/A N/A N/A N/A ft² Depth at top of Zone using Vertical Orifice = N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = N/A N/A N/A feet Vertical Orifice Diameter = N/A N/A inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow Weir Zone 3 Weir Not Selected Zone 3 Weir Not Selected Height of Grate Upper Edge, H_t = Overflow Weir Front Edge Height, Ho = 4.33 N/A ft (relative to basin bottom at Stage = 0 ft) 5.93 N/A eet Overflow Weir Front Edge Length 35.00 N/A feet Overflow Weir Slope Length = 6.60 N/A eet Overflow Weir Grate Slope = 4.00 N/A H:V Grate Open Area / 100-yr Orifice Area = 14.44 N/A Horiz. Length of Weir Sides = 6.40 N/A feet Overflow Grate Open Area w/o Debris = 161.63 N/A Overflow Grate Open Area % 70% N/A %, grate open area/total area Overflow Grate Open Area w/ Debris = 80.81 N/A Debris Clogging % = 50% N/A User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe : Outlet Orifice Area 0.25 N/A ft (distance below basin bottom at Stage = 0 ft) 11.19 N/A Outlet Pipe Diameter 48.00 N/A inches Outlet Orifice Centroid = 1.80 N/A eet Restrictor Plate Height Above Pipe Invert = 40.00 inches Half-Central Angle of Restrictor Plate on Pipe = 2.30 N/A radians User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.59 feet 6.25 Stage at Top of Freeboard = feet Spillway Crest Length = 130.00 feet 7.84 Spillway End Slopes 4.00 H:V Basin Area at Top of Freeboard = 2.64 acres Freeboard above Max Water Surface = 1.00 Basin Volume at Top of Freeboard = 11.08 feet acre-ft

Routed Hydrograph Results	The user can over	e user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year		
One-Hour Rainfall Depth (in) =	0.53	1.07	0.97	1.38	1.37	1.77	2.10	2.69	3.40		
CUHP Runoff Volume (acre-ft) =	1.124	2.951	2.428	4.518	4.387	6.980	8.951	12.767	17.121		
Inflow Hydrograph Volume (acre-ft) =	1.124	2.951	2.428	4.518	4.387	6.980	8.951	12.767	17.121		
CUHP Predevelopment Peak Q (cfs) =	0.0	0.0	1.8	21.3	18.5	47.2	65.4	101.8	141.6		
OPTIONAL Override Predevelopment Peak Q (cfs) =	0.0	0.0							l .		
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.03	0.30	0.27	0.68	0.94	1.46	2.03		
Peak Inflow Q (cfs) =	15.1	41.8	32.5	64.0	59.8	101.7	129.6	182.4	242.0		
Peak Outflow Q (cfs) =	0.5	0.8	0.7	13.7	12.2	40.8	62.8	110.3	143.8		
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.6	0.7	0.9	1.0	1.1	1.0		
Structure Controlling Flow =	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway		
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.1	0.1	0.2	0.4	0.7	0.7		
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Time to Drain 97% of Inflow Volume (hours) =	38	66	59	66	66	63	61	56	52		
Time to Drain 99% of Inflow Volume (hours) =	40	71	63	72	72	70	69	67	65		
Maximum Ponding Depth (ft) =	3.12	4.32	4.04	4.69	4.66	5.07	5.32	5.74	6.41		
Area at Maximum Ponding Depth (acres) =	1.05	1.89	1.70	2.06	2.05	2.20	2.27	2.38	2.47		
Maximum Volume Stored (acre-ft) =	1.022	2.801	2.281	3.513	3.472	4.348	4.884	5.883	7.508		

DETENTION BASIN OUTLET STRUCTURE DESIGN

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs ride the calculated inflow hydrographs from this workbook with inflow hydr The user can ov

	The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.									
	SOURCE	CUHP	CUHP	CUHP						
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.33	1.59
	0:15:00	0.79	2.80	1.70	4.28	3.92	3.21	4.64	5.84	8.80
	0:20:00	4.02	9.36	8.68	14.33	13.57	9.99	12.86	16.72	24.37
	0:25:00	10.41	27.68	22.48	42.39	40.39	25.21	32.84	49.21	74.26
	0:30:00	14.57	40.96	31.47	62.71	58.81	71.78	94.13	130.24	178.89
	0:35:00	15.07	41.82	32.55	64.03	59.79	97.83	126.15	177.45	237.22
	0:40:00 0:45:00	14.09	38.02	30.43	58.21	54.41	101.74	129.65	182.42	241.96
	0:50:00	12.44 10.98	33.50 29.99	26.88 23.72	51.28 45.91	48.45 43.03	94.79 86.65	120.35 109.87	172.36 158.10	228.02 209.23
	0:55:00	9.76	29.99	21.07	40.61	38.23	77.33	98.26	143.50	189.97
	1:00:00	8.64	23.14	18.67	35.43	33.86	68.05	86.67	129.89	171.90
	1:05:00	7.72	20.22	16.67	30.95	30.09	59.80	76.32	117.47	155.55
	1:10:00	6.87	18.29	14.85	28.01	27.73	51.11	65.62	100.81	134.27
	1:15:00	6.16	16.66	13.31	25.51	26.08	44.63	57.77	86.63	116.06
	1:20:00	5.55	14.91	11.99	22.82	23.81	38.72	50.14	73.27	98.26
	1:25:00	5.00	13.22	10.81	20.23	20.85	33.45	43.18	61.20	81.95
	1:30:00	4.48	11.62	9.67	17.78	17.93	28.27	36.38	50.76	67.84
	1:35:00	3.96	10.12	8.55	15.50	15.23	23.44	30.07	41.30	55.08
	1:40:00	3.48	8.42	7.51	12.89	12.87	19.01	24.31	32.73	43.58
	1:45:00 1:50:00	3.11 2.92	6.97 6.09	6.72 6.30	10.67 9.32	11.07 10.01	15.09 12.25	19.25 15.69	25.38 20.31	33.91 27.37
	1:55:00	2.92	5.55							
	2:00:00	2.63	5.55	5.68 5.06	8.50 7.80	9.26 8.46	10.56 9.48	13.56 12.20	17.14 15.03	23.24 20.45
	2:05:00	1.93	4.20	4.16	6.42	6.98	7.67	9.87	11.90	16.23
	2:10:00	1.52	3.28	3.28	5.02	5.48	5.89	7.57	8.91	12.16
	2:15:00	1.19	2.55	2.58	3.91	4.26	4.51	5.78	6.59	8.99
	2:20:00	0.93	1.98	2.01	3.04	3.29	3.43	4.38	4.85	6.63
	2:25:00	0.72	1.53	1.56	2.34	2.51	2.62	3.33	3.65	4.98
	2:30:00	0.56	1.16	1.21	1.78	1.89	1.98	2.50	2.75	3.74
	2:35:00	0.43	0.87	0.93	1.33	1.41	1.48	1.87	2.07	2.82
	2:40:00	0.32	0.64	0.70	0.98	1.07	1.11	1.40	1.57	2.14
	2:45:00 2:50:00	0.24	0.48	0.53	0.73	0.81	0.84	1.06	1.20	1.63
	2:55:00	0.17	0.34	0.38	0.52	0.59	0.62	0.78	0.88	1.19
	3:00:00	0.12	0.23	0.25	0.35	0.40	0.43	0.54	0.61	0.82
	3:05:00	0.07	0.08	0.08	0.13	0.23	0.16	0.19	0.35	0.28
	3:10:00	0.02	0.04	0.03	0.06	0.06	0.07	0.09	0.09	0.12
	3:15:00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00 3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 E:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Hydraulic Analysis Report

Project Data

Project Title: JN:1104 Westwood - EDB 1 Emergency Spillway Sizing (2 X Undetained Q100) Designer:

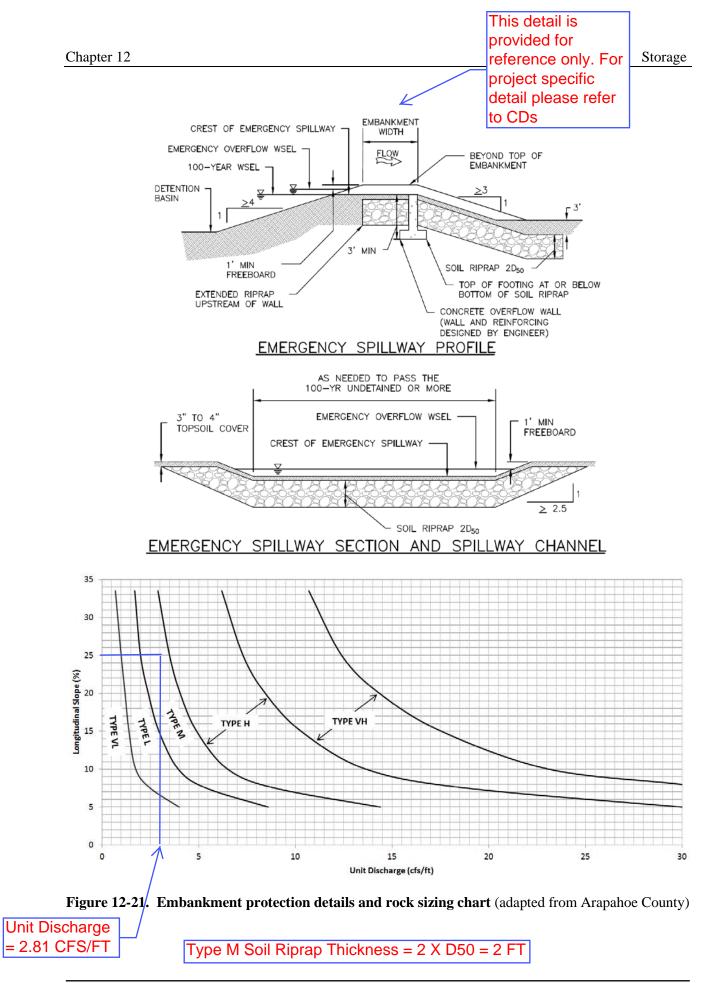
Project Date: Tuesday, January 7, 2020 Project Units: U.S. Customary Units

Notes:

Weir Analysis: EDB-1 Emergency Spillway Sizing - 2 X Undetained Q100

Notes:

Standard Cipolletti Weir assumes 4:1 side slope


Head Required for 2 X Undetained Q100 = 2 X 182.4 CFS = 364.8 CFS

Input Parameters Weir Type: Cipolletti Coefficient: 3.3670 Length: 130.0000 ft Flow: 364.8000 cfs

Result Parameters

Head: 0.8856 ft

Emergency Spillway Unit Discharge = 364.8 CFS / 130 FT = 2.81 CFS/FT

Channel Analysis: Trickle Channel Capacity Check - 2% of Undetained Q100 (0.02 X 182.4 = 3.648 CFS)

Notes:

Input Parameters

Channel Type: Rectangular

Channel Width: 2.0000 ft

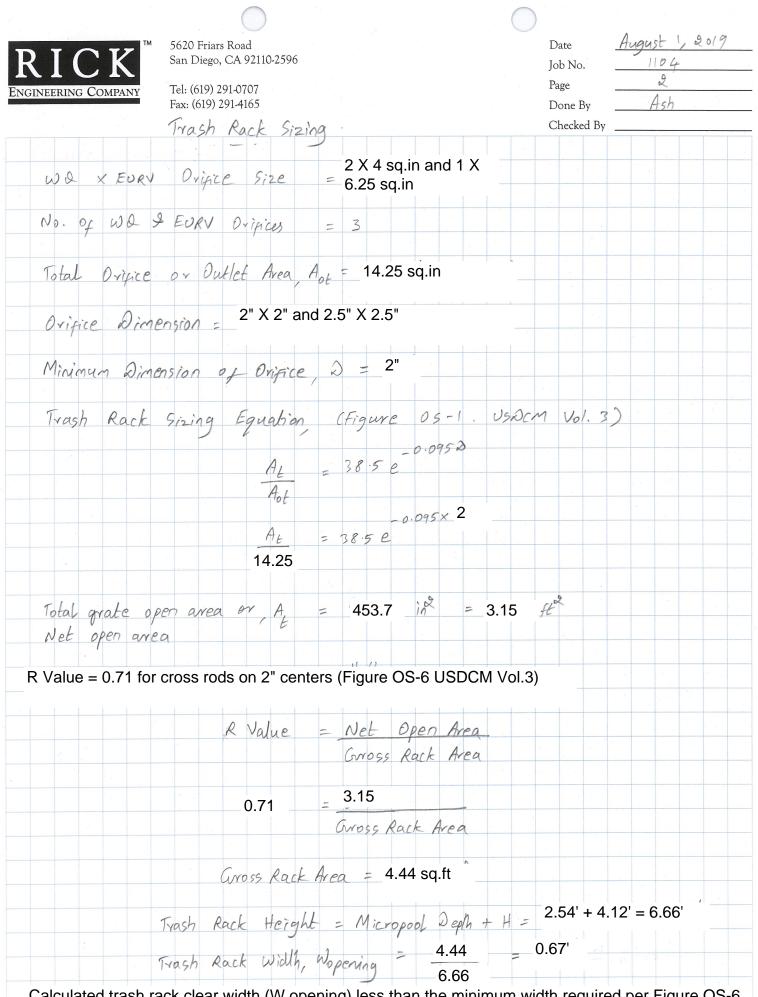
Longitudinal Slope: 0.0075 ft/ft

Manning's n: 0.0130

Flow: 3.6480 cfs

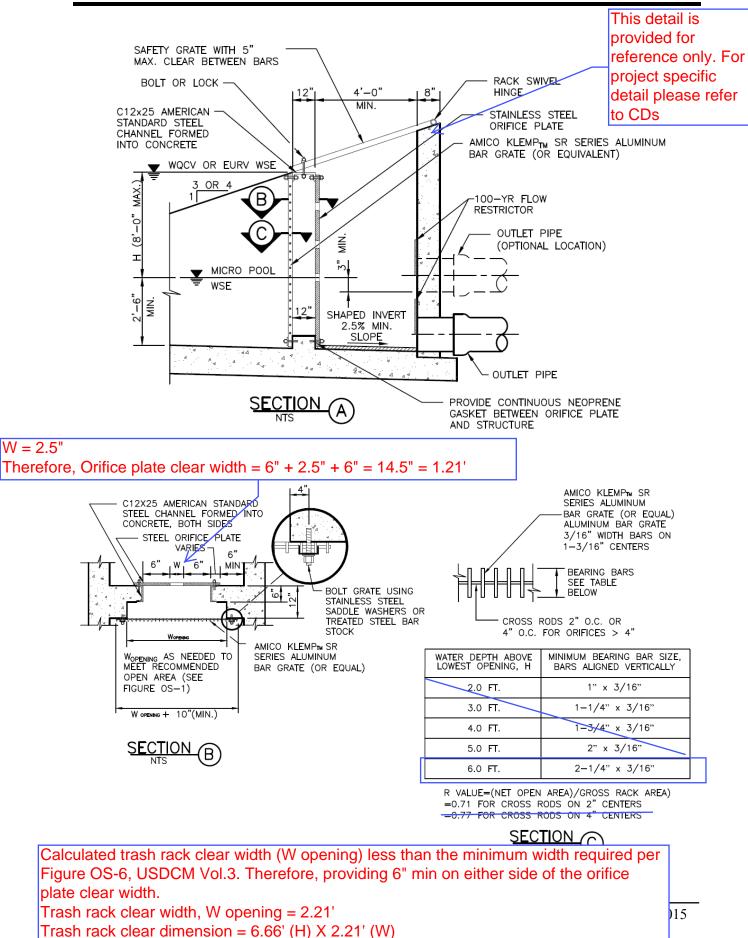
-Flow Depth < 0.5' Ok

2% of Undetained Q100 = 0.02*182.4 = 3.648 CFS

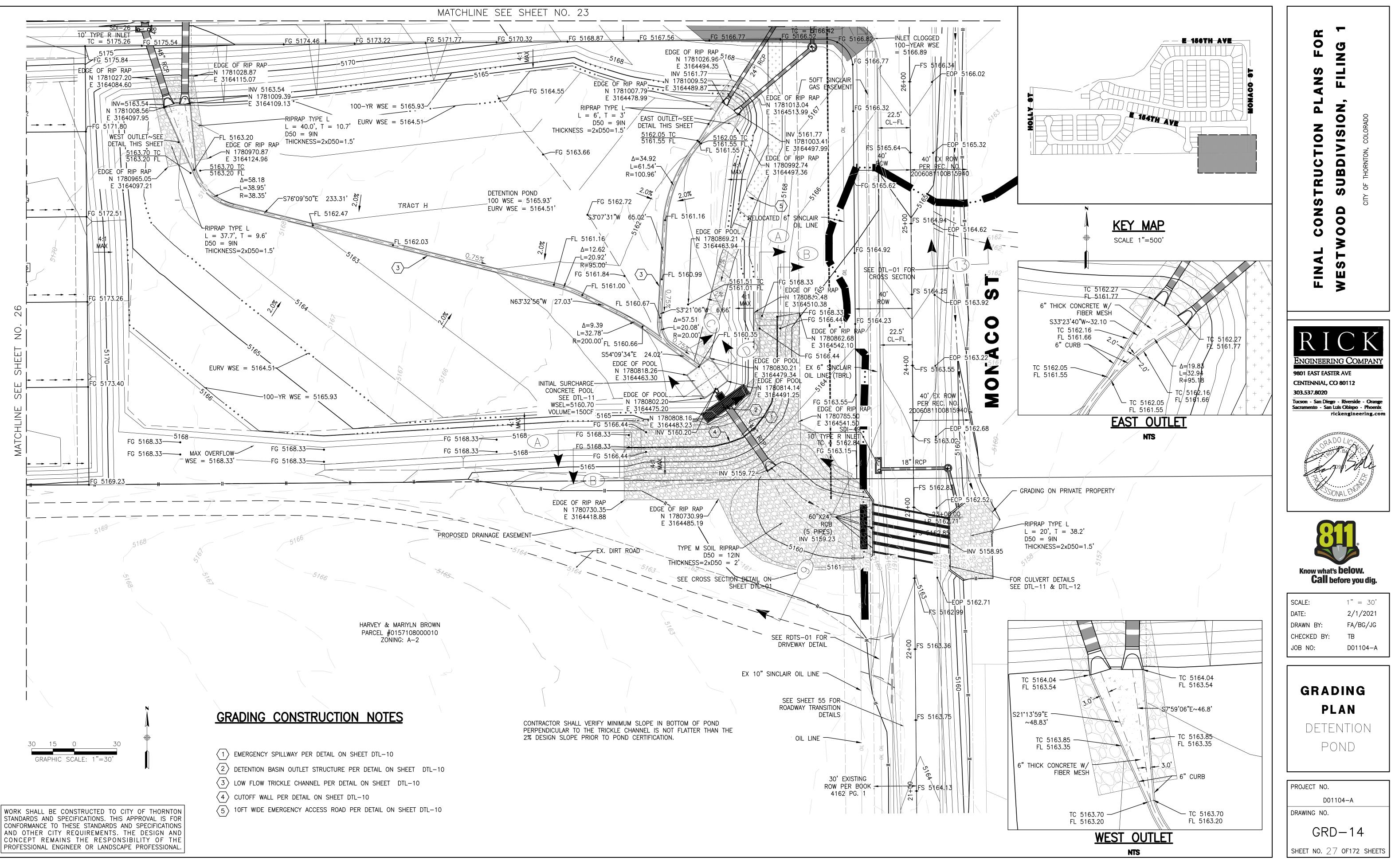

Result Parameters

Depth: 0.4169 ft Area of Flow: 0.8339 ft^2 Wetted Perimeter: 2.8339 ft Hydraulic Radius: 0.2943 ft Average Velocity: 4.3747 ft/s Top Width: 2.0000 ft Froude Number: 1.1939 Critical Depth: 0.4692 ft Critical Velocity: 3.8871 ft/s Critical Slope: 0.0053 ft/ft Critical Top Width: 2.00 ft

Calculated Max Shear Stress: 0.1951 lb/ft^2

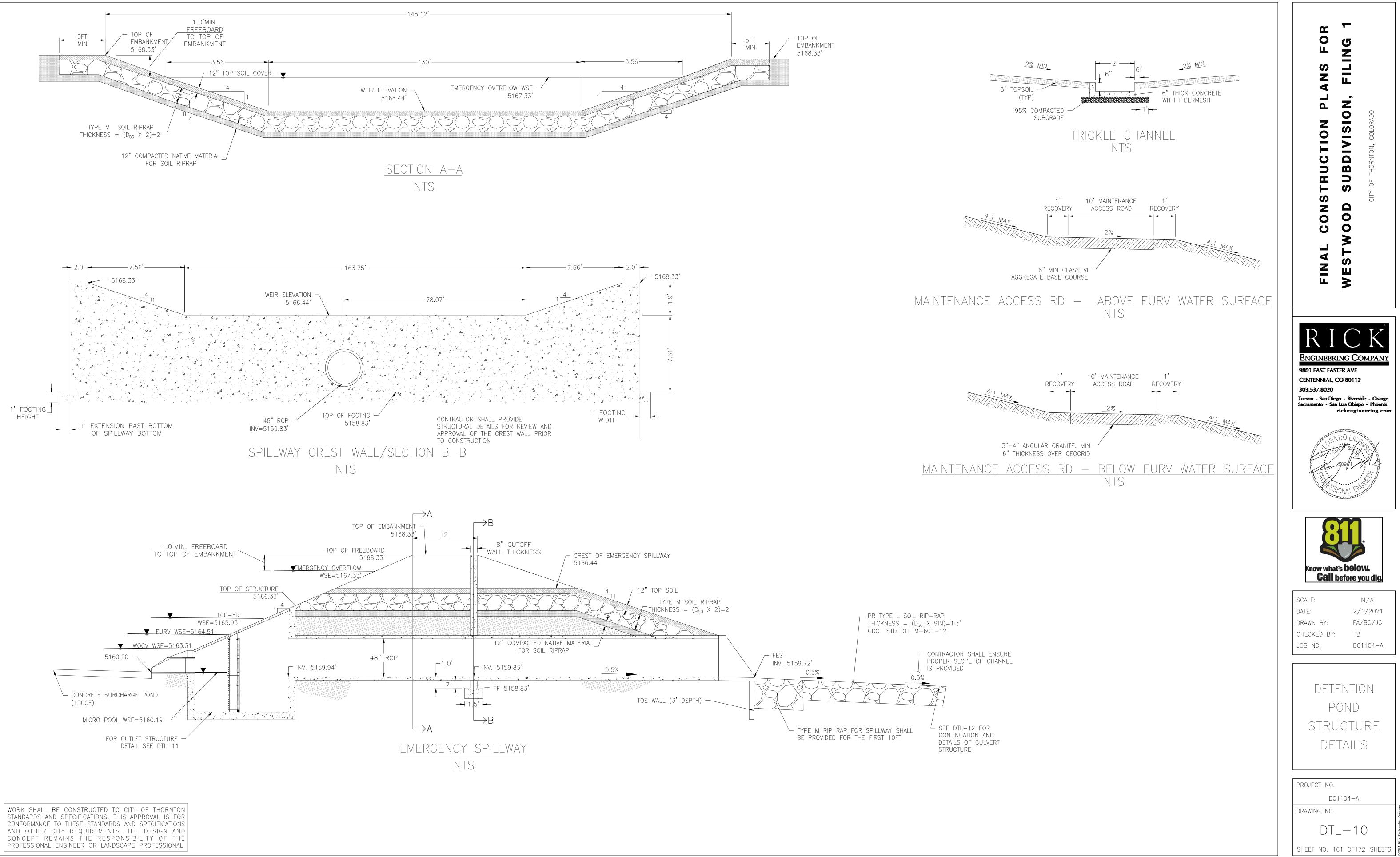

Calculated Avg Shear Stress: 0.1377 lb/ft^2

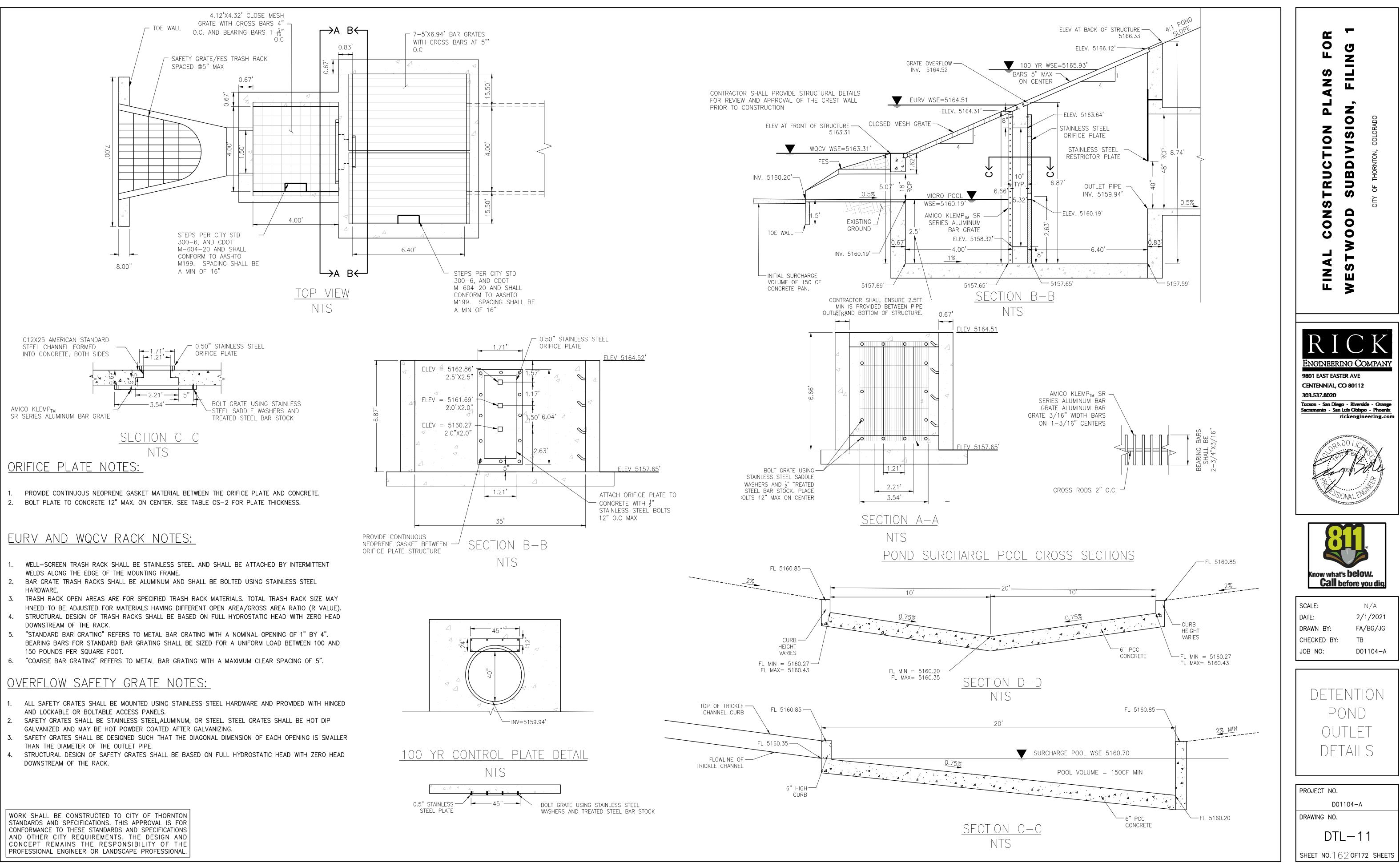
August 26, 2020 Date 5620 Friars Road San Diego, CA 92110-2596 Job No. 1 Page Tel: (619) 291-0707 VEERING COMPAN Fax: (619) 291-4165 Done By Checked By $= 0.3\% \text{ of the warve (Table EDB-4, uspect vol. 3)} \\ = 0.3 \times 1.124 \text{ ac-ft} \times 43560 \text{ pc}^{2} \\ \hline 100 \text{ 1 ac}^{2} \end{array}$ Initial Suncharge Volume = 146.9 ft 3 ~ 150 ft' External Concrete Initial Surcharge Pool has been provided just upstream of the detention basin outlet structure. Please refer to Section C-C and D-D of DTL-11.



Calculated trash rack clear width (W opening) less than the minimum width required per Figure OS-6_USDCM Vol.3 (see next page) for attachment to the outlet structure.

Outlet Structures




Trash rack overall dimension (including overlap) = 6.66' (H) X 3.54' (W)

ICK\Projects\D_SHARE\1104_Westwood\Civi\\Plans\Final_Construction_Plans\1104-C-GRD11-GR

Rick Engineering Company

Appendix B

Hydraulic Computations

- Inlet Management Sheet
- Curb Inlet Sizing
- Grate Inlet Sizing
- Street Capacity Check
- Upstream of Sump Street Capacity Check
- Upstream of Cross-Pan Street Capacity Check
- Street Corner Capacity Check
- Emergency Overflow Weir Section Analyses
- Cross-Pan Capacity Check
- Swale & Roadside Ditch Design
- Culvert Design
- Storm Drain Design
- Rip-Rap Apron Design

Appendix B – Hydraulic Computations Inlet Management Sheet

INLET MANAGEMENT

NLET NAME	1 (SDI-31)	2 (SDI-42)	3 (SDI-39)	4 (SDI-48)	5 (SDI-30)	6 (SDI-34)
te Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
let Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET
lydraulic Condition	On Grade	On Grade	On Grade	In Sump	On Grade	On Grade
nlet Type	CDOT Type R Curb Opening					
R-DEFINED INPUT						
ser-Defined Design Flows						
linor Q _{Known} (cfs)	1.3	2.7	1.7	1.5	2.9	2.4
lajor Q _{Known} (cfs)	3.6	7.6	5.0	5.0	9.4	6.8
Sypass (Carry-Over) Flow from Upstream						
eceive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	44 (SDI-35)	No Bypass Flow Received	5 (SDI-30)
inor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
ajor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	1.5	0.0	1.9
Vatershed Characteristics						
ercent Impervious						
IRCS Soil Type						
Vatershed Profile Overland Slope (ft/ft)						
Overland Length (ft)						
Channel Slope (ft/ft)						
channel Length (ft)						
linor Storm Rainfall Input						
esign Storm Return Period, Tr (years)						
ne-Hour Precipitation, P ₁ (inches)						
lajor Storm Rainfall Input Design Storm Return Period, T, (years)						
ne-Hour Precipitation, P ₁ (inches)						
ine rieur recipitation, r ((inerice)			1	1		
CULATED OUTPUT						

Minor Total Design Peak Flow, Q (cfs)	1.3	2.7	1.7	1.5	2.9	2.4
Major Total Design Peak Flow, Q (cfs)	3.6	7.6	5.0	6.5	9.4	8.7
linor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	0.0	N/A	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	0.9	1.0	1.8	N/A	1.9	1.6
Minor Storm (Calculated) Analysis of Flow Time						
	N/A	N/A	N/A	N/A	N/A	N/A
5	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
hannel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
hannel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
alculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
egional T _c	N/A	N/A	N/A	N/A	N/A	N/A
ecommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
selected by User	N/A	N/A	N/A	N/A	N/A	N/A
esign Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
alculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A
lajor Storm (Calculated) Analysis of Flow Time						
alor Storm (Calculated) Analysis of Flow Time	N/A	N/A	N/A	N/A	N/A	N/A
5	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
nannel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Time. Ti	N/A	N/A	N/A	N/A	N/A	N/A
hannel Travel Time. Tt	N/A	N/A	N/A	N/A	N/A	N/A
alculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
egional T _c	N/A	N/A	N/A	N/A	N/A	N/A
ecommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
selected by User	N/A	N/A	N/A	N/A	N/A	N/A
esign Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
alculated Local Peak Flow, Q.	N/A	N/A	N/A	N/A	N/A	N/A

INLET MANAGEMENT

Worksheet Protected

NLET NAME	7 (SDI-47)	8 (SDI-45)	9 (SDI-40)	10 (SDI-12)	11 (SDI-13)	<u>12 (SDI-07)</u>
te Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
let Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET
vdraulic Condition	In Sump	On Grade	On Grade	In Sump	In Sump	On Grade
nlet Type	CDOT Type R Curb Opening					
R-DEFINED INPUT						
ser-Defined Design Flows						
inor Q _{Known} (cfs)	1.6	0.9	1.4	2.0	0.3	2.1
lajor Q _{Known} (cfs)	4.8	2.1	3.2	5.9	0.7	6.5
	••••••					
ypass (Carry-Over) Flow from Upstream						
eceive Bypass Flow from:	6 (SDI-34)	No Bypass Flow Received				
linor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
lajor Bypass Flow Received, Qb (cfs)	1.6	0.0	0.0	0.0	0.0	0.0
Vatershed Characteristics						
Subcatchment Area (acres)						
ercent Impervious	i					
RCS Soil Type	i					
Vatershed Profile						
Overland Slope (ft/ft)						
Overland Length (ft)						
Channel Slope (ft/ft)						
Channel Length (ft)						
	·		•			
linor Storm Rainfall Input						
Design Storm Return Period, Tr (years)						
Dne-Hour Precipitation, P1 (inches)	i					
	·		•			
lajor Storm Rainfall Input						
Design Storm Return Period, Tr (years)						
one-Hour Precipitation, P1 (inches)	i					
CULATED OUTPUT						
CULATED OUTPUT						
	1.6	0.9	1.4	2.0	0.3	2.1
linor Total Design Peak Flow, Q (cfs)	1.6	0.9	1.4	2.0	0.3	2.1
CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) inor Flow Broassed Downstream, Q, (cfs) inor Flow Broassed Downstream, Q, (cfs)	6.4	2.1	3.2	5.9	0.7	6.5
linor Total Design Peak Flow, Q (cfs)						

С	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A

N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N/A

INLET MANAGEMENT

Worksheet Protected

	<u>13 (SDI-24)</u>	<u>14 (SDI-11)</u>	<u>15 (SDI-27)</u>	<u>16 (SDI-16)</u>	<u>17 (SDI-10)</u>	<u>18 (SDI-08)</u>
e Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
et Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET
draulic Condition	On Grade					
et Type	CDOT Type R Curb Opening					
••						
R-DEFINED INPUT						
er-Defined Design Flows						
nor Q _{Known} (cfs)	2.2	1.4	2.4	1.9	2.4	1.7
ajor Q _{Known} (cfs)	6.3	3.9	7.1	5.0	6.9	5.0
pass (Carry-Over) Flow from Upstream						
ceive Bypass Flow from:	No Bypass Flow Received	17 (SDI-10)				
nor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
ajor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.7
atershed Characteristics						
ibcatchment Area (acres)						
ercent Impervious						
RCS Soil Type						
atershed Profile						
verland Slope (ft/ft)						
verland Length (ft)						
nannel Slope (ft/ft)						
nannel Length (ft)						
nor Storm Rainfall Input						
esign Storm Return Period, T _r (years)						
ne-Hour Precipitation, P1 (inches)						
ajor Storm Rainfall Input						
esign Storm Return Period, T _r (years)						
ne-Hour Precipitation, P1 (inches)						

С	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A

N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N/A

INLET MANAGEMENT

Worksheet Protected

NLET NAME	19 (SDI-46)	42 (SDI-17)	20 (SDI-05)	21 (SDI-03)	22 (SDI-23)	23 (SDI-22)
te Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
et Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET
vdraulic Condition	On Grade	On Grade	In Sump	On Grade	On Grade	On Grade
let Type	CDOT Type R Curb Opening					
R-DEFINED INPUT						
ser-Defined Design Flows						
inor Q _{Known} (cfs)	1.5	2.4	0.0	2.7	2.6	2.1
ajor Q _{Known} (cfs)	4.3	6.6	0.0	8.5	7.5	6.2
ypass (Carry-Over) Flow from Upstream	•					
eceive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	User-Defined	No Bypass Flow Received	21 (SDI-03)	No Bypass Flow Received
nor Bypass Flow Received, Q _h (cfs)	0.0	0.0	0.5	0.0	0.0	0.0
ajor Bypass Flow Received, Q _b (cfs)	0.0	0.0	6.2	0.0	1.5	0.0
<u> </u>	0.0	0.0	0.2	0.0	1.0	0.0
atershed Characteristics			•			
ubcatchment Area (acres)						
ercent Impervious						
RCS Soil Type						
atershed Profile						
verland Slope (ft/ft)						
verland Length (ft)						
hannel Slope (ft/ft)						
hannel Length (ft)						
linor Storm Rainfall Input						
esign Storm Return Period, Tr (years)						
ne-Hour Precipitation, P1 (inches)						
lajor Storm Rainfall Input esign Storm Return Period, T, (years)						
ne-Hour Precipitation, P ₁ (inches)						
ne-nour Precipitation, P1 (Inches)						
CULATED OUTPUT						
inor Total Design Peak Flow, Q (cfs)	1.5	2.4	0.5	2.7	2.6	2.1
ajor Total Design Peak Flow, Q (cfs)	4.3	6.6	6.2	8.5	9.0	6.2
inor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	N/A	0.0	0.0	0.2
ajor Flow Bypassed Downstream, Q_b (cfs)	0.0	0.0	N/A N/A	1.5	1.9	2.7
ajor now bypassed bownstream, Qb (cis)	0.1	0.7	N/A	1.5	1.9	2.1
nor Storm (Calculated) Analysis of Flow						
	N/A	N/A	N/A	N/A	N/A	N/A
	N/A	N/A	N/A	N/A	N/A	N/A

C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A

С	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A

INLET MANAGEMENT

Worksheet Protected

NLET NAME	24 (SDI-21)	25 (SDI-09)	<u>26 (SDI-06)</u>	32 (SDI-49)	<u>33 (SDI-44)</u>	30 (SDI-02)
e Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
et Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET
draulic Condition	On Grade	On Grade	In Sump	On Grade	On Grade	In Sump
et Type	CDOT Type R Curb Opening					
R-DEFINED INPUT						
er-Defined Design Flows						
nor Q _{Known} (cfs)	1.8	1.9	1.1	0.9	1.9	0.9
jor Q _{Known} (cfs)	5.3	5.3	2.4	2.2	4.1	3.1
pass (Carry-Over) Flow from Upstream						
ceive Bypass Flow from:	23 (SDI-22)	No Bypass Flow Received	User-Defined	No Bypass Flow Received	No Bypass Flow Received	30 (SDI-20)
nor Bypass Flow Received, Q _b (cfs)	0.2	0.0	0.0	0.0	0.0	0.1
jor Bypass Flow Received, Q _b (cfs)	2.7	0.0	2.6	0.0	0.0	5.0
tershed Characteristics						
bcatchment Area (acres)						
rcent Impervious						
RCS Soil Type						
(00 00m 1)po						
atershed Profile						
rerland Slope (ft/ft)						
erland Length (ft)						
annel Slope (ft/ft)						
nannel Length (ft)						
lamor zörigar (re)						
inor Storm Rainfall Input						
esign Storm Return Period, Tr (years)						
ne-Hour Precipitation, P1 (inches)						
						•
ajor Storm Rainfall Input						
esign Storm Return Period, Tr (years)						
ne-Hour Precipitation, P1 (inches)						
CULATED OUTPUT						
nor Total Design Peak Flow, Q (cfs)	2.0	1.9	1.1	0.9	1.9	1.0
jor Total Design Peak Flow, Q (cfs)	8.0	5.3	5.0	2.2	4.1	8.0
nor Flow Bypassed Downstream, Q _h (cfs)	0.0	0.0	N/A	0.0	0.0	N/A
ajor Flow Bypassed Downstream, Qb (cfs)	1.3	0.2	N/A	0.0	0.1	N/A
		•	•	•	•	•
nor Storm (Calculated) Analysis of Flow						
	N/A	N/A	N/A	N/A	N/A	N/A
	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Velocity, Vi	N/A	N/A	N/A	NI/A	N/A	N/A

0 ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A

С	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Q _p	N/A	N/A	N/A	N/A	N/A	N/A

INLET MANAGEMENT

Worksheet Protected

NLET NAME	30 (SDI-20)	20 (SDI-04)	31 (SDI-26)	51 (SDI-01)	43 (SDI-33)	44 (SDI-35)
e Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
et Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET
draulic Condition	On Grade	On Grade	On Grade	In Sump	On Grade	On Grade
let Type	CDOT Type R Curb Opening					
**						
R-DEFINED INPUT						
er-Defined Design Flows						
inor Q _{Known} (cfs)	4.1	2.9	2.6	1.2	2.2	2.1
ajor Q _{Known} (cfs)	13.1	7.7	6.5	2.7	5.9	5.5
pass (Carry-Over) Flow from Upstream						
eceive Bypass Flow from:	No Bypass Flow Received	User-Defined	No Bypass Flow Received	31 (SDI-26)	User-Defined	User-Defined
inor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
ajor Bypass Flow Received, Q _b (cfs)	0.0	2.6	0.0	1.0	1.9	2.9
Vatershed Characteristics						
ubcatchment Area (acres)						
ercent Impervious						
RCS Soil Type						
latershed Profile						
verland Slope (ft/ft)						
verland Length (ft)						
hannel Slope (ft/ft)						
hannel Length (ft)						
linor Storm Rainfall Input						
esign Storm Return Period, Tr (years)						
Dne-Hour Precipitation, P ₁ (inches)						
lajor Storm Rainfall Input						
esign Storm Return Period, T, (years)						
ne-Hour Precipitation, P1 (inches)						
						•
CULATED OUTPUT						
inor Total Design Peak Flow, Q (cfs)	4.1	2.9	2.6	1.2	2.2	2.1
ajor Total Design Peak Flow, Q (cfs)	13.1	10.3	6.5	3.7	7.8	8.4
	0.1	0.5	0.0	N/A	0.0	0.0
inor Flow Bypassed Downstream, Q _b (cfs)	0.1	0.5	0.0	N/A	0.0	0.0

Minor Storm (Calculated) Analysis of Flow T

С	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A

C	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A

INLET MANAGEMENT

Worksheet Protected

Site Type (Urban or Rural) Inlet Application (Street or Area) Hydraulic Condition Inlet Type	URBAN STREET	LIDDAN	47 (SDI-14)	48 (SDI-15)	49 (SDI-18)	50 (SDI-19)
lydraulic Condition		URBAN	URBAN	URBAN	URBAN	URBAN
lydraulic Condition		STREET	STREET	STREET	STREET	STREET
	In Sump	In Sump	On Grade	On Grade	On Grade	On Grade
	OT Type R Curb Opening	CDOT Type R Curb Opening				
ER-DEFINED INPUT Jser-Defined Design Flows						
Minor Q _{Known} (cfs)	1.0	1.2	1.5	1.5	2.2	2.2
Major Q _{Known} (cfs)	2.4	3.1	4.3	4.1	5.9	5.9
Viajor Q _{Known} (CIS)	2.4	3.1	4.3	4.1	5.9	5.9
ypass (Carry-Over) Flow from Upstream						
	b Bypass Flow Received	9 (SDI-40)	12 (SDI-07)	User-Defined	User-Defined	22 (SDI-23)
Inor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.2	0.2	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.9	2.9	4.6	2.4	1.9
Natershed Characteristics						
ubcatchment Area (acres)						
Percent Impervious						
IRCS Soil Type						
Vatershed Profile Overland Slope (ft/ft)						
Overland Length (ft)						
Channel Slope (ft/ft)						
Channel Length (ft)						
Minor Storm Rainfall Input						
Design Storm Return Period, Tr (years)						
One-Hour Precipitation, P1 (inches)						
Maior Storm Rainfall Input						
Design Storm Return Period, T _r (years)						
- 10 /						
One-Hour Precipitation, P1 (inches)			·			

Minor Storm (Calculated) Analysis of Flow T

С	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A

С	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A

INLET MANAGEMENT

INLET NAME	Monaco St Cap Ult Max Slo		E 156th Av Cap	<u>34 (SDI-32)</u>	<u>36A (SDI-25)</u>	<u>36B (SDI-41)</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	RURAL	RURAL	RURAL
Inlet Application (Street or Area)	STREET	STREET	STREET	AREA	AREA	AREA
Hydraulic Condition	On Grade	On Grade	On Grade	Swale	Swale	Swale
Inlet Type	4			CDOT Type C (Depressed)	CDOT Type C (Depressed)	CDOT Type C (Depressed)
SER-DEFINED INPUT						
User-Defined Design Flows						
Minor Q _{Known} (cfs)	0.0	4.1	1.5	2.3	0.8	0.2
Major Q _{Known} (cfs)	0.0	13.1	4.8	16.4	8.4	1.5
Bypass (Carry-Over) Flow from Upstream Receive Bypass Flow from:	No Bypass Flow Receive	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
		0.0	0.0	0.0	0.0	5.5
Watershed Characteristics						
Subcatchment Area (acres)						
Percent Impervious						
NRCS Soil Type						
Watershed Profile						
Overland Slope (ft/ft)						
Overland Length (ft)						
Channel Slope (ft/ft) Channel Length (ft)						
Minor Storm Rainfall Input						
Design Storm Return Period, T _r (years)						
One-Hour Precipitation, P1 (inches)						
Main Otama Baingallana d						
Major Storm Rainfall Input						
Design Storm Return Period, T _r (years)						
Design Storm Rainfail Input Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches)						
Design Storm Return Period, T _r (years)						
Design Storm Return Period, T _r (years)						
Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches)						
Design Storm Return Period, T _r (years) One-Hour Precipitation, P₁ (inches)						
Design Storm Return Period, T, (years) One-Hour Precipitation, P, (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs)	X	4.1	1.5	2.3	0.8	0.2
Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs)	X	4.1	1.5	2.3	0.8	0.2
Design Storm Return Period, T, (years) One-Hour Precipitation, P, (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs)	0.0					
Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs)	0.0			16.4	8.4	1.5
Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Q _b (cfs) Major Flow Bypassed Downstream, Q _b (cfs)	0.0			16.4 0.0	8.4 0.0	1.5 0.0
Design Storm Return Period, T, (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Q, (cfs)	0.0	13.1	4.8	16.4 0.0 0.0	8.4 0.0 0.0	1.5 0.0 0.0
Design Storm Return Period, T ₁ (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Q _b (cfs) Major Flow Bypassed Downstream, Q _b (cfs)	0.0 0.0	13.1 N/A	4.8 N/A	16.4 0.0 0.0 N/A	8.4 0.0 0.0 N/A	1.5 0.0 0.0 N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Major Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Miorr Flow Bypassed Downstream, Q ₆ (cfs) Major Flow Bypassed Downstream, Q ₆ (cfs) Minor Storm (Calculated) Analysis of Flow T C C ₅	0.0 0.0 	13.1 N/A N/A	4.8 N/A N/A	16.4 0.0 0.0 N/A N/A	8.4 0.0 0.0 N/A N/A	1.5 0.0 0.0 N/A N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Minor Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Q _b (cfs) Minor Flow Bypassed Downstream, Q _b (cfs) Minor Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, Vi	0.0 0.0 	13.1 N/A N/A N/A	4.8 N/A N/A N/A	16.4 0.0 0.0 N/A N/A N/A	8.4 0.0 0.0 NIA NIA NIA	1.5 0.0 0.0 N/A N/A N/A
Design Storm Return Period, T ₁ (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Flow Bypassed Downstream, Q _b (cfs) Major Flow Bypassed Downstream, Q _b (cfs) Major Storm (Calculated) Analysis of Flow T C C _{bannel} Flow Velocity, Vi Channel Flow Velocity, Vi	0.0 0.0 	13.1 N/A N/A N/A N/A N/A	4.8 N/A N/A N/A N/A	16.4 0.0 0.0 N/A N/A N/A N/A	8.4 0.0 0.0 N/A N/A N/A N/A N/A	1.5 0.0 0.0 N/A N/A N/A N/A
Design Storm Return Period, Tr, (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Q ₆ (cfs) Major Flow Bypassed Downstream, Q ₆ (cfs) Minor Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, Vi Channel Flow Velocity, Vi Channel Flow Velocity, Vi Channel Flow Time, Ti	0.0 0.0 N/A N/A N/A N/A N/A	13.1 N/A N/A N/A N/A N/A	4.8 N/A N/A N/A N/A N/A	16.4 0.0 0.10 N/A N/A N/A N/A N/A	8.4 0.0 0.0 N/A N/A N/A N/A N/A N/A	1.5 0.0 0.0 N/A N/A N/A N/A N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Major Total Design Peak Flow, Q (cfs) Minor Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Q _b (cfs) Minor Flow Bypassed Downstream, Q _b (cfs) Minor Storm (Calculated) Analysis of Flow T C C Overland Flow Velocity, Vi Channel Flow Velocity, Vi Overland Flow Time, Ti Channel Travel Time, Ti	0.0 0.0 N/A N/A N/A N/A N/A N/A	13.1 N/A N/A N/A N/A N/A N/A N/A	4.8 N/A N/A N/A N/A N/A N/A	16.4 0.0 0.0 N/A N/A N/A N/A N/A N/A	8.4 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A	1.5 0.0 0.0 N/A N/A N/A N/A N/A N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Q ₀ (cfs) Major Flow Bypassed Downstream, Q ₀ (cfs) Major Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, Vit Overland Flow Velocity, Vit Overland Flow Velocity, Vit Overland Flow Time, Ti Channel Travel Time, Ti Chancel Travel Time, Ti Chancel Travel Time, Ti	0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	13.1 N/A N/A N/A N/A N/A N/A N/A N/A	4.8 N/A N/A N/A N/A N/A N/A N/A	16.4 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.4 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A	1.5 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P, (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Q _b (cfs) Major Flow Bypassed Downstrea	0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A	13.1 NIA NIA NIA NIA NIA NIA NIA NIA NIA	4.8 N/A N/A N/A N/A N/A N/A N/A N/A	16.4 0.0 0.1 0.2 N/A	8.4 0.0 0.0 NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA	1.5 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Flow Bypassed Downstream, Q ₆ (cfs) Minor Storm (Calculated) Analysis of Flow T C C C S Overland Flow Velocity, Vi Channel Flow Time, Ti Calculated Time of Concentration, T ₆ Regional T ₆ Recommended T ₆	0.0 0.0 0.0 NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA	N/A	4.8 N/A N/A N/A N/A N/A N/A N/A	16.4 0.0 0.0 N/A	8.4 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	1.5 0.0 0.0 N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P, (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Q _b (cfs) Major Flow Bypassed Downstream, Q _b (cfs) Major Flow Bypassed Downstream, Q _b (cfs) Minor Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, VI Channel Flow Velocity, VI Channel Flow Velocity, VI Channel Flow Time, Ti Calculated Time of Concentration, T _c Regional T _c Recommended T _c T _c selected by User	0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A	13.1 NIA NIA NIA NIA NIA NIA NIA NIA NIA	4.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	16.4 0.0 0.1 0.2 N/A	8.4 0.0 0.0 NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA	1.5 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Flow Bypassed Downstream, Q ₆ (cfs) Major Flow Bypassed Downstream, Q ₆ (cfs) Minor Storm (Calculated) Analysis of Flow T C C S Overland Flow Velocity, Vi Channel Travel Time, Ti Calculated Time of Concentration, T ₆ Regional T ₆ Recommended T ₆	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	N/A	4.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	16.4 0.0 0.0 N/A	8.4 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	1.5 0.0 0.0 N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Q _b (cfs) Minor Storm (Calculated) Analysis of Flow T C C Overland Flow Velocity, Vi Channel Flow Velocity, Vi Channel Fravel Time, Ti Calculated Time of Concentration, T _c Regional T _c Recommended T _c T _c selected by User Design Rainfall Intensity, 1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	13.1 N/A	4.8 N/A	16.4 0.0 0.0 N/A	8.4 0.0 0.0 N/A	1.5 0.0 0.0 N/A
Design Storm Return Period, Tr, (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Minor Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Q _b (cfs) Minor Flow Bypassed Downstream, Q _b (cfs) Minor Storm (Calculated) Analysis of Flow T C C Overland Flow Velocity, Vi Channel Flow Velocity, Vi Channel Fravel Time, Ti Calculated Time of Concentration, T _c Regional T _c Recommended T _c T _c selected by User Design Rainfall Intensity, 1	0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	4.8 N/A N/A N/A N/A N/A N/A N/A N/A	16.4 0.0 0.0 0.0 N/A	8.4 0.0 0.0 N/A	1.5 0.0 0.0 0.0 N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Q _b (cfs) Major Flow Bypassed Downstream, Q _b (cfs) Major Flow Bypassed Downstream, Q _b (cfs) Major Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, Vi Channel Flow Velocity, Vi Channel Flow Velocity, Vi Channel Flow Velocity, Vi Channel Travel Time, Ti Calculated Time of Concentration, T _c Regional T _c Recommended T _c T _c selected by User Design Rainfall Intensity, I Calculated Local Peak Flow, Q _p	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	13.1 N/A	4.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	16.4 0.0 0.0 N/A	8.4 0.0 0.0 N/A	1.5 0.0 0.0 N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Q ₆ (cfs) Minor Flow Bypassed Downstream, Q ₆ (cfs) Minor Storm (Calculated) Analysis of Flow T C C ₈ Overland Flow Velocity, Vi Channel Flow Velocity, Vi Overland Flow Velocity, Vi Channel Flow Velocity, Vi Channel Flow Velocity, Vi Cohannel Flow Velocity, Vi Calculated Time of Concentration, T _c Regommended T ₆ . T _c selected by User Design Rainfall Intensity, I Calculated Local Peak Flow, Q _p Major Storm (Calculated) Analysis of Flow T C C ₅	0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	13.1 N/A	4.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	16.4 0.0 0.0 N/A	8.4 0.0 0.0 N/A	1.5 0.0 0.0 0.0 N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Flow Bypassed Downstream, Q ₀ (cfs) Major Flow Bypassed Downstream, Q ₀ (cfs) Major Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, Vit Overland Flow Velocity, Vit Overland Flow Velocity, Vit Overland Flow Velocity, Vit Design Rainfall Intensity, I Calculated Local Peak Flow, Q ₀ Major Storm (Calculated) Analysis of Flow T C Calculated Local Peak Flow, Q ₀ Major Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, Vi	0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	4.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	16.4 0.0 0.0 0.0 N/A	8.4 0.0 0.0 N/A	1.5 0.0 0.0 0.0 N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P, (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Flow Bypassed Downstream, Q _b (cfs) Minor Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, VI Channel Travel Time, Ti Calculated Diver To Calculated Time of Concentration, T _c Recommended T _c T _c selected by User Design Rainfall Intensity, I Calculated Local Peak Flow, Q _p Major Storm (Calculated) Analysis of Flow T C C ₅	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	13.1 N/A	4.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	16.4 0.0 0.0 N/A	8.4 0.0 0.0 N/A	1.5 0.0 0.0 N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Minor Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Q ₆ (cfs) Minor Storm (Calculated) Analysis of Flow T C C G Overland Flow Velocity, Vi Channel Flow Velocity, Vi Channel Flow Velocity, Vi Channel Flow Velocity, Vi Channel Travel Time, Ti Calculated Time of Concentration, T _c Regoinal T _c Regoinal T _c Recommended T _c T _c selected by User Design Rainfall Intensity, I Calculated Local Peak Flow, Q _p Major Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, Vi Channel Flow Velocity, Vi Channel Flow Velocity, Vi Channel Flow Velocity, Vi Channel Flow Velocity, Vi	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	N/A	4.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	16.4 0.0 0.0 0.0 N/A	8.4 0.0 0.0 N/A	1.5 0.0 0.0 0.0 N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P, (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Flow Bypassed Downstream, Q _b (cfs) Major Flow Bypassed Downstream, Q _b (cfs) Minor Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, Vi Channel Flow Velocity, Vi Correll Flow Velocity, Vi Correll Flow Velocity, Vi Correll Flow Time, Ti Calculated Time of Concentration, T _c Regional T _c Recommended T _c T _c selected by User Design Rainfall Intensity, 1 Calculated Local Peak Flow, Q _p Major Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, Vi Channel Flow Velocity, Vi Overland Flow Velocity, Vi Overland Flow Velocity, Vi	0.0 0.0 0.0 N/A	13.1 N/A	4.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	16.4 0.0 0.0 N/A	8.4 0.0 0.0 N/A	1.5 0.0 0.0 N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P, (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Flow Bypassed Downstream, Q _b (cfs) Major Flow Bypassed Downstream, Q _b (cfs) Major Storm (Calculated) Analysis of Flow T C C G Overland Flow Velocity, Vi Channel Flow Velocity, Vi Channel Travel Time, Ti Calculated Dy User Design Rainfall Intensity, I Calculated Dy User Design Rainfall Intensity, I Calculated Local Peak Flow, Q _p Major Storm (Calculated) Analysis of Flow T C C C S Overland Flow Velocity, Vi Overland Flow Velocity, Vi Overland Flow Velocity, Vi Overland Flow Velocity, Vi Channel Flow Velocity, Vi Overland Flow Velocity, Vi Channel Flow Velocity, Vi Overland Flow Velocity, Vi Overland Flow Velocity, Vi Channel Travel Time, Ti Channel Travel Time, Ti Channel Travel Time, Ti Channel Travel Time, Ti Channel Time of Concentration, T _c	0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	N/A	4.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	16.4 0.0 0.0 N/A N/A	8.4 0.0 0.0 N/A	1.5 0.0 0.0 0.0 N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Flow Bypassed Downstream, Q ₀ (cfs) Major Flow Bypassed Downstream, Q ₀ (cfs) Major Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, Vi Channel Travel Time, Tt Calculated Time of Concentration, T _c Regional T, Resormmended T _c . T _c selected by User Design Rainfall Intensity, I Calculated Local Peak Flow, Q _p Major Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, Vi Channel Flow Time, Ti Channel Travel Time, Ti Calculated Time of Concentration, T _c Regional T _c	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	N/A	4.8 N/A	16.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 N/A	8.4 0.0 0.0 N/A	1.5 0.0 0.0 0.0 N/A N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P, (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Flow Bypassed Downstream, Q _b (cfs) Major Flow Bypassed Downstream, Q _b (cfs) Minor Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, VI Channel Travel Time, Ti Calculated Time of Concentration, T _c Regional T _c Recommended T _c C C ₅ Overland Flow Velocity, VI Contanted Tow Time, Ti Calculated Local Peak Flow, Q _p Major Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, VI Overland Flow Velocity, VI Channel Flow Velocity, VI Overland Flow Velocity, VI Channel Flow Velocity, VI Channel Flow Velocity, VI Channel Flow Velocity, VI Channel Travel Time, Ti Calculated Time of Concentration, T _c Recommended T _c	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 N/A N/A	13.1 N/A N/A	4.8 N/A N/A	16.4 0.0 0.0 N/A	8.4 0.0 0.0 N/A N/A	1.5 0.0 0.0 N/A
Design Storm Return Period, T, (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Flow Bypassed Downstream, Q ₀ (cfs) Major Flow Bypassed Downstream, Q ₀ (cfs) Major Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, Vi Channel Travel Time, Tt Calculated Time of Concentration, T _c Regional T, Resormmended T _c . T _c selected by User Design Rainfall Intensity, I Calculated Local Peak Flow, Q _p Major Storm (Calculated) Analysis of Flow T C C ₅ Overland Flow Velocity, Vi Channel Flow Time, Ti Channel Travel Time, Ti Calculated Time of Concentration, T _c Regional T _c	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	N/A	4.8 N/A	16.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 N/A	8.4 0.0 0.0 N/A	1.5 0.0 0.0 0.0 N/A N/A

INLET MANAGEMENT

NLET NAME	41A (SDI-50)	41B (SDI-28)	USofSump DP4 (SDI-48)	USofSump DP7 (SDI-47)	USofSump DP10 (SDI-12)	USofSump SBasin2B (SDI-0
ite Type (Urban or Rural)	RURAL	RURAL	URBAN	URBAN	URBAN	URBAN
nlet Application (Street or Area)	AREA	AREA	STREET	STREET	STREET	STREET
lydraulic Condition	Swale	Swale	On Grade	On Grade	On Grade	On Grade
nlet Type	CDOT Type C	CDOT Type C				
ER-DEFINED INPUT						
Jser-Defined Design Flows						
/linor Q _{Known} (cfs)	0.8	0.8	1.5	1.6	2.0	1.6
Major Q _{Known} (cfs)	10.6	10.6	5.0	4.8	5.9	4.9
Bypass (Carry-Over) Flow from Upstream						
eceive Bypass Flow from:	No Bypass Flow Received	19 (SDI-46)				
linor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.1
Natershed Characteristics						
Subcatchment Area (acres)						
Percent Impervious						
NRCS Soil Type						
Natershed Profile						
Overland Slope (ft/ft)						
Overland Length (ft)						
Channel Slope (ft/ft)						
Channel Length (ft)						
				•	•	•
Minor Storm Rainfall Input Design Storm Return Period, T _r (years)						
Dne-Hour Precipitation, P ₁ (inches)	-		-			1
she field i feelphallen; i T (meneo)						
lajor Storm Rainfall Input						-
Design Storm Return Period, T _r (years)						
Dne-Hour Precipitation, P ₁ (inches)						
CULATED OUTPUT						

Minor Total Design Peak Flow, Q (cfs)	0.8	0.8	1.5	1.6	2.0	1.6
Major Total Design Peak Flow, Q (cfs)	10.6	10.6	5.0	4.8	5.9	5.0
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0				
Major Flow Bypassed Downstream, Qb (cfs)	0.0	0.0				
Minor Storm (Calculated) Analysis of Flow T						
C	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A
				•		•
Major Storm (Calculated) Analysis of Flow T						
C	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Q ₀	N/A	N/A	N/A	N/A	N/A	N/A

INLET MANAGEMENT

| URBAN
STREET
On Grade |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| On Grade | On Grade | | | | |
| 1.1 | | On Grade | On Grade | On Grade | On Grade |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| 2.4 | 1.0 | 1.2 | 1.2 | 2.2 | 2.1 |
| | 2.4 | 3.1 | 2.7 | 5.9 | 5.5 |
| | | | | | |
| User-Defined | No Bypass Flow Received | User-Defined | User-Defined | No Bypass Flow Received | No Bypass Flow Received |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2.6 | 0.0 | 0.9 | 1.0 | 0.0 | 0.0 |
| | | | | | . <u> </u> |
| | | | | | |
| | | | | | 4 |
| | | | | | 1 |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | 1 |
| | | | | | |
| | | | | | 1 |
| | | | | | |
| | | | | | |
| | | | | | k |
| | | 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0 0.0 |

Minor Total Design Peak Flow, Q (cfs)	1.1	1.0	1.2	1.2	2.2	2.1
Major Total Design Peak Flow, Q (cfs)	5.0	2.4	4.0	3.7	5.9	5.5
Minor Flow Bypassed Downstream, Q _b (cfs)						
Major Flow Bypassed Downstream, Qb (cfs)						
						•
Minor Storm (Calculated) Analysis of Flow T						
С	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A
· · · ·				•		•
Major Storm (Calculated) Analysis of Flow T						
С	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Q _p	N/A	N/A	N/A	N/A	N/A	N/A

INLET MANAGEMENT

INLET NAME	Krney&154PI DP48 (SDI15)	Krmr&154PI DP49 (SDI18)	Krmr&154Av DP31 (SDI26)	Cor 154Av&Ivy Sub-Ba	asin2A 📕	USofSump DP30 (SDI-02)	Cor1 154Av&lvv SBas2A
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN		URBAN	URBAN
hlet Application (Street or Area)	STREET	STREET	STREET	STREET		STREET	STREET
lydraulic Condition	On Grade	On Grade	On Grade	On Grade		On Grade	On Grade
hlet Type	on olda	on olde	on oldas	on olddo		on oldeo	on oldeo
R-DEFINED INPUT			•				
ser-Defined Design Flows							
linor Q _{Known} (cfs)	1.5	2.2	0.7	0.8		1.0	0.8
Major Q _{Known} (cfs)	4.1	5.9	1.7	2.1		3.1	2.1
			•				•
sypass (Carry-Over) Flow from Upstream			-				
Receive Bypass Flow from:	User-Defined	User-Defined	No Bypass Flow Received	No Bypass Flow Rece	eived	No Bypass Flow Received	No Bypass Flow Received
Anor Bypass Flow Received, Q _b (cfs) Major Bypass Flow Received, Q _b (cfs)	0.2	0.0	0.0	0.0		0.0	0.0
vajor Bypass Flow Received, Qb (CIS)	2.7	0.7	0.0	0.0		0.0	0.0
Vatershed Characteristics							
Subcatchment Area (acres)							
Percent Impervious							
IRCS Soil Type							
21							
Vatershed Profile							
overland Slope (ft/ft)							
Overland Length (ft)							
Channel Slope (ft/ft)							
Channel Length (ft)							
fin on Storm Dainfall Int							
Minor Storm Rainfall Input Design Storm Return Period, T _r (years)							
Dne-Hour Precipitation, P ₁ (inches)							
one-nour Frecipitation, F1 (inches)							
Jaior Storm Painfall Input							
Major Storm Rainfall Input							
Major Storm Rainfall Input Design Storm Return Period, T _r (years) One-Hour Precipitation, P1 (inches)							
Jesign Storm Return Period, T _r (years) Dne-Hour Precipitation, P ₁ (inches)							
Jesign Storm Return Period, T _r (years) Dne-Hour Precipitation, P ₁ (inches)	47	22	0.7	X		10	0.8
Jesign Storm Return Period, T, (years) Dne-Hour Precipitation, P, (inches) LCULATED OUTPUT Alinor Total Design Peak Flow, Q (cfs)	1.7	22	0.7	0.8		1.0	0.8
Jesign Storm Return Period, T, (years) Dne-Hour Precipitation, P, (inches) LCULATED OUTPUT Alinor Total Design Peak Flow, Q (cfs) Agor Total Design Peak Flow, Q (cfs)	1.7 6.8	2.2 6.6	0.7	X		1.0 3.1	0.8
Jesign Storm Return Period, T, (years) Dne-Hour Precipitation, P ₁ (inches) 				0.8			
Jesign Storm Return Period, T, (years) Dne-Hour Precipitation, P ₁ (inches) 				0.8			
Jesign Storm Return Period, T, (years) Dne-Hour Precipitation, P, (inches) LCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Q _b (cfs) Major Flow Bypassed Downstream, Q _b (cfs)	6.8			0.8			2.1
Jesign Storm Return Period, T, (years) Dne-Hour Precipitation, P, (inches) LCULATED OUTPUT linor Total Design Peak Flow, Q (cfs) linor Flow Bypassed Downstream, Q_b (cfs) liajor Flow Bypassed Downstream, Q_b (cfs)	6.8	6.6 N/A	1.7 N/A	0.8 2.1		3.1 N/A	2.1 N/A
Directory Calculated) Analysis of Flow T CULATED OUTPUT Inor Total Design Peak Flow, Q (cfs) Iajor Total Design Peak Flow, Q (cfs) Iajor Flow Bypassed Downstream, Q ₆ (cfs) Iajor Flow Bypassed Downstream, Q ₆ (cfs) Iajor Storm (Calculated) Analysis of Flow T S	6.8 N/A	6.6 N/A N/A	1.7 N/A N/A	0.8 2.1 N/A N/A		3.1 N/A N/A	2.1 N/A N/A
Jesign Storm Return Period, T, (years) Dne-Hour Precipitation, P, (inches) CULATED OUTPUT finor Total Design Peak Flow, Q (cfs) finor Flow Bypassed Downstream, O ₆ (cfs) finor Storm (Calculated) Analysis of Flow T Soft Store Sto	6.8 N/A N/A N/A	6.6 N/A N/A N/A	1.7 NIA NIA NIA	0.8 2.1 N/A N/A N/A		3.1 N/A N/A N/A	2.1 N/A N/A N/A
Inc. Flow Period, T, (years) Inc. Hour Precipitation, P, (inches) Inc. Hour Precipitation, P, (inches) Inc. Flow DutPUT Infor Total Design Peak Flow, Q (cfs) Infor Flow Bypassed Downstream, Q ₆ (cfs) Infor Flow Bypassed Downstream, Q ₆ (cfs) Infor Storm (Calculated) Analysis of Flow T Cannel Flow Velocity, Vi Jannel Flow Velocity, Vi Tannel Flow Velocity, Vi	6.8 N/A N/A N/A N/A	6.6 N/A N/A N/A N/A	1.7 N/A N/A N/A N/A N/A	0.8 2.1 N/A N/A N/A N/A		3.1 N/A N/A N/A N/A	2.1 N/A N/A N/A N/A N/A
Ine-Hour Precipitation, P ₁ (inches) Ine-Hour Precipitation, P ₁ (inches) Ine-Hour Precipitation, P ₁ (inches) Inor Total Design Peak Flow, Q (cfs) Iajor Total Design Peak Flow, Q (cfs) Iajor Flow Bypassed Downstream, Q ₆ (cfs) Iajor Flow Bypassed Downstream, Q ₆ (cfs) Iajor Flow Bypassed Downstream, Q ₆ (cfs) Iajor Storm (Calculated) Analysis of Flow T Iajor Storm (Calculated) Analysis of Flow T Iajor Storm Velocity, Vi Iajor Tiour Velocity, Vi Iajor Tiour Jiajor Jiajo	6.8 N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A	1.7 N/A N/A N/A N/A N/A	0.8 2.1 N/A N/A N/A N/A N/A		3.1 N/A N/A N/A N/A N/A	2.1 N/A N/A N/A N/A N/A
esign Storm Return Period, T, (years) Ine-Hour Precipitation, P, (inches) CULATED OUTPUT linor Total Design Peak Flow, Q (cfs) linor Total Design Peak Flow, Q (cfs) linor Flow Bypassed Downstream, Q _b (cfs) linor Flow Bypassed Downstream, Q _b (cfs) linor Storm (Calculated) Analysis of Flow T verland Flow Velocity, Vi thannel Flow Velocity, Vi verland Flow Velocity, Vi verland Flow Time, Ti hannel Trave Time, Ti	6.8 N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A	1.7 N/A N/A N/A N/A N/A N/A N/A	0.8 2.1 N/A N/A N/A N/A N/A N/A N/A		3.1 N/A N/A N/A N/A N/A N/A N/A	2.1 N/A N/A N/A N/A N/A N/A
esign Storm Return Period, T, (years) ine-Hour Precipitation, P ₁ (inches) CULATED OUTPUT linor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Flow Bypassed Downstream, Q ₆ (cfs) lajor Flow Bypassed Downstream, Q ₆ (cfs) linor Storm (Calculated) Analysis of Flow T is verland Flow Velocity, Vi hannel Flow Velocity, Vi hannel Flow Velocity, Vi hannel Travel Time, Tt aclculated Time of Concentration, T ₆	6.8 N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A	1.7 N/A N/A N/A N/A N/A N/A N/A N/A	0.8 2.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A		3.1 N/A N/A N/A N/A N/A N/A N/A	2.1 N/A N/A N/A N/A N/A N/A N/A
besign Storm Return Period, T, (years) one-Hour Precipitation, P₁ (inches) CULATED OUTPUT linor Total Design Peak Flow, Q (cfs) lajor Flow Bypassed Downstream, Q₀ (cfs) linor Storm (Calculated) Analysis of Flow T by verland Flow Velocity, Vi Uperland Flow Velocity, Vi Uperland Flow Velocity, Vi Schannel Travel Time, Ti Channel Travel Time, Ti Channel Travel Time, To egional T₀ egional T₀	6.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	1.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.8 2.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A		3.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.1 N/A N/A N/A N/A N/A N/A N/A N/A
Storm Return Period, T, (years) Dine-Hour Precipitation, P, (inches) CULATED OUTPUT Inor Total Design Peak Flow, Q (cfs) Inor Flow Bypassed Downstream, Q ₆ (cfs) Inor Flow Bypassed Downstream, Q ₆ (cfs) Inor Storm (Calculated) Analysis of Flow T Vierland Flow Velocity, Vi Vierland Flow Velocity, Vi Viennel Trave Jime, Tt Jaculated Time of Concentration, T ₆ Recommended T ₆ Veerommed T ₆	6.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	1.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.8 2.1 		3.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.1 N/A N/A N/A N/A N/A N/A N/A N/A
ine-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) flor Flow Bypassed Downstream, Q ₆ (cfs) flor Flow Bypassed Downstream, Q ₆ (cfs) infor Storm (Calculated) Analysis of Flow T c_s Verland Flow Velocity, VI verland Flow Velocity, VI channel Flow Velocity, VI channel Travel Time, TI chanuel Travel Time, TI calculated Time of Concentration, T ₆ tegional T ₆ zeslected by User	6.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	1.7 N/A N/A N/A N/A N/A N/A N/A N/A	0.8 2.1 		3.1 N/A N/A N/A N/A N/A N/A N/A N/A	2.1 N/A N/A N/A N/A N/A N/A N/A N/A
Ine-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Inor Total Design Peak Flow, Q (cfs) Iajor Total Design Peak Flow, Q (cfs) Iajor Flow Bypassed Downstream, Q ₆ (cfs) Iajor Flow Bypassed Downstream, Q ₆ (cfs) Iajor Flow Bypassed Downstream, Q ₆ (cfs) Iajor Flow Uspassed Downstream, Q ₆ (cfs) Iajor Flow Uspassed Downstream, Q ₇ (cfs) Inor Storm (Calculated) Analysis of Flow T byperland Flow Velocity, VI Dverland Flow Velocity, VI Dverland Flow Velocity, VI Dverland Flow Velocity, VI Dverland Flow Time, TI Ananei Travel Time, TI Alaculated Time of Concentration, T ₆ tegoinal T ₆ tesommended T ₆ selected by User besign Rainfall Intensity, I	6.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	1.7 N/A N/A N/A N/A N/A N/A N/A N/A	0.8 2.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A		3.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.1 N/A N/A N/A N/A N/A N/A N/A N/A
Jesign Storm Return Period, T, (years) Dne-Hour Precipitation, P ₁ (inches) LCULATED OUTPUT Ainor Total Design Peak Flow, Q (cfs) Ainor Flow Bypassed Downstream, Q₆ (cfs) Ainor Storm (Calculated) Analysis of Flow T Diversion Calculated) Analysis of Flow T System Storm (Calculated) Analysis of Flow T Diversion Flow Velocity , VI Diverland Flow Velocity, VI Diverland Flow Velocity, VI Diverland Flow Velocity, VI Diverland Flow Time, Ti Channel Travel Time, Ti Calculated Time of Concentration, T _c Regional T _c Recommended T _c T _c selected by User	6.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	1.7 N/A N/A N/A N/A N/A N/A N/A N/A	0.8 2.1 		3.1 N/A N/A N/A N/A N/A N/A N/A N/A	2.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Jesign Storm Return Period, T, (years) Dne-Hour Precipitation, P1 (inches) CULATED OUTPUT Ainor Total Design Peak Flow, Q (cfs) Ajor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Flow Bypassed Downstream, Q ₆ (cfs) Alior Flow Bypassed Downstream, Q ₆ (cfs) Ainor Storm (Calculated) Analysis of Flow T Verland Flow Velocity, Vi Verland Flow Velocity, Vt Voerland Flow Time, Ti Channel Travel Time, Ti Saculated Time of Concentration, T _c Regional T _c Resemended U Ler Sesing Rainfall Intensity, I Jaloutated Local Peak Flow, Q _p	6.8 N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	1.7 N/A N/A N/A N/A N/A N/A N/A N/A	0.8 2.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A		3.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.1 N/A N/A N/A N/A N/A N/A N/A N/A
besign Storm Return Period, T, (years) one-Hour Precipitation, P₁ (inches) CULATED OUTPUT tinor Total Design Peak Flow, Q (cfs) tajor Total Design Peak Flow, Q (cfs) tinor Flow Bypassed Downstream, Q₀ (cfs) tinor Storm (Calculated) Analysis of Flow T Verland Flow Velocity, Vi Voerland Flow Velocity, Vt Voerland Flow Time, Ti channel Travel Time, Ti channel C_c tegional T_c tegional T_c tegional T_c tegional Law Tain Tain tegional T_c tegional Law Tain Tain	6.8 N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	1.7 N/A N/A N/A N/A N/A N/A N/A N/A	0.8 2.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A		3.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.1 N/A N/A N/A N/A N/A N/A N/A N/A
esign Storm Return Period, T, (years) ine-Hour Precipitation, P ₁ (inches) CULATED OUTPUT tinor Total Design Peak Flow, Q (cfs) tajor Total Design Peak Flow, Q (cfs) tajor Flow Bypassed Downstream, Q ₆ (cfs) tajor Flow Velocity, Vi yerland Flow Velocity, Vi hannel Flow Velocity, Vi yerland Flow Time, Ti alculated Time of Concentration, T _c tajor and the flow transition, T _c tajor and the flow the flow flow flow flow flow flow flow flow	6.8 N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	1.7 N/A N/A N/A N/A N/A N/A N/A N/A	0.8 2.1 		3.1 N/A N/A N/A N/A N/A N/A N/A N/A	2.1 N/A N/A N/A N/A N/A N/A N/A N/A
esign Storm Return Period, T, (years) ine-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Inor Total Design Peak Flow, Q (cfs) Iajor Total Design Peak Flow, Q (cfs) Iajor Flow Bypassed Downstream, Q ₆ (cfs) Iajor Flow Bypassed Downstream, Q ₆ (cfs) Iajor Flow Bypassed Downstream, Q ₆ (cfs) Iajor Storm (Calculated) Analysis of Flow T is is verland Flow Velocity, Vi hannel Flow Velocity, Vi hannel Flow Velocity, Vi begional T _c tecommended T _c selected by User tesign Rainfail Intensity, I alculated Time, To alculated Time, To alculated Time of Concentration, T _c tecommended T _c selected by User tesign Rainfail Intensity, I alculated Local Peak Flow, Q _p Iajor Storm (Calculated) Analysis of Flow T is verland Flow Velocity, Vi	6.8	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	1.7 N/A N/A N/A N/A N/A N/A N/A N/A	0.8 2.1 2.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A		3.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.1 N/A N/A N/A N/A N/A N/A N/A N/A
besign Storm Return Period, T, (years) one-Hour Precipitation, P₁ (inches) cCULATED OUTPUT tinor Total Design Peak Flow, Q (cfs) tajor Flow Bypassed Downstream, Q _b (cfs) tajor Flow Bypassed Downstream, Q _b (cfs) tinor Storm (Calculated) Analysis of Flow T cs verland Flow Velocity, Vt voerland Flow Time, Ti channel Flow Velocity, Vt voerland Flow Go Concentration, T _c tecommended T _c cs selected by User tesign Rainfall Intensity, I calculated Local Peak Flow, Q _c talor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi verland Flow Velocity, Vi	6.8 N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A	1.7 N/A	0.8 2.1 2.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A		3.1 N/A N/A N/A N/A N/A N/A N/A N/A	2.1 N/A N/A N/A N/A N/A N/A N/A N/A
lesign Storm Return Period, T, (years) me-Hour Precipitation, P ₁ (inches) .CULATED OUTPUT linor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) linor Flow Bypassed Downstream, Q ₆ (cfs) linor Flow Bypassed Downstream, Q ₆ (cfs) linor Storm (Calculated) Analysis of Flow T	6.8	6.6 N/A N/A N/A N/A N/A N/A N/A N/A	1.7 N/A	0.8 2.1 		3.1 N/A N/A N/A N/A N/A N/A N/A N/A	2.1 N/A N/A N/A N/A N/A N/A N/A N/A
Design Storm Return Period, T, (years) Dne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Alinor Total Design Peak Flow, Q (cfs) fajor Total Design Peak Flow, Q (cfs) faior Flow Bypassed Downstream, Q ₆ (cfs) Alinor Storm (Calculated) Analysis of Flow T Channel Flow Velocity, Vi Channel Flow Velocity, Vi Shannel Flow Time, Ti Saculated Time of Concentration, T _c Selected by User Selected by Selected by Selec	6.8 NIA NIA NIA NIA NIA NIA NIA NIA NIA NI	6.6 N/A N/A N/A N/A N/A N/A N/A N/A	1.7 N/A	0.8 2.1 		3.1 N/A N/A N/A N/A N/A N/A N/A N/A	2.1 N/A
Ine-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Inor Total Design Peak Flow, Q (cfs) Iajor Total Design Peak Flow, Q (cfs) Iajor Total Design Peak Flow, Q (cfs) Iajor Total Design Peak Flow, Q (cfs) Inor Flow Bypassed Downstream, Q ₀ (cfs) Iajor Flow Bypassed Downstream, Q ₀ (cfs) Inor Storm (Calculated) Analysis of Flow T S S Verland Flow Velocity, VI Verland Flow Velocity, VI Verland Flow User S Selected by User Selected Dy User	6.8	6.6 N/A N/A N/A N/A N/A N/A N/A N/A	1.7 N/A	0.8 2.1 N/A N/A		3.1 N/A	2.1 N/A
	6.8	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	1.7 N/A	0.8 2.1 		3.1 N/A	2.1 N/A
besign Storm Return Period, T, (years) bre-Hour Precipitation, P₁ (inches) cCULATED OUTPUT tinor Total Design Peak Flow, Q (cfs) tajor Total Design Peak Flow, Q (cfs) tinor Flow Bypassed Downstream, Q _b (cfs) tinor Storm (Calculated) Analysis of Flow T cs Systematic Travel Time, Ti thannel Flow Velocity, Vt Vyerland Flow Time, Ti taculated Time of Concentration, Tc tecommended Tc cs tecommended Tc selected by User teal Calculated Local Peak Flow, Qc taior Storm (Calculated) Analysis of Flow T typerland Flow Velocity, Vt typerland Flow Time, Ti tannel Travel Time, Ti tacoulated Time of Concentration, Tc	6.8 NIA NIA NIA NIA NIA NIA NIA NIA NIA NI	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	1.7 N/A N/A	0.8 0.8 2.1 N/A N/A N/A N/A N/A N/A N/A N/A		3.1 N/A	2.1 N/A
Design Storm Return Period, T, (years) Dne-Hour Precipitation, P ₁ (inches) LCULATED OUTPUT Winor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Q _b (cfs) Minor Flow Bypassed Downstream, Q _b (cfs) Minor Storm (Calculated) Analysis of Flow T Stannel Flow Velocity, Vi Drannel Flow Velocity, Vi Drannel Travel Time, Ti Channel Travel Time, Ti Channel Travel Time, Ti Channel Travel Time, Ti Channel Tavel Time, O Concentration, T _c Regional T _c Recommended T _c S ₅ Dverland Flow Velocity, Vi Dranta Flow Velocity, Vi Design Rainfall Intensity, I Calculated Local Peak Flow, Q _p Major Storm (Calculated) Analysis of Flow T C ₅ Dverland Flow Velocity, Vi Drannel Flow Velocity, Vi Drannel Flow Velocity, Vi Drannel Flow Velocity, Vi Channel Flow Velocity, Vi Channel Travel Time, Ti Channel Travel Time, Ti	6.8	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	1.7 N/A N/A	0.8 0.8 2.1 N/A N/A N/A N/A N/A N/A N/A N/A		3.1 N/A N/A	2.1 N/A N/A
Design Storm Return Period, Tr, (years) Dne-Hour Precipitation, P ₁ (inches) LCULATED OUTPUT Winor Total Design Peak Flow, Q (cfs) Wajor Total Design Peak Flow, Q (cfs) Winor Flow Bypassed Downstream, Q _b (cfs) Winor Flow Bypassed Downstream, Q _b (cfs) Winor Storm (Calculated) Analysis of Flow T C S Durland Flow Velocity, Vi Doral Travel Time, Ti Channel Travel Time, Ti Calculated Time of Concentration, T _c Recommended T _c T _c S Design Rainfall Intensity, 1 Calculated Local Peak Flow, Q _p Wajor Storm (Calculated) Analysis of Flow T C S Durland Flow Velocity, Vi Dorald Flow Velocity, Vi Design Rainfall Intensity, 1 Calculated Local Peak Flow, Q _p Wajor Storm (Calculated) Analysis of Flow T C S Durland Flow Velocity, Vi Durland Flow Velocity, Vi Durland Flow Velocity, Vi Denannel Flow Velocity, Vi Durland Flow Velocity, Vi Durland Flow Velocity, Vi Durland Flow Time, Ti Calculated Time of Concentration, T _c Recommended T _c	6.8 NIA NIA NIA NIA NIA NIA NIA NIA NIA NI	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	1.7 N/A N/A	0.8 0.8 2.1 N/A N/A N/A N/A N/A N/A N/A N/A		3.1 N/A	2.1 N/A

INLET MANAGEMENT

LET NAME	Cor2 154Av&Ivy SBas2A	Cor3 154Av&Ivy SBas2A	Cor1 154Pl&Jsmn DP10	Cor2 154Pl&Jsmn DP10	Cor3 154Pl&Jsmn DP10	Cor1 155Pl&KrmrSt DP15
te Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
et Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET
draulic Condition	On Grade					
et Type						
R-DEFINED INPUT ser-Defined Design Flows						
nor Q _{Known} (cfs)	0.8	0.8	2.0	2.0	2.0	2.4
ajor Q _{Known} (cfs)	2.1	2.1	5.9	5.9	5.9	7.1
pass (Carry-Over) Flow from Upstream						
aceive Bypass Flow from:	No Bypass Flow Received					
nor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
ajor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
atershed Profile /erland Slope (ft/ft) /erland Length (ft)						
nannel Slope (ft/ft)						
nannel Length (ft)						
inor Storm Rainfall Input esign Storm Return Period, Tr (years) ne-Hour Precipitation, Pt (inches)						
ajor Storm Rainfall Input esign Storm Return Period, Tr (years)						
ne-Hour Precipitation, P ₁ (inches)						
ie-nour rieupitation, r ₁ (inches)						

Minor Total Design Peak Flow, Q (cfs)	0.8	0.8	2.0	2.0	2.0	2.4
Major Total Design Peak Flow, Q (cfs)	2.1	2.1	5.9	5.9	5.9	7.1
Minor Flow Bypassed Downstream, Q _b (cfs)						
Major Flow Bypassed Downstream, Q _b (cfs)						
· · · · · · · · · · · · · · · · · · ·						
Minor Storm (Calculated) Analysis of Flow T						
C	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A
Major Storm (Calculated) Analysis of Flow T						
C	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Q.	N/A	N/A	N/A	N/A	N/A	N/A

INLET MANAGEMENT

LET NAME	Cor2 155Pl&KrmrSt DP15	Cor3 155Pl&KrmrSt DP15	Cor1 155PI&LydnSt DP17	Cor2 155PI&LydnSt DP17	Cor3 155PI&LydnSt DP17	Cor1 154Av&LydSt SBas208
te Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
et Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET
/draulic Condition	On Grade					
et Type						
R-DEFINED INPUT						
ser-Defined Design Flows						
inor Q _{Known} (cfs)	2.4	2.4	2.4	2.4	2.4	1.6
ajor Q _{Known} (cfs)	7.1	7.1	6.9	6.9	6.9	4.2
pass (Carry-Over) Flow from Upstream						
eceive Bypass Flow from:	No Bypass Flow Received	User-Defined				
inor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
ajor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
atershed Characteristics ubcatchment Area (acres)			1			
arcent Impervious						
RCS Soil Type			-			-
atershed Profile verland Slope (ft/ft) verland Length (ft)						
nannel Slope (ft/ft)						
nannel Length (ft)						
inor Storm Rainfall Input esign Storm Return Period, T, (years)			1			1
ne-Hour Precipitation, P ₁ (inches)						
ajor Storm Rainfall Input						
esign Storm Return Period, T _r (years)						
ne-Hour Precipitation, P₁ (inches)						
ic-nour recipitation, r (inches)						

Minor Total Design Peak Flow, Q (cfs)	2.4	2.4	2.4	2.4	2.4	1.6
Major Total Design Peak Flow, Q (cfs)	7.1	7.1	6.9	6.9	6.9	4.2
Inor Flow Bypassed Downstream, Q _b (cfs)						
Major Flow Bypassed Downstream, Qb (cfs)						
linor Storm (Calculated) Analysis of Flow T						
	N/A	N/A	N/A	N/A	N/A	N/A
5	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
hannel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
legional T _c	N/A	N/A	N/A	N/A	N/A	N/A
ecommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
selected by User	N/A	N/A	N/A	N/A	N/A	N/A
esign Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
alculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A
lajor Storm (Calculated) Analysis of Flow T						
	N/A	N/A	N/A	N/A	N/A	N/A
5	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
hannel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
hannel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
alculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
egional T _c	N/A	N/A	N/A	N/A	N/A	N/A
ecommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
selected by User	N/A	N/A	N/A	N/A	N/A	N/A
esign Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
alculated Local Peak Flow, Qn	N/A	N/A	N/A	N/A	N/A	N/A

INLET MANAGEMENT

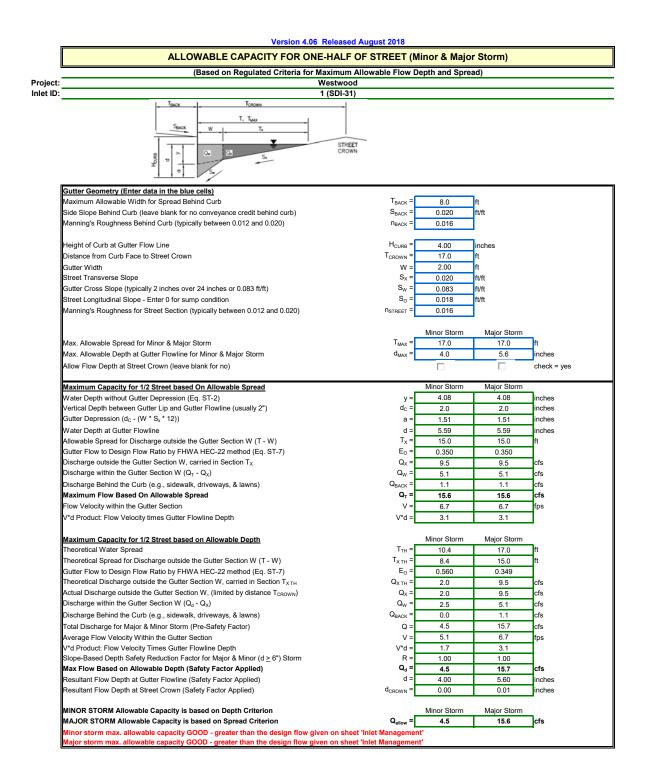
Worksheet Protected

INLET NAME	Cor2 154Av&LydSt SBas20B	Cor3 154Av&LydSt SBas20B	Cor1 Mon&154Av SBas30B	Cor2 Mon&154Av SBas30B	Cor3 Mon&154Av SBas30B	Cor1 156Av&Mon SBas30A
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade	On Grade	On Grade	On Grade
Inlet Type						

USER-DEFINED INPUT

linor Q _{Known} (cfs)	1.6	1.6	4.1	4.1	4.1	1.5
ajor Q _{Known} (cfs)	4.2	4.2	13.1	13.1	13.1	4.8
	·			•		•
Sypass (Carry-Over) Flow from Upstream						
Receive Bypass Flow from:	User-Defined	User-Defined	No Bypass Flow Received			
linor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
lajor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
latershed Characteristics						
Subcatchment Area (acres)						
Percent Impervious						
RCS Soil Type						
Vatershed Profile						
Overland Slope (ft/ft)						
overland Length (ft)						
Channel Slope (ft/ft)						
Channel Length (ft)						
				•	-	-
linor Storm Rainfall Input						
esign Storm Return Period, Tr (years)						
Dne-Hour Precipitation, P1 (inches)						
· · · · · ·			•	•		•
ajor Storm Rainfall Input						
esign Storm Return Period, T _r (years) Ine-Hour Precipitation, P ₁ (inches)						

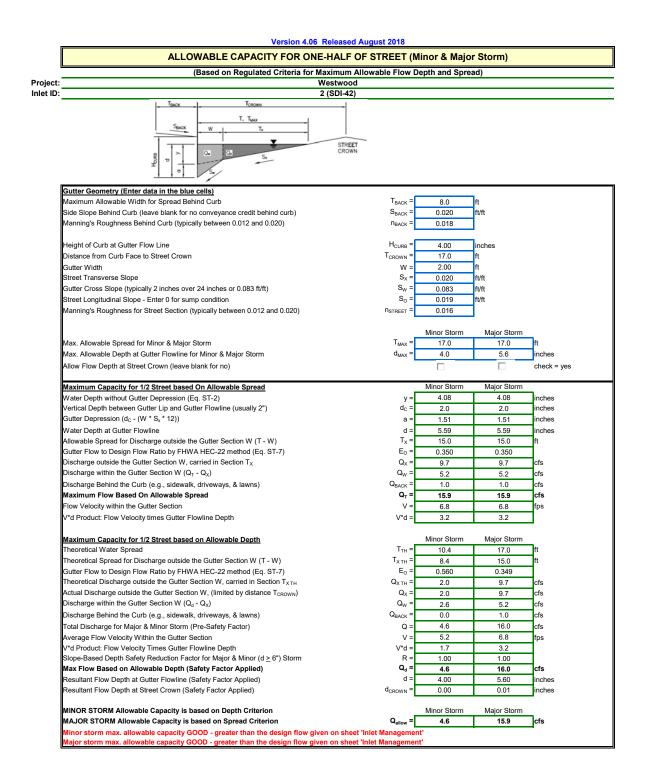
CALCULATED OUTPUT

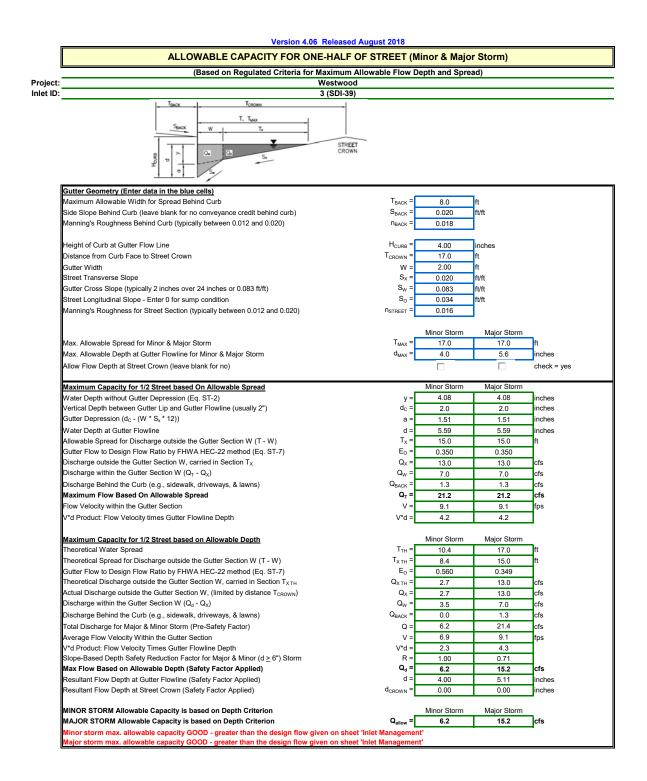

Minor Total Design Peak Flow, Q (cfs)	1.6	1.6	4.1	4.1	4.1	1.5
Major Total Design Peak Flow, Q (cfs)	4.2	4.2	13.1	13.1	13.1	4.8
Anor Flow Bypassed Downstream, Qb (cfs)						
lajor Flow Bypassed Downstream, Qb (cfs)						
inor Storm (Calculated) Analysis of Flow T						
	N/A	N/A	N/A	N/A	N/A	N/A
5	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
nannel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
nannel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
alculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
egional T _c	N/A	N/A	N/A	N/A	N/A	N/A
commended T _c	N/A	N/A	N/A	N/A	N/A	N/A
selected by User	N/A	N/A	N/A	N/A	N/A	N/A
esign Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
alculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A
ajor Storm (Calculated) Analysis of Flow T						
	N/A	N/A	N/A	N/A	N/A	N/A
	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
nannel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
hannel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
alculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
egional T _c	N/A	N/A	N/A	N/A	N/A	N/A
ecommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
selected by User	N/A	N/A	N/A	N/A	N/A	N/A
esign Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
alculated Local Peak Flow, Q.	N/A	N/A	N/A	N/A	N/A	N/A

Appendix B – Hydraulic Computations Curb Inlet Sizing

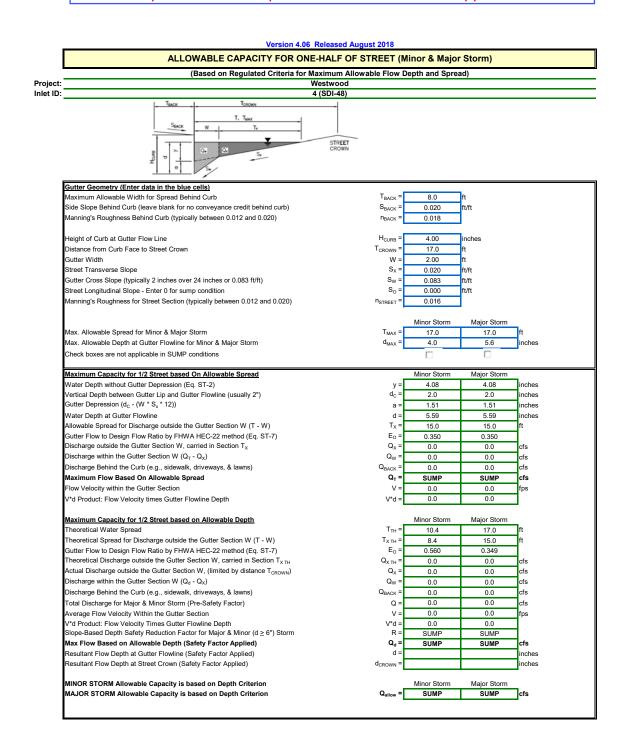
Manning's n of 0.016 has been used for all crown to curb sections per Chapter 7 of the USDCM Vol.7, Page 7-7.

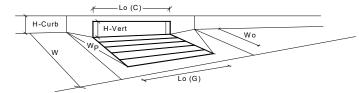
Manning's n of 0.018 has been used for all local street sidewalks as requested by the City of Thornton.


Manning's n of 0.02 has been used for all collector sidewalks to account for lawns and trees. This is the highest value recommended per UD-Inlet spreadsheet for manning's n behind curb.

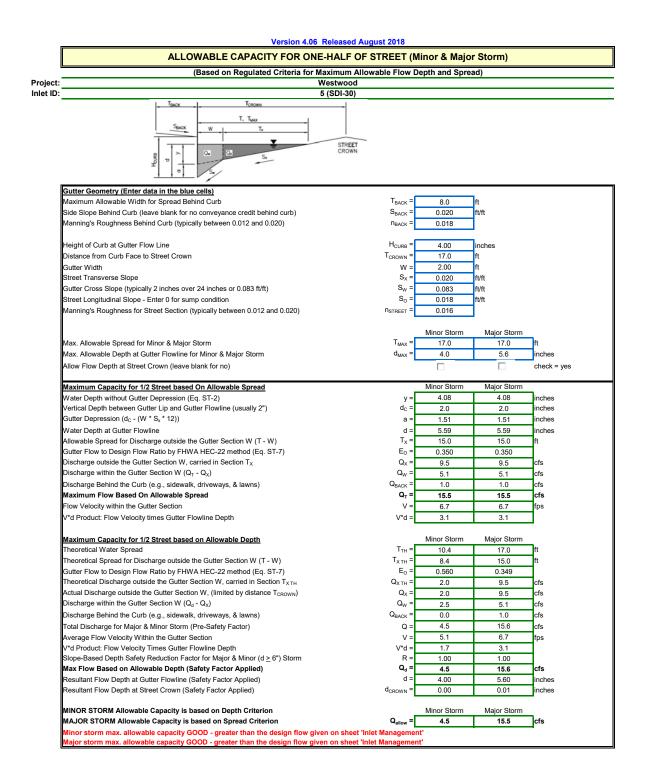

Design Information (Input)		Μ	IINOR	MAJOR	
Type of Inlet	urb Opening 📃 Ty	pe = CE	OT Type R	Curb Opening	ו
Local Depression (additional to continuous gutter depress	on 'a') a _{LO}	CAL =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening		No =	1	1	1
Length of a Single Unit Inlet (Grate or Curb Opening)		L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter \	/idth)	N _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. valu	e = 0.5) C	-G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical r	in. value = 0.1) C	-C =	0.10	0.10	1
Street Hydraulics: OK - Q < Allowable Street Capacity		M	IINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet	lanagement)	Q _o =	1.3	3.6	cfs
Water Spread Width		Т =	5.4	9.3	ft
Water Depth at Flowline (outside of local depression)		d =	2.8	3.8	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CRO}	wn =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow			0.866	0.613	1
Discharge outside the Gutter Section W, carried in Section	1 T _x	Q _x =	0.2	1.4	cfs
Discharge within the Gutter Section W		Q _w =	1.1	2.2	cfs
Discharge Behind the Curb Face			0.0	0.0	cfs
Flow Area within the Gutter Section W			0.30	0.46	sq ft
Velocity within the Gutter Section W		/ _w =	3.7	4.8	fps
Water Depth for Design Condition		CAL =	7.8	8.8	inches
Grate Analysis (Calculated)	-10		INOR	MAJOR	
Total Length of Inlet Grate Opening			N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GR}		N/A	N/A	in a second s
Under No-Clogging Condition	-0-GK		INOR	MAJOR	1
Minimum Velocity Where Grate Splash-Over Begins			N/A	N/A	fps
Interception Rate of Frontal Flow			N/A	N/A	ips
Interception Rate of Side Flow			N/A	N/A	4
Interception Capacity			N/A N/A	N/A N/A	cfs
Under Clogging Condition			INOR	MAJOR	013
	GrateCo	_	N/A	N/A	-
Clogging Coefficient for Multiple-unit Grate Inlet					4
Clogging Factor for Multiple-unit Grate Inlet	GrateC	-	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet			N/A	N/A	ft for a
Minimum Velocity Where Grate Splash-Over Begins			N/A	N/A	fps
Interception Rate of Frontal Flow			N/A	N/A	-
Interception Rate of Side Flow			N/A	N/A	
Actual Interception Capacity			N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening	or next a/s inlet)		N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)			IINOR	MAJOR	n
Equivalent Slope S _e (based on grate carry-over)			0.255	0.186	ft/ft
Required Length L _T to Have 100% Interception			4.33	8.40	ft
Under No-Clogging Condition			IINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimu	m of L, L _T)	L =	4.33	5.00	ft
Interception Capacity		Q _i =	1.3	2.9	cfs
Under Clogging Condition		M	IINOR	MAJOR	_
Clogging Coefficient	CurbCo	oef =	1.00	1.00	
Clogging Factor for Multiple-unit Curb Opening or Slotted	Inlet CurbC	og =	0.10	0.10	
Effective (Unclogged) Length		L _e =	4.50	4.50	ft
Actual Interception Capacity		Q _a =	1.3	2.7	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a		Q _b =	0.0	0.9	cfs
Summary		M	IINOR	MAJOR	
Total Inlet Interception Capacity		Q =	1.3	2.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)		Q _b =	0.0	0.9	cfs
		;% =	100	75	%

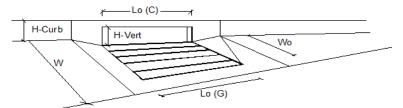
Design Information (Input)			MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to contin	uous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Gra	ate or Curb Opening)	No =	1	1	1
Length of a Single Unit Inlet (Grate or	Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be grea	ter than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Gra	te (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curt	ס Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	1
Street Hydraulics: OK - Q < Allowat	ble Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street	(from Sheet Inlet Management)	Q _o =	2.7	7.6	cfs
Water Spread Width		T =	8.0	12.8	ft
Water Depth at Flowline (outside of lo	cal depression)	d =	3.4	4.6	inches
Water Depth at Street Crown (or at T _M	лах)	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow		E ₀ =	0.688	0.462	
Discharge outside the Gutter Section	W, carried in Section T _x	Q _x =	0.8	4.1	cfs
Discharge within the Gutter Section W	I	Q _w =	1.9	3.5	cfs
Discharge Behind the Curb Face		Q _{BACK} =	0.0	0.1	cfs
Flow Area within the Gutter Section W	I	A _W =	0.41	0.60	sq ft
Velocity within the Gutter Section W		 V _W =	4.6	5.8	fps
Water Depth for Design Condition		d _{LOCAL} =	8.4	9.6	inches
Grate Analysis (Calculated)			MINOR	MAJOR	•
Total Length of Inlet Grate Opening		L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow		E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		0-GIVITE	MINOR	MAJOR	_
Minimum Velocity Where Grate Splas	h-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	.00
Interception Rate of Side Flow		R _x =	N/A	N/A	-
Interception Capacity		Q _i =	N/A	N/A	cfs
Under Clogging Condition		4	MINOR	MAJOR	0.0
Clogging Coefficient for Multiple-unit	Grate Inlet	GrateCoef =	N/A	N/A	٦
Clogging Factor for Multiple-unit Grate		GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multip		L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splas		V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	n-over begins	R _f =	N/A	N/A	ips
Interception Rate of Side Flow		R _x =	N/A	N/A	-
Actual Interception Capacity		$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be appl	ied to curb opening or peyt d/s inlet)	Q _b =	N/A	N/A N/A	cfs
Curb or Slotted Inlet Opening Analy	· · · ·	æ _b –	MINOR	MAJOR	013
		S. =	0.206	0.145	ft/ft
Equivalent Slope Se (based on grate of					ft ft
Required Length L _T to Have 100% Inte	arception	L _T =	6.94	13.75	π
Under No-Clogging Condition		. г	MINOR	MAJOR	7.
Effective Length of Curb Opening or S	Notted inlet (minimum of L, L_T)	L=	6.94	10.00	ft
Interception Capacity		$Q_i =$	2.7	6.8	cfs
Under Clogging Condition			MINOR	MAJOR	-
Clogging Coefficient		CurbCoef =	1.25	1.25	4
Clogging Factor for Multiple-unit Curb	Opening or Slotted Inlet	CurbClog =	0.06	0.06	4
Effective (Unclogged) Length		L _e =	8.75	8.75	ft
Actual Interception Capacity		Q _a =	2.7	6.6	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a		Q _b =	0.0	1.0	cfs
Summary		-	MINOR	MAJOR	_
Total Inlet Interception Capacity		Q =	2.7	6.6	cfs
Total Inlet Carry-Over Flow (flow by	/passing inlet)	Q _b =	0.0	1.0	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	87	%

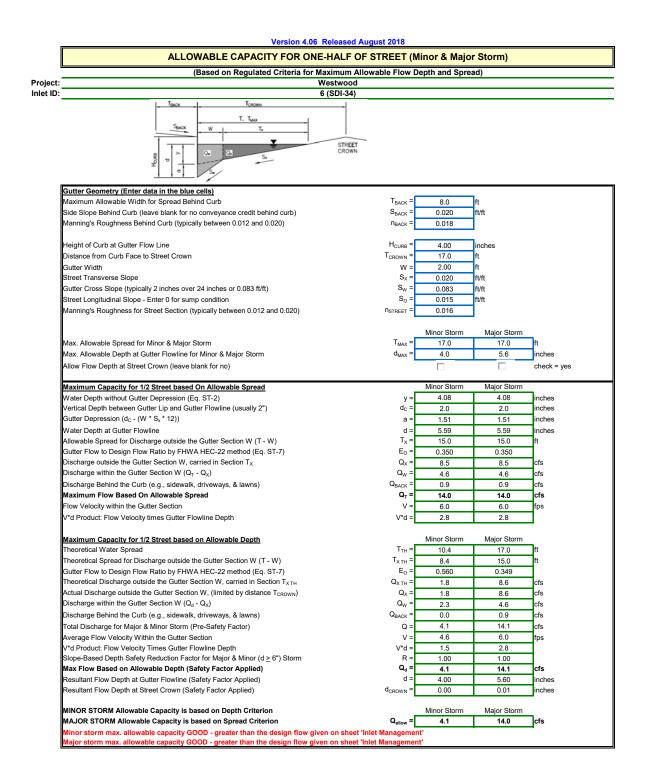


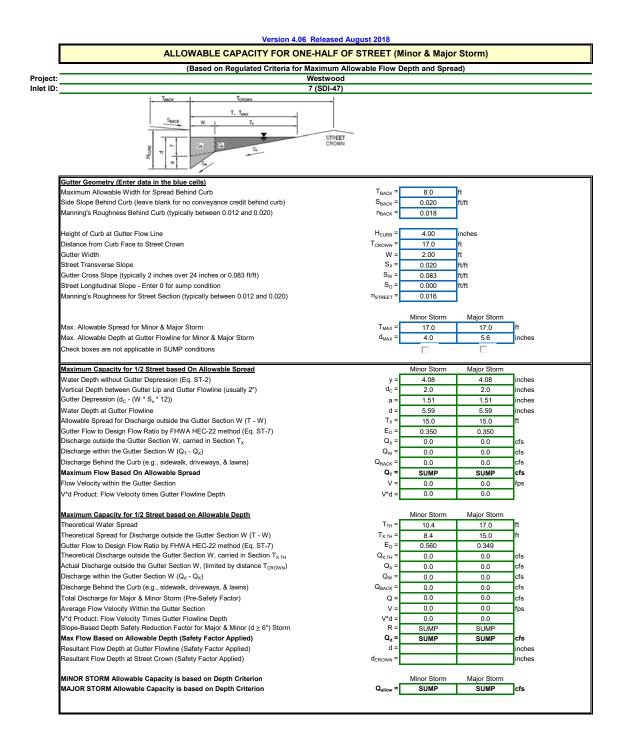


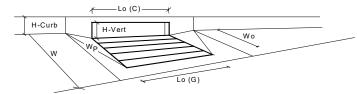
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	1
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q _o =	1.7	5.0	cfs
Water Spread Width	Т =	5.2	9.4	ft
Water Depth at Flowline (outside of local depression)	d =	2.8	3.8	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E., =	0.876	0.609	
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	0.2	2.0	cfs
Discharge within the Gutter Section W	Q _w =	1.5	3.0	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.29	0.46	sq ft
Velocity within the Gutter Section W	V _w =	5.1	6.6	fps
Water Depth for Design Condition	d _{LOCAL} =	7.8	8.8	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	-
Under No-Clogging Condition	-0-GRATE	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	195
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	Q -	MINOR	MAJOR	010
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	103
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q_0-Q_a (to be applied to curb opening or next d/s inlet)	Q _a =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	α _b –	MINOR	MAJOR	CIS
	с. –Г			0.0
Equivalent Slope Se (based on grate carry-over)	S _e =	0.258	0.185	ft/ft
Required Length L _T to Have 100% Interception	L _T =	5.12	10.33	ft
Under No-Clogging Condition	. г	MINOR	MAJOR	٦.
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L =	5.00	5.00	ft
Interception Capacity	Q _i =	1.7	3.5	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.00	1.00	4
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	4
Effective (Unclogged) Length	L _e =	4.50	4.50	ft
Actual Interception Capacity	Q _a =	1.7	3.2	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	1.8	cfs
Summary	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	1.7	3.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.8	cfs
Capture Percentage = Q _a /Q _o =	C% =	98	64	%

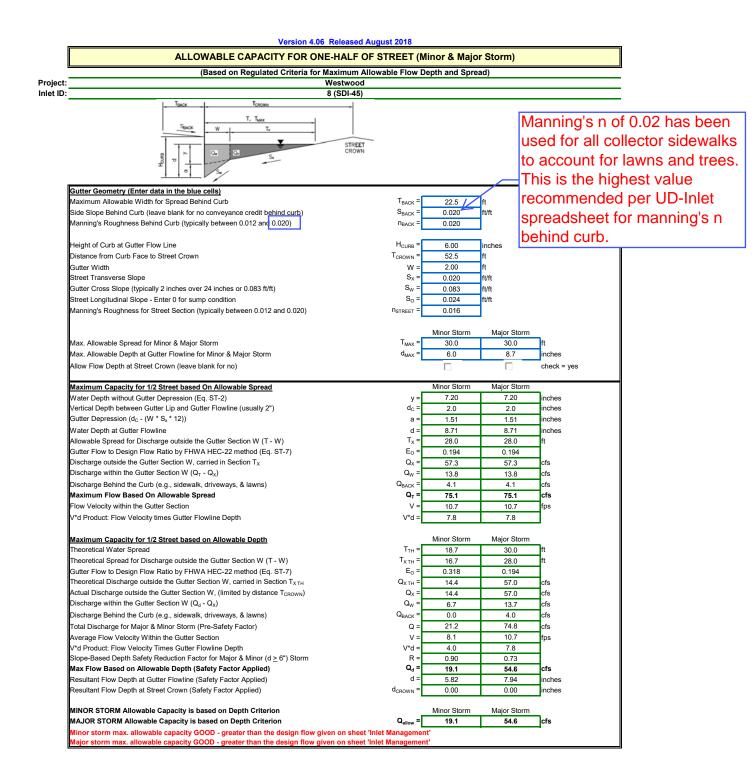

Sump Emergency Overflow Weir Section Analyses for all sump inlets have been provided as a separate section to follow in Appendix B.

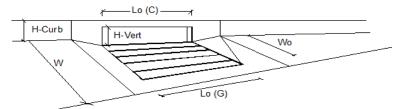

Version 4.06 Released August 2018

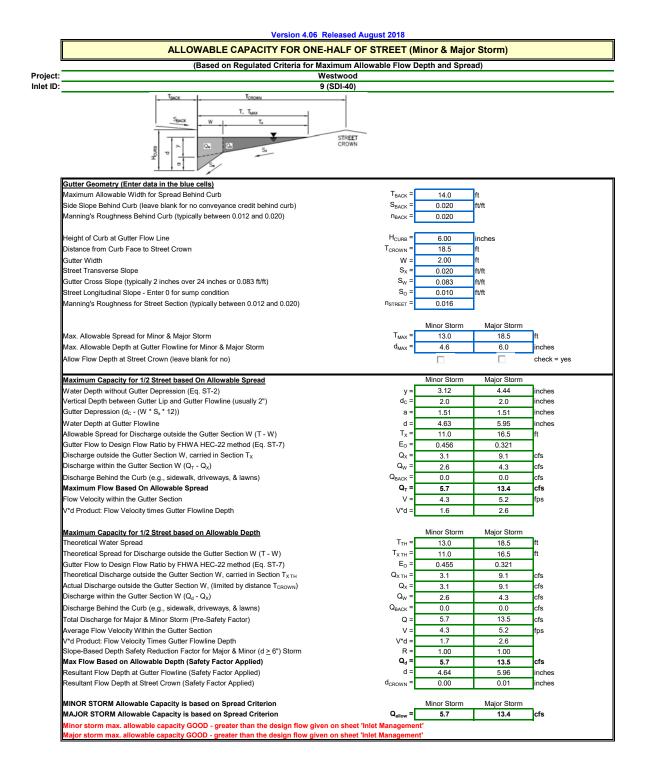

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	5.00	5.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.0	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
- Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	-
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	-
Curb Opening Information	00 (0) -	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
	-			
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	_
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	4
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	L. L.	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	Horate	MINOR	MAJOR	010
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	7
Clogging Factor for Multiple Units	Clog =	0.06	0.06	-
Curb Opening as a Weir (based on Modified HEC22 Method)	city -	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	2.6	7.3	cfs
Interception with Clogging	Q _{wa} =	2.5	6.9	cfs
1 00 0	Giwa –	MINOR	MAJOR	cis
Curb Opening as an Orifice (based on Modified HEC22 Method)	Q _{oi} =	19.5	21.8	- 4
Interception without Clogging				cfs
Interception with Clogging	Q _{os} =	18.3	20.5	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	٦.
Interception without Clogging	Q _{mi} =	6.7	11.8	cfs
Interception with Clogging	Q _{ma} =	6.3	11.0	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	2.5	6.9	cfs
Resultant Street Conditions	_	MINOR	MAJOR	
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	10.4	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	7.
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.17	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.38	0.53	_
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	0.91	_
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.5	6.9	cfs
	Q PEAK REQUIRED =	1.5	6.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	✓ PEAK REQUIRED =	1.0	C.0	015


Design Information (Input)		MINOR	MAJOR	1
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a')		5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	a _{LOCAL} = No =	1	1	incries
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.3)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < Allowable Street Capacity'	0 _f -0 -	MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	2.9	9.4	cfs
Water Spread Width	чо – Т =	8.4	14.1	ft
Water Depth at Flowline (outside of local depression)	d =	3.5	4.9	inches
Water Depth at Street Crown (or at T_{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.664	0.422	mones
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	1.0	5.3	cfs
Discharge within the Gutter Section W	Q _w =	1.0	3.9	cfs
Discharge Behind the Curb Face		0.0	0.2	cfs
Flow Area within the Gutter Section W	Q _{BACK} = A _W =	0.0	0.2	sq ft
Velocity within the Gutter Section W	A _W = V _W =	4.6	6.0	fps
Water Depth for Design Condition		8.5	9.9	inches
	d _{LOCAL} =			incries
Grate Analysis (Calculated)	F	MINOR	MAJOR	4
Total Length of Inlet Grate Opening		N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	٦.
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	_
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	-	MINOR	MAJOR	_
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.200	0.135	ft/ft
Required Length L_T to Have 100% Interception	L _T =	7.28	15.73	ft
Under No-Clogging Condition	-	MINOR	MAJOR	_
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	7.28	10.00	ft
Interception Capacity	Q _i =	2.9	7.7	cfs
Under Clogging Condition	-	MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	2.9	7.5	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	1.9	cfs
Summary	•	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.9	7.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.9	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	79	%
	, .			

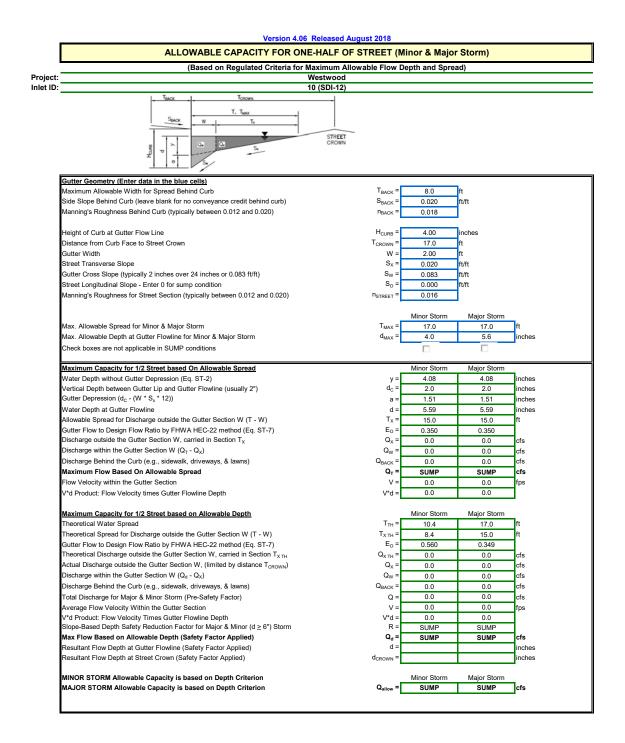



Design Information (Input)		MINOR	MAJOR]
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W. =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	2.4	8.7	cfs
Water Spread Width	Т=	8.1	14.3	ft
Water Depth at Flowline (outside of local depression)	d =	3.4	4.9	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E., =	0.685	0.417	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.8	5.0	cfs
Discharge within the Gutter Section W	Q _w =	1.6	3.6	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.2	cfs
Flow Area within the Gutter Section W	A _W =	0.41	0.66	sq ft
Velocity within the Gutter Section W	V _W =	4.0	5.4	fps
Water Depth for Design Condition	d _{LOCAL} =	8.4	9.9	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	0.010112	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	190
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = $Q_0 - Q_0$ (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.206	0.133	ft/ft
Required Length L_T to Have 100% Interception	-υ L _T =	6.44	15.03	ft
Under No-Clogging Condition	- L	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	6.44	10.00	ft
Interception Capacity	Qi =	2.4	7.3	cfs
	G -	Z.4 MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.25	1.25	ר I
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	2.4	7.1	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	Q _b =	0.0	1.6	cfs
Summary		MINOR	MAJOR	010
Total Inlet Interception Capacity	Q =	2.4	MAJOR 7.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q = Q _b =	0.0	1.6	cfs
Capture Percentage = Q ₂ /Q ₀ =	с ₆ = С% =	100	81	%
	0 /0 -	100	01	/0

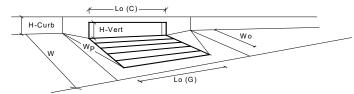

Version 4.06 Released August 2018


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	5.00	5.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.0	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	-
Grate Flow Analysis (Calculated)	-0(-)	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	- wa	MINOR	MAJOR	0.0
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	tua	MINOR	MAJOR	0.0
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	Grate	MINOR	MAJOR	613
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	7
Clogging Factor for Multiple Units	Clog =	0.06	0.06	
Curb Opening as a Weir (based on Modified HEC22 Method)	olog =	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	2.6	7.3	cfs
Interception with Clogging	Q _{wa} =	2.5	6.9	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	- wa	MINOR	MAJOR	0.0
Interception without Clogging	Q _{oi} =	19.5	21.8	cfs
Interception with Clogging	Q _{oa} =	18.3	20.5	cfs
Curb Opening Capacity as Mixed Flow	-04	MINOR	MAJOR	0.0
Interception without Clogging	Q _{mi} =	6.7	11.8	cfs
Interception without clogging	Q _{ma} =	6.3	11.0	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	2.5	6.9	cfs
Resultant Street Conditions	≪Curb [−]	MINOR	MAJOR	0.0
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	L = T =	10.00	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
resolution row Depart at Offeet Orown	GOROWN -	0.0	0.0	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.17	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.38	0.53	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	0.91	-
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
	Giald			
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.5	MAJOR 6.9	cfs

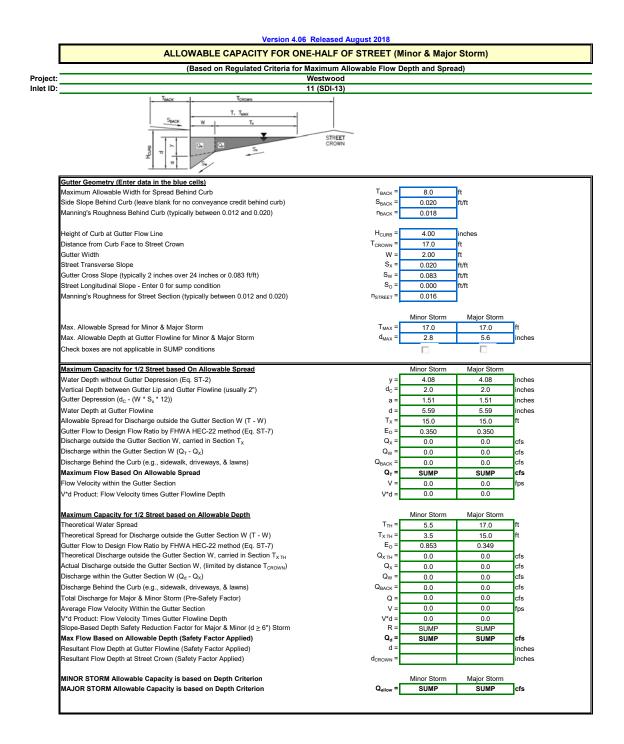
Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb	Opening Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression	a') a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Widt	1) W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value =	0.5) C _r -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min.	value = 0.1) C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Man	agement) Q _o =	0.9	2.1	cfs
Water Spread Width	T =	3.7	6.6	ft
Water Depth at Flowline (outside of local depression)	d =	2.4	3.1	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.966	0.780	
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	0.0	0.5	cfs
Discharge within the Gutter Section W	Q _w =	0.9	1.6	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.23	0.35	sq ft
Velocity within the Gutter Section W	V _W =	3.7	4.7	fps
Water Depth for Design Condition	d _{LOCAL} =	5.4	6.1	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	-
Under No-Clogging Condition	U GIVIL	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	190
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	9	MINOR	MAJOR	olo
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	• • R _f =	N/A	N/A	103
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Actual Interception Capacity	$Q_a =$	N/A N/A	N/A	cfs
Carry-Over Flow = Q_0-Q_a (to be applied to curb opening or n		N/A N/A	N/A N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	CIS
-	e -		1	6.10
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.202	0.166	ft/ft
Required Length L_T to Have 100% Interception	L _T =	4.06	6.83	ft
Under No-Clogging Condition	ань . Г	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum o		4.06	6.83	ft
Interception Capacity	Q _i =	0.9	2.1	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	_
Clogging Factor for Multiple-unit Curb Opening or Slotted Inle		0.06	0.06	4
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	0.9	2.1	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	0.0	cfs
Summary		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	0.9	2.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	100	%



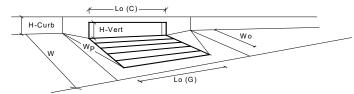
Please note that Table 7-2 of USDCM Vol.1 specifically calls for one dry lane in "each direction" of traffic for arterial streets. However, for collector streets the table does not specify that one dry lane needs to be maintained in "each direction". So collectors only need to maintain one dry lane combined for both directions of traffic. This corresponds to 5.5' of dry lane for collector in each direction. Street capacity calcs for all collectors have been updated to reflect this.



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	1.4	3.2	cfs
Water Spread Width	T =	6.7	10.1	ft
Water Depth at Flowline (outside of local depression)	d =	3.1	3.9	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.773	0.572	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.3	1.4	cfs
Discharge within the Gutter Section W	Q _w =	1.1	1.8	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.35	0.49	sq ft
Velocity within the Gutter Section W	V _w =	3.1	3.7	fps
Water Depth for Design Condition	d _{LOCAL} =	6.1	6.9	inches
Grate Analysis (Calculated)		MINOR	MAJOR	•
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	· •	MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	'
Interception Rate of Side Flow	R, =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _n -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.165	0.128	ft/ft
Required Length L _T to Have 100% Interception	 L _T =	5.30	9.10	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	5.00	5.00	ft
Interception Capacity	Q; =	1.4	2.4	cfs
Under Clogging Condition	Qi -	I.4 MINOR	Z.4 MAJOR	013
Clogging Coefficient	CurbCoef =	1.00	1.00	7
Clogging Coefficient	CurbClog =	0.10	0.10	-
Effective (Unclogged) Length	L _e =	4.50	4.50	ft
Actual Interception Capacity	Q _a =	4.50 1.4	4.50 2.3	cfs
Carry-Over Flow = Q _{b/GRATE/} -Q _a	Q _a = Q _b =	0.0	2.3	cfs
Carry-Over Flow – Q _{b(GRATE)} -Q _a Summary	Q _b =	MINOR	0.9 MAJOR	015
	o - Γ	MINOR 1.4		_
Total Inlet Interception Capacity	Q=		2.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	97	71	%

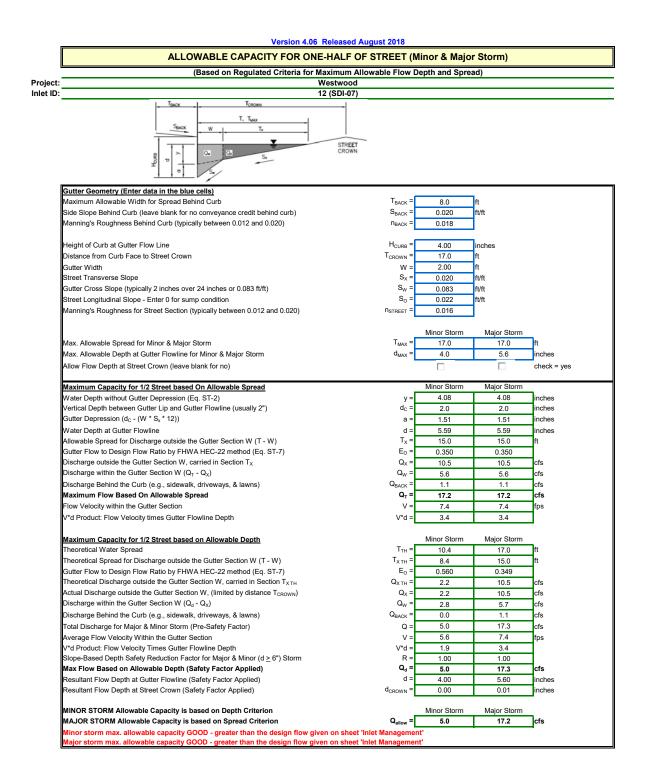


Version 4.06 Released August 2018



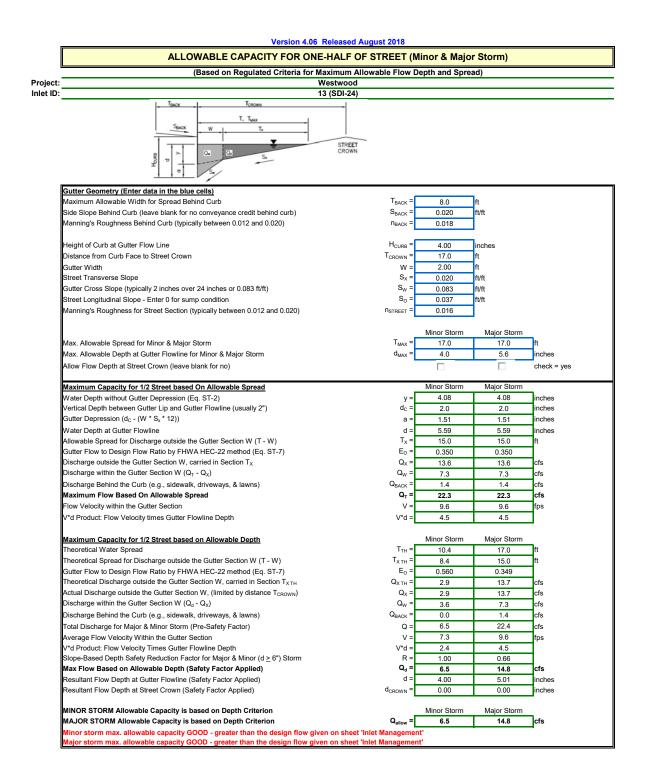
Design Information (Input)	CDOT Type R Curb Opening	-	MINOR	MAJOR	
Type of Inlet		Type =	CDOT Type R		4
• · · · ·	continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or 0		No =	1	1	
Water Depth at Flowline (outside	e of local depression)	Ponding Depth =	4.0	5.6	inches
Grate Information		_	MINOR	MAJOR	Override Depths
Length of a Unit Grate		L _o (G) =	N/A	N/A	feet
Width of a Unit Grate		W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate	(typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Gra	te (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	7
Grate Weir Coefficient (typical v		C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical		$C_{0}(G) =$	N/A	N/A	-
Curb Opening Information			MINOR	MAJOR	
Length of a Unit Curb Opening		$L_{o}(C) =$	10.00	10.00	feet
g 1 Height of Vertical Curb Opening	in Inches	H _{vert} =	4.00	4.00	inches
g 1 Height of Curb Orifice Throat in			4.00	4.00	inches
		H _{throat} =			
Angle of Throat (see USDCM Fig		Theta =	63.40	63.40	degrees
	typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Cur		C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficien	, , , , , , , , , , , , , , , , , , , ,	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculate	ed)		MINOR	MAJOR	
Clogging Coefficient for Multiple	Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Unit	ts	Clog =	N/A	N/A	7
Grate Capacity as a Weir (base	ed on Modified HEC22 Method)	-	MINOR	MAJOR	
Interception without Clogging		Q _{wi} =	N/A	N/A	cfs
Interception with Clogging		Q _{wa} =	N/A	N/A	cfs
	ased on Modified HEC22 Method)	- wa	MINOR	MAJOR	0.0
Interception without Clogging	,	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging		Q _{oa} =	N/A	N/A	cfs
		Q ₀₈ –	MINOR		cis
Grate Capacity as Mixed Flow				MAJOR	٦.
Interception without Clogging		Q _{mi} =	N/A	N/A	cfs
Interception with Clogging		Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (ass	,	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	_	MINOR	MAJOR	
Clogging Coefficient for Multiple	Units	Coef =	1.25	1.25	
Clogging Factor for Multiple Unit		Clog =	0.06	0.06	
Curb Opening as a Weir (base	d on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging		Q _{wi} =	2.6	7.3	cfs
Interception with Clogging		Q _{wa} =	2.5	6.9	cfs
Curb Opening as an Orifice (b	ased on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	·······,	Q _{oi} =	11.8	13.5	cfs
Interception with Clogging		Q _{oa} =	11.1	12.7	cfs
Curb Opening Capacity as Mix	red Flow	- 80 <i>~</i>	MINOR	MAJOR	_
Interception without Clogging		Q _{mi} =	5.2	9.2	cfs
		Q _{mi} = Q _{ma} =	5.2 4.9	9.2	cfs
Interception with Clogging					
	city (assumes clogged condition)	Q _{Curb} =	2.5	6.9	cfs
Resultant Street Conditions		-	MINOR	MAJOR	-
Total Inlet Length		L=	10.00	10.00	feet
	ased on street geometry from above)	T =	10.4	17.0	ft
Resultant Flow Depth at Street 0	Crown	d _{CROWN} =	0.0	0.0	inches
1		_			
Low Head Performance Reduc	ction (Calculated)		MINOR	MAJOR	_
Depth for Grate Midwidth		d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Ec	quation	d _{Curb} =	0.17	0.30	ft
Combination Inlet Performance	Reduction Factor for Long Inlets	RF _{Combination} =	0.38	0.53	
Curb Opening Performance Red	luction Factor for Long Inlets	RF _{Curb} =	0.79	0.91	7
Grated Inlet Performance Reduc	ction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	7
1	-				-
1			MINOR	MAJOR	_
Total Inlet Interception Ca	apacity (assumes clogged condition)	Q ₂ =	2.5	6.9	cfs
		-			
	nor and Major Storms(>Q PEAK) I is not a typical dimension for inlet type specified.	Q PEAK REQUIRED =	2.0	5.9	cfs

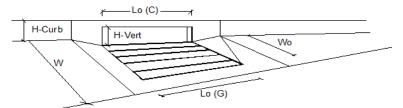
Warning 1: Dimension entered is not a typical dimension for inlet type specified.

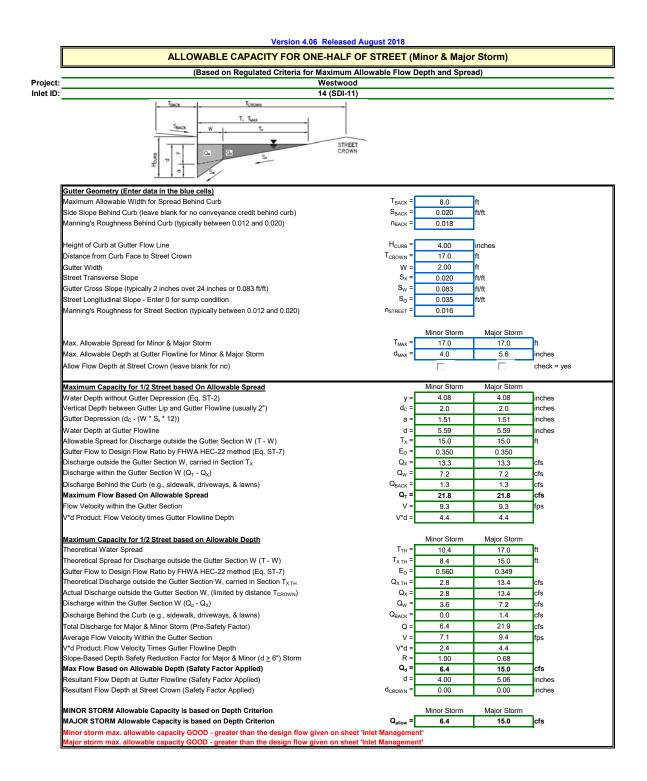


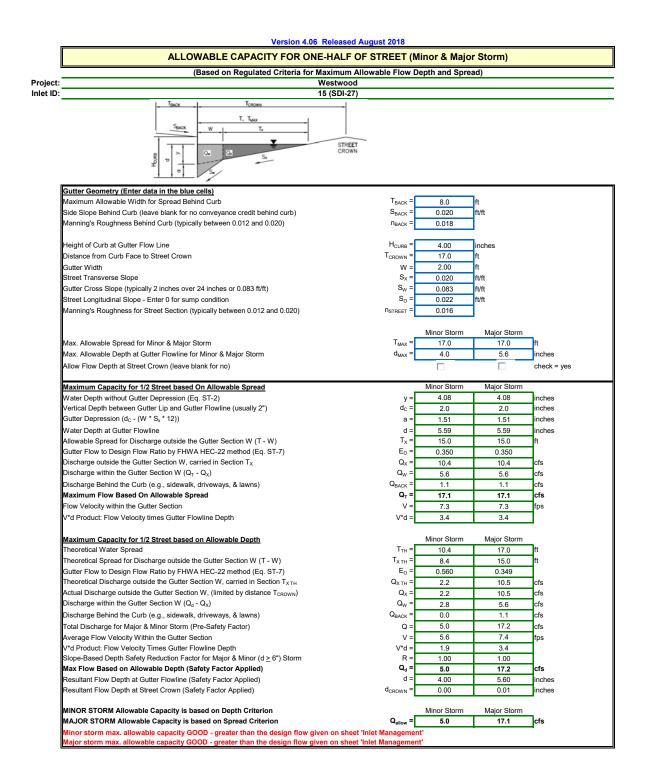
Version 4.06 Released August 2018

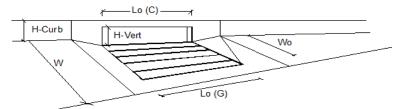
Number of Uni Water Depth a Grate Informa Length of a Uni Area Opening Clogging Fact Grate Weir Co Grate Orifice C Curb Opening Length of a Uni Height of Vertii 1 Height of Vertii 11 Height of Vertii 11 Height of Vertii Clogging Fact Curb Opening Grate Flow Ar Clogging Fact Grate Capacit Interception wi Interception wi Interception wi Interception wi	it Inlets (Grate or Curi at Flowline (outside of ation iti Grate Ratio for a Grate (typ or for a Single Grate (befficient (typical valu Coefficient (typical valu Coefficient (typical valu Coefficient (typical valu coefficient (typical valu or for Dopening ical Curb Opening in 1 o Orifice Throat in Incl at (see USDCM Figur r Depression Pan (typi or for a Single Curb C Weir Coefficient (typi Orifice Coefficient (typi Orifice Coefficient (typi Orifor Alutiple Units ty as a Weir (based of ithout Clogging	local depression) ical values 0.15-0.90) typical value 0.50 - 0.70) e 2.15 - 3.60) lue 0.60 - 0.80) nches nes s ST-5) ically the gutter width of 2 feet) pening (typical value 0.10) ical value 2.3-3.7) pical value 0.60 - 0.70)	$ \begin{array}{c} & \text{Type} = \\ & a_{\text{local}} \\ & a_{\text{local}} = \\ & \text{No} = \\ & \text{Ponding Depth} = \\ & & \text{L}_{o}\left(G\right) = \\ & & \text{W}_{o} = \\ & & \text{A}_{\text{rato}} = \\ & & \text{C}_{f}\left(G\right) = \\ & & \text{C}_{v}\left(G\right) = \\ & & \text{C}_{o}\left(G\right) = \\ & & \text{L}_{o}\left(C\right) = \\ & & \text{H}_{\text{vers}} = \\ & & \text{H}_{\text{throat}} = \\ & & \text{C}_{f}\left(C\right) = \\ & & \text{C}_{v}\left(C\right) = \\ & & \text{C}_{o}\left(C\right) = \\ & & \text{C}$	3.00 1 2.8 MINOR N/A N/A N/A N/A N/A N/A MINOR 5.00 4.00 63.40 2.00 0.10	Curb Opening 3.00 1 5.6 MAJOR N/A 0/A 63.40 2.00	inches inches coverride Depths feet feet feet inches inches degrees
Number of Uni Water Depth a Grate Informa Length of a Uni Area Opening Clogging Fact Grate Weir Co Grate Orifice C Curb Opening Length of a Uni Height of Vertii 1 Height of Vertii 11 Height of Vertii 11 Height of Vertii Clogging Fact Curb Opening Grate Flow Ar Clogging Fact Grate Capacit Interception wi Interception wi Interception wi Interception wi	it Inlets (Grate or Curi at Flowline (outside of ation iti Grate Ratio for a Grate (typ or for a Single Grate (befficient (typical valu Coefficient (typical valu Coefficient (typical valu Coefficient (typical valu coefficient (typical valu or for Dopening ical Curb Opening in 1 o Orifice Throat in Incl at (see USDCM Figur r Depression Pan (typi or for a Single Curb C Weir Coefficient (typi Orifice Coefficient (typi Orifice Coefficient (typi Orifor Alutiple Units ty as a Weir (based of ithout Clogging	b Opening) local depression) ical values 0.15-0.90) typical value 0.50 - 0.70) a 2.15 - 3.60) lue 0.60 - 0.80) nches res a ST-5) ically the gutter width of 2 feet) pening (typical value 0.10) ical value 2.3-3.7) pical value 0.60 - 0.70)	No = Ponding Depth = $L_o (G) =$ $W_o =$ $A_{ratio} =$ $C_f (G) =$ $C_w (G) =$ $C_o (G) =$ $L_o (C) =$ $H_{vort} =$ $H_{throat} =$ $W_p =$ $C_f (C) =$ $C_v (C) =$	1 2.8 MINOR N/A N/A N/A N/A N/A MINOR 5.00 4.00 4.00 63.40 2.00 0.10	1 5.6 N/A N/A N/A N/A N/A N/A MAJOR 5.00 4.00 4.00 63.40 2.00	inches ☐ Override Depths feet feet feet inches inches degrees
Water Depth a Grate Informa Length of a Uni Area Opening Clogging Factc Grate Wrier Co Grate Orifice C Curb Opening Length of a Uni Height of Verti ing 1 Height of Verti ing 1 Height of Curb Angle of Throa Side Width for Clogging Factc Curb Opening Curb Opening Grate Chapacit Interception wi Interception wi Interception wi	at Flowline (outside of stion nit Grate t Grate Ratio for a Grate (typ or for a Single Grate (beefficient (typical value Coefficient (typical value Coefficient (typical value t Curb Opening in 1 o Orifice Throat in Incl ot (see USDCM Figure - Depression Pan (typi or for a Single Curb C Weir Coefficient (typi Orifice Coefficient (typi Orifice Coefficient (typi Orifice Coefficient (typi or for Multiple Units ty as a Weir (based of ithout Clogging	local depression) ical values 0.15-0.90) typical value 0.50 - 0.70) e 2.15 - 3.60) lue 0.60 - 0.80) nches nes s ST-5) ically the gutter width of 2 feet) pening (typical value 0.10) ical value 2.3-3.7) pical value 0.60 - 0.70)	Ponding Depth = $L_{o} (G) =$ $W_{o} =$ $A_{nato} =$ $C_{f} (G) =$ $C_{w} (G) =$ $C_{o} (G) =$ $H_{vert} =$ $H_{torot} =$ $Theta =$ $W_{p} =$ $C_{f} (C) =$ $C_{w} (C) =$	2.8 MINOR N/A N/A N/A N/A N/A N/A MINOR 5.00 4.00 4.00 4.00 63.40 2.00 0.10	5.6 MAJOR N/A N/A N/A N/A MAJOR 5.00 4.00 4.00 63.40 2.00	Feet feet feet feet inches degrees
Grate Informa Length of a Uni Width of a Uni Area Opening Clogging Facto Grate Weir Co Grate Orifice O Curb Opening Length of a Uni Height of Vertit Height of Vertit Clogging Facto Curb Opening Curb Opening Grate Flow Ar Clogging Facto Grate Capacit Interception wi Interception wi Interception wi	ation hit Grate ti Grate Ratio for a Grate (typ or for a Single Grate (coefficient (typical value Coefficient (typical val g Information hit Curb Opening in 1 o Orifice Throat in Incl at (see USCCM Figure Depression Pan (typ) or for a Single Curb C Weir Coefficient (typ Indivisi Calculated) ficient for Multiple Units or for M	ical values 0.15-0.90) typical value 0.50 - 0.70) e 2.15 - 3.60) tue 0.60 - 0.80) nches s ST-5) ically the gutter width of 2 feet) pening (typical value 0.10) ical value 2.3-3.7) pical value 0.60 - 0.70)	$\begin{array}{c} L_{o}\left(G\right)=\\ W_{o}=\\ W_{o}=\\ C_{w}(G)=\\ C_{w}\left(G\right)=\\ C_{w}\left(G\right)=\\ L_{o}\left(C\right)=\\ H_{wret}=\\ H_{wret}=\\ H_{trion}=\\ Theta=\\ W_{p}=\\ C_{r}\left(C\right)=\\ C_{w}\left(G\right)=\\ C_{w}\left(G\right)$	MINOR N/A N/A N/A N/A N/A MINOR 5.00 4.00 4.00 63.40 2.00 0.10	MAJOR N/A N/A N/A N/A N/A N/A N/A N/A 0.0 4.00 63.40 2.00	Feet feet feet feet inches degrees
Length of a Uni Width of a Uni Area Opening Clogging Facto Grate Veric Co Grate Orifice C Curb Opening Length of a Uni Height of Verti- ing 1 Height of Verti- ing 1 Height of Verti- ing 1 Height of Verti- Clogging Facto Curb Opening Curb Opening Grate Flow Ar- Clogging Coeff Clogging Coeff Clogging Coeff Clogging Facto Grate Capacit Interception wi Interception wi Interception wi Interception wi	hit Grate It Grate Ratio for a Grate (typ) or for a Single Grate (deficient (typical value Coefficient (typical value Coefficient (typical value it Curb Opening ital Curb Opening to C	typical value 0.50 - 0.70) e 2.15 - 3.60) lue 0.60 - 0.80) nches es s ST-5) ically the gutter width of 2 feet) opening (typical value 0.10) ical value 2.3-3.7) pical value 0.60 - 0.70)	$\label{eq:W_o} \begin{split} & W_o = \\ & A_{ratio} = \\ & C_f\left(G\right) = \\ & C_w\left(G\right) = \\ & C_o\left(G\right) = \\ & L_o\left(C\right) = \\ & H_{west} = \\ & H_{troos} = \\ & H_{troos} = \\ & Theta = \\ & W_p = \\ & C_f\left(C\right) = \\ & C_w\left(C\right) =$	N/A N/A N/A N/A N/A MINOR 5.00 4.00 63.40 2.00 0.10	N/A N/A N/A N/A N/A MAJOR 5.00 4.00 4.00 63.40 2.00	feet feet feet inches degrees
Width of a Unii Area Opening Clogging Fact Grate Weir Co Grate Orifice C Curb Opening Length of a Uni 1 Height of Vertii 1 Height of Vertii 1 Height of Curb Angle of Throa Side Width for Clogging Fact Curb Opening Grate Flow Ar Clogging Goeff Clogging Coeff Clogging Coeff Clogging Coeff Clogging Coeff Clogging Fact Grate Capacit Interception wi Interception wi Interception wi Interception wi	it Grate Ratio for a Grate (typ or for a Single Grate vaefficient (typical value Coefficient (typical value Coefficient (typical value of the Coefficient (typical value of Coefficient (typical value) or for a Single Curb C Weir Coefficient (typi Orifice Coefficient (typi Corifice Coefficient (typi Corifice Coefficient (typi Multiple Units ty as a Weir (based of ithout Clogging	typical value 0.50 - 0.70) e 2.15 - 3.60) lue 0.60 - 0.80) nches es s ST-5) ically the gutter width of 2 feet) opening (typical value 0.10) ical value 2.3-3.7) pical value 0.60 - 0.70)	$\label{eq:W_o} \begin{split} & W_o = \\ & A_{ratio} = \\ & C_f\left(G\right) = \\ & C_w\left(G\right) = \\ & C_o\left(G\right) = \\ & L_o\left(C\right) = \\ & H_{west} = \\ & H_{troos} = \\ & H_{troos} = \\ & Theta = \\ & W_p = \\ & C_f\left(C\right) = \\ & C_w\left(C\right) =$	N/A N/A N/A N/A MINOR 5.00 4.00 63.40 2.00 0.10	N/A N/A N/A N/A MAJOR 5.00 4.00 63.40 2.00	feet feet inches degrees
Area Opening Clogging Factc Grate Weir Co Grate Orifice C Curb Opening Length of a Um Height of Vertii 1 Height of Vertii 1 Height of Curb Angle of Throa Side Width for Clogging Factc Curb Opening <u>Grate Flow Ar</u> Clogging Coeff Clogging Gact Grate Capacit Interception wi Interception wi Interception wi Interception wi	Ratio for a Grate (typ or for a Single Grate (perficient (typical valu coefficient (typical valu g Information nit Curb Opening in I o Orifice Throat in Incl at (see USDCM Figure Depression Pan (typi or for a Single Curb C Weir Coefficient (typi Orifice Coefficient (typi Orifice Coefficient (typi nalvsis (Calculated)) fificient for Multiple Unio or for Multiple Units ty as a Weir (based of ithout Clogging	typical value 0.50 - 0.70) e 2.15 - 3.60) lue 0.60 - 0.80) nches es s ST-5) ically the gutter width of 2 feet) opening (typical value 0.10) ical value 2.3-3.7) pical value 0.60 - 0.70)	$\begin{array}{l} A_{ratio} = \\ C_{f}\left(G\right) = \\ C_{w}\left(G\right) = \\ C_{o}\left(G\right) = \\ L_{o}\left(C\right) = \\ H_{vert} = \\ H_{parat} = \\ H_{parat} = \\ Theta = \\ W_{p} = \\ C_{f}\left(C\right) = \\ C_{w}\left(C\right) = \\ C_{w}\left(C$	N/A N/A N/A MINOR 5.00 4.00 4.00 63.40 2.00 0.10	N/A N/A N/A N/A 5.00 4.00 63.40 2.00	feet inches inches degrees
Clogging Facto Grate Weir Co. Grate Orifice C Curb Opening Length of a Un 1 Height of Vertin 3 1 Height of Vertin Angle of Throa Side Width for Clogging Facto Curb Opening Curb Opening Grate Flow Ar Clogging Coeff Clogging Coeff Clogging Coeff Clogging Facto Grate Capacit Interception wi Interception wi Interception wi Interception wi Interception wi	or for a Single Grate (perficient (typical value Coefficient (typical value Generation nit Curb Opening in 1 o Orifice Throat in Incl at (see USCCM Figure Depression Pan (typi or for a Single Curb C Weir Coefficient (typi Chrifice Coefficient (typi Chrifice Coefficient (typi Grifice Calculated) ficient for Multiple Units or for Multiple Units or for Multiple Units or for Multiple Units or for Multiple Units of thout Clogging	typical value 0.50 - 0.70) e 2.15 - 3.60) lue 0.60 - 0.80) nches es s ST-5) ically the gutter width of 2 feet) opening (typical value 0.10) ical value 2.3-3.7) pical value 0.60 - 0.70)	$\begin{array}{l} C_{f}\left(G\right)=\\ C_{w}\left(G\right)=\\ C_{o}\left(G\right)=\\ L_{o}\left(G\right)=\\ H_{wert}=\\ H_{troot}=\\ Theta=\\ W_{p}=\\ C_{f}\left(C\right)=\\ C_{w}\left(C\right)=\\ C_{w}\left(C\right)=\\ \end{array}$	N/A N/A N/A MINOR 5.00 4.00 4.00 63.40 2.00 0.10	N/A N/A MAJOR 5.00 4.00 4.00 63.40 2.00	inches inches degrees
Grate Weir Co Grate Orifice C Curb Opening Length of a Un 1 Height of Vertii ng 1 Height of Curb Angle of Throa Side Width for Clogging Factc Curb Opening Grate Flow Ar Clogging Coeff Clogging Coeff Clogging Coeff Clogging Coeff Clogging Factc Grate Capacit Interception wi Interception wi Interception wi Interception wi Interception wi Interception wi	befficient (typical value Coefficient (typical value Coefficient (typical value Information nit Curb Opening ical Curb Opening in I to Orifice Throat in Incl at (see USDCM Figure Depression Pan (typi or for a single Curb C Weir Coefficient (typi Orifice Coefficient (typi Indivisi (Calculated) Ticient for Multiple Units or for Multiple Units by as a Weir (based of ithout Clogging	a 2.15 - 3.60) lue 0.60 - 0.80) nches hes a ST-5) cally the gytter width of 2 feet) upening (typical value 0.10) cal value 2.3-3.7) pical value 0.60 - 0.70)	$\begin{array}{l} C_{w} \ (G) = \\ C_{o} \ (G) = \end{array} \\ \\ L_{o} \ (C) = \\ H_{wer} = \\ H_{throat} = \\ W_{p} = \\ C_{r} \ (C) = \\ C_{w} \ (C) = \end{array}$	N/A N/A MINOR 5.00 4.00 4.00 63.40 2.00 0.10	N/A N/A MAJOR 5.00 4.00 4.00 63.40 2.00	inches inches degrees
Grate Weir Co Grate Orifice C Curb Opening Length of a Un 1 Height of Vertii ng 1 Height of Curb Angle of Throa Side Width for Clogging Factc Curb Opening Grate Flow Ar Clogging Coeff Clogging Coeff Clogging Coeff Clogging Coeff Clogging Factc Grate Capacit Interception wi Interception wi Interception wi Interception wi Interception wi Interception wi	befficient (typical value Coefficient (typical value Coefficient (typical value Information nit Curb Opening ical Curb Opening in I to Orifice Throat in Incl at (see USDCM Figure Depression Pan (typi or for a single Curb C Weir Coefficient (typi Orifice Coefficient (typi Indivisi (Calculated) Ticient for Multiple Units or for Multiple Units by as a Weir (based of ithout Clogging	a 2.15 - 3.60) lue 0.60 - 0.80) nches hes a ST-5) cally the gytter width of 2 feet) upening (typical value 0.10) cal value 2.3-3.7) pical value 0.60 - 0.70)	$\begin{array}{l} C_{o}\left(G\right)=\\ L_{o}\left(C\right)=\\ H_{vert}=\\ H_{troos}=\\ Theta=\\ W_{p}=\\ C_{f}\left(C\right)=\\ C_{w}\left(C\right)=\end{array}$	N/A MINOR 5.00 4.00 4.00 63.40 2.00 0.10	N/A MAJOR 5.00 4.00 4.00 63.40 2.00	inches inches degrees
Grate Orifice C Curb Opening Length of a Un Height of Verti ang 1 Height of Curb Angle of Throa Side Width for Clogging Factc Curb Opening <u>Grate Flow An</u> Clogging Coeff Clogging Coeff Clogging Coeff Clogging Coeff Clogging Coeff Clogging Coeff Clogging Coeff Clogging Factc Grate Capacit Interception wi Interception wi Interception wi Interception wi Interception wi	Coefficient (typical va g Information nit Curb Opening ical Curb Opening in I O orfice Throat in Incl at (see USDCM Figure Depression Pan (typi Or for a Single Curb C Weir Coefficient (typi Orfice Coefficient (typi Orfice Coefficient (typi Gient for Multiple Un or for Multiple Unit	lue 0.60 - 0.80) nches res s ST-5) ically the gutter width of 2 feet) upening (typical value 0.10) ical value 2.3-3.7) pipical value 0.60 - 0.70)	L _o (C) = H _{vert} = H _{throat} = Theta = C _f (C) = C _w (C) =	MINOR 5.00 4.00 63.40 2.00 0.10	MAJOR 5.00 4.00 4.00 63.40 2.00	inches inches degrees
Curb Opening Length of a Um Height of Verti ang 1 Height of Curb Angle of Throa Side Width for Clogging Fact Curb Opening Grate Flow An Clogging Coeff Clogging Coeff Clogging Fact Grate Capacit Interception wi Interception wi Interception wi Interception wi Interception wi Interception wi	g Information iti Curb Opening ical Curb Opening in 1 o Orifice Throat in Inclat it (see USDCM Figure r Depression Pan (typi or for a Single Curb C Weir Coefficient (typi Orifice Coefficient (typi Orifice Coefficient (typi ficient for Multiple Un or for Multiple Units ty as a Weir (based of ithout Clogging	nches res e ST-5) ically the gutter width of 2 feet) pening (typical value 0.10) ical value 2.3-3.7) pical value 0.60 - 0.70)	L _o (C) = H _{vert} = H _{throat} = Theta = C _f (C) = C _w (C) =	MINOR 5.00 4.00 63.40 2.00 0.10	MAJOR 5.00 4.00 4.00 63.40 2.00	inches inches degrees
Length of a Un ng 1 Height of Verti ng 1 Height of Curb Angle of Throa Side Width for Clogging Facto Curb Opening Grate Flow Ar Clogging Coeff Clogging Coeff Clogging Facto Grate Capacit Interception wi Interception wi	it Curb Opening in 1 ccal Curb Opening in 1 o Orifice Throat in Incd at (see USCCM Figure r Depression Pan (typ) or for a Single Curb C Weir Coefficient (ty) Orifice Coefficient (ty) Orifice Calculate(d) fficient for Multiple Units or for Multiple Units by as a Weir (based of thout Clogging	nes a ST-5) ically the gutter width of 2 feet) ipening (typical value 0.10) ical value 2.3-3.7) ipical value 0.60 - 0.70)	H _{vert} = H _{throat} = Theta = W _p = C _f (C) = C _w (C) =	5.00 4.00 63.40 2.00 0.10	5.00 4.00 4.00 63.40 2.00	inches inches degrees
ng 1 Height of Vertii ng 1 Height of Curb Angle of Throa Side Width for Clogging Factc Curb Opening Curb Opening Grate Flow Ar Clogging Coeff Clogging Coeff Clogging Coeff Clogging Factc Grate Capacit Interception wi Interception wi Interception wi Interception wi Interception wi Interception wi Interception wi	ical Curb Opening in I o Orifice Throat in Incl at (see USDCM Figur Depression Pan (typ) or for a Single Curb C Weir Coefficient (typ Orifice Coefficient (typ Inalysis (Calculated)) fficient for Multiple Un or for Multiple Units ty as a Weir (based of thout Clogging	nes a ST-5) ically the gutter width of 2 feet) ipening (typical value 0.10) ical value 2.3-3.7) ipical value 0.60 - 0.70)	H _{vert} = H _{throat} = Theta = W _p = C _f (C) = C _w (C) =	4.00 4.00 63.40 2.00 0.10	4.00 4.00 63.40 2.00	inches inches degrees
ng 1 Height of Curb Angle of Throa Side Width for Clogging Factc Curb Opening Grate Flow An Clogging Coeff Clogging Coeff Clogging Factc Grate Capacit Interception wi Interception wi Interception wi Interception wi Interception wi Interception wi Interception wi Interception wi	o Orifice Throat in Incl at (see USDCM Figure Depression Pan (typ) or for a Single Curb C Weir Coefficient (typ) Orifice Coefficient (typ) Orifice Coefficient (typ) Indivisis (Calculated) Ificient for Multiple Units ty as a Weir (based of ithout Clogging	nes a ST-5) ically the gutter width of 2 feet) ipening (typical value 0.10) ical value 2.3-3.7) ipical value 0.60 - 0.70)	H _{throat} = Theta = W _p = C _f (C) = C _w (C) =	4.00 63.40 2.00 0.10	4.00 63.40 2.00	inches degrees
Angle of Throa Side Width for Clogging Fact Curb Opening Grate Flow An Clogging Coeff Clogging Fact Grate Capacit Interception wi Interception wi Interception wi Grate Capacit Interception wi Interception wi	at (see USDCM Figure Depression Pan (typi or for a Single Curb C Weir Coefficient (typi Orifice Coefficient (ty nalvsis (Calculated)) ficient for Multiple Un or for Multiple Units by as a Weir (based of ithout Clogging	e ST-5) ically the gutter width of 2 feet) opening (typical value 0.10) cal value 2.3-3.7) pical value 0.60 - 0.70)	Theta = W _p = C _f (C) = C _w (C) =	63.40 2.00 0.10	63.40 2.00	degrees
Side Width for Clogging Facto Curb Opening Grate Flow Ar Clogging Coeff Clogging Facto Grate Capacit Interception wi Interception wi Interception wi Grate Capacit Interception wi Interception wi Interception wi	Depression Pan (typ) or for a Single Curb C Weir Coefficient (typi Orifice Coefficient (typi naivsis (Calculated) fficient for Multiple Unito or for Multiple Units ty as a Weir (based o ithout Clogging	ically the gutter width of 2 feet) opening (typical value 0.10) ical value 2.3-3.7) pical value 0.60 - 0.70)	W _p = C _f (C) = C _w (C) =	2.00 0.10	2.00	
Clogging Facto Curb Opening Curb Opening Grate Flow Ar Clogging Coeff Clogging Facto Grate Capacit Interception wi Interception wi Interception wi Grate Capacit Interception wi Interception wi	or for a Single Curb C Weir Coefficient (typi Orifice Coefficient (ty nalvsis (Calculated) fficient for Multiple Units ty as a Weir (based of ithout Clogging	opening (typical value 0.10) ical value 2.3-3.7) ipical value 0.60 - 0.70)	C _f (C) = C _w (C) =	0.10		14 A
Curb Opening Curb Opening Grate Flow Ar Clogging Coeff Clogging Facto Grate Capacit Interception wi Grate Capacit Interception wi Grate Capacit Interception wi Interception wi Interception wi	Weir Coefficient (typ Orifice Coefficient (ty nalysis (Calculated) ficient for Multiple Un or for Multiple Units ty as a Weir (based of ithout Clogging	cal value 2.3-3.7) /pical value 0.60 - 0.70)	C _w (C) =			feet
Curb Opening Grate Flow Ar Clogging Coeff Clogging Fact Grate Capacit Interception wi Grate Capacit Interception wi Grate Capacit Interception wi Interception wi	Orifice Coefficient (ty nalysis (Calculated) fficient for Multiple Un or for Multiple Units ty as a Weir (based of ithout Clogging	rpical value 0.60 - 0.70)			0.10	_
Grate Flow Ar Clogging Coeff Clogging Fact Grate Capacit Interception wi Grate Capacit Interception wi Interception wi Grate Capacit Interception wi	nalysis (Calculated) ficient for Multiple Un or for Multiple Units ty as a Weir (based o ithout Clogging		C ₀ (C) =	3.60	3.60	
Clogging Coeff Clogging Fact Grate Capacit Interception wi Interception wi Interception wi Interception wi Grate Capacit Interception wi Interception wi	ficient for Multiple Un or for Multiple Units ty as a Weir (based c ithout Clogging		- 0 (7	0.67	0.67	
Clogging Facto Grate Capacit Interception wi Grate Capacit Interception wi Interception wi Grate Capacit Interception wi Interception wi	or for Multiple Units ty as a Weir (based of ithout Clogging			MINOR	MAJOR	
Grate Capacit Interception wi Interception wi Grate Capacit Interception wi Grate Capacit Interception wi Interception wi	ty as a Weir (based of ithout Clogging	its	Coef =	N/A	N/A	٦
Grate Capacit Interception wi Interception wi Grate Capacit Interception wi Grate Capacit Interception wi Interception wi	ty as a Weir (based of ithout Clogging		Clog =	N/A	N/A	1
Interception wi Grate Capacit Interception wi Interception wi Grate Capacit Interception wi Interception wi	00 0	on Modified HEC22 Method)	•	MINOR	MAJOR	
Grate Capacit Interception wi Interception wi Grate Capacit Interception wi Interception wi	ith Clogging		Q _{wi} =	N/A	N/A	cfs
Grate Capacit Interception wi Interception wi Grate Capacit Interception wi Interception wi			Q _{wa} =	N/A	N/A	cfs
Interception wi Interception wi Grate Capacit Interception wi Interception wi		d on Modified HEC22 Method)	- wa	MINOR	MAJOR	
Interception wi Grate Capacit Interception wi Interception wi		a on mouniou (12022 mounou)	Q _{oi} =	N/A	N/A	cfs
Grate Capacit Interception wi			Q ₀₈ =	N/A	N/A	cfs
Interception with Interception with			Q ₀₈ -	MINOR		cis
Interception with			o - F		MAJOR	٦.
			Q _{mi} =	N/A	N/A	cfs
Regulting Cro	00 0		Q _{ma} =	N/A	N/A	cfs
, in the second s		es clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening	g Flow Analysis (Cal	culated)	_	MINOR	MAJOR	
Clogging Coef	ficient for Multiple Un	its	Coef =	1.00	1.00	
	or for Multiple Units		Clog =	0.10	0.10	
Curb Opening	g as a Weir (based o	n Modified HEC22 Method)		MINOR	MAJOR	
Interception with	ithout Clogging		Q _{wi} =	0.5	5.1	cfs
Interception with	ith Clogging		Q _{wa} =	0.5	4.6	cfs
Curb Opening	g as an Orifice (base	d on Modified HEC22 Method)		MINOR	MAJOR	
	ithout Clogging		Q _{oi} =	5.2	6.7	cfs
Interception with			Q _{oa} =	4.7	6.1	cfs
	g Capacity as Mixed	Flow	Gioa	MINOR	MAJOR	
	ithout Clogging		Q _{mi} =	1.5	5.4	cfs
			Q _{mi} = Q _{ma} =	1.5 1.4	5.4 4.9	cfs
Interception with						
		(assumes clogged condition)	Q _{Curb} =	0.5	4.6	cfs
	eet Conditions		-	MINOR	MAJOR	-
Total Inlet Len	0		L =	5.00	5.00	feet
		d on street geometry from above)	T =	5.5	17.0	ft
Resultant Flow	v Depth at Street Crow	vn	d _{CROWN} =	0.0	0.0	inches
			-			
Low Head Per	rformance Reductio	n (Calculated)		MINOR	MAJOR	
Depth for Grate	te Midwidth		d _{Grate} =	N/A	N/A	ft
Depth for Curb	Opening Weir Equat	lion	d _{Curb} =	0.07	0.30	ft
Combination Ir	nlet Performance Rec	luction Factor for Long Inlets	RF _{Combination} =	0.36	0.72	
Curb Opening	Performance Reduct	ion Factor for Long Inlets	RF _{Curb} =	0.92	1.00	7
Grated Inlet Pe	erformance Reductior	Factor for Long Inlets	RF _{Grate} =	N/A	N/A	٦
		-			h	
				MINOR	MAJOR	
Total Inlet I		acity (assumes clogged condition)	Q _a =	0.5	4.6	- .
Inlet Capacity	Interception Cana	(accounted the great containing)	Q PEAK REQUIRED =	0.3		cfs

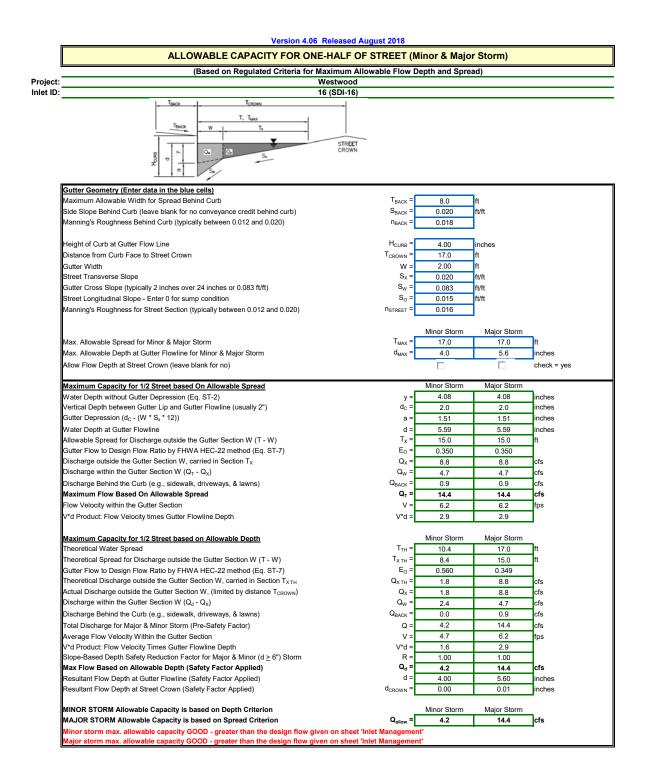

Warning 1: Dimension entered is not a typical dimension for inlet type specified.

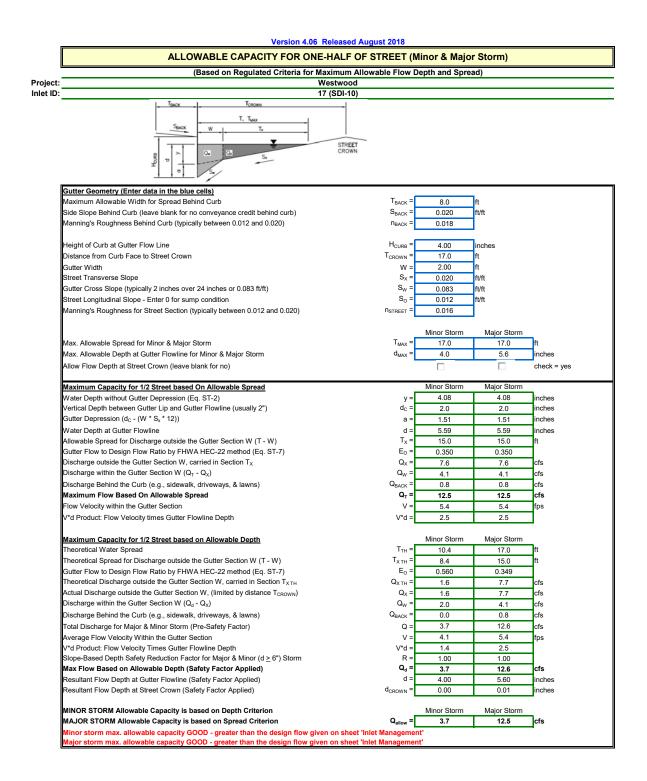


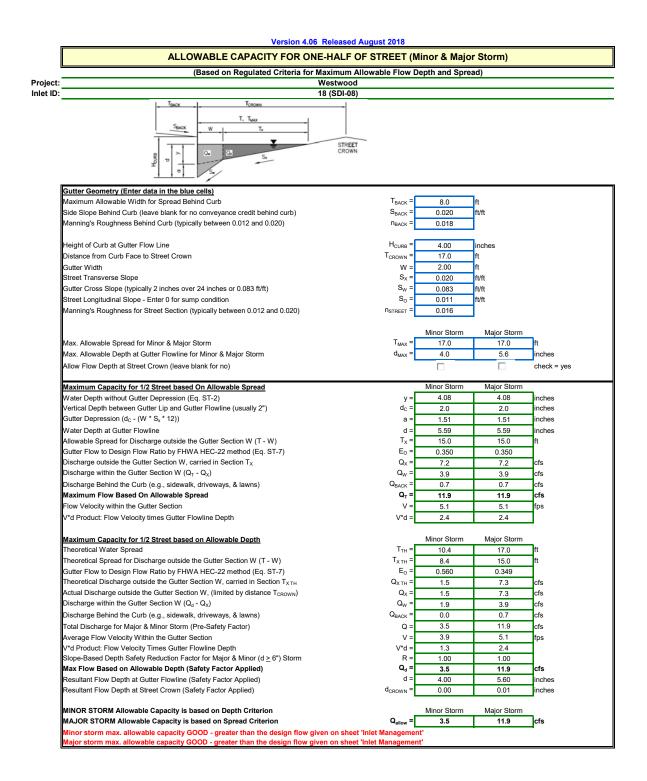

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W_ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _r -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	2.1	6.5	cfs
Water Spread Width	т=	6.8	11.6	ft
Water Depth at Flowline (outside of local depression)	d =	3.1	4.3	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E, =	0.771	0.506	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.5	3.2	cfs
Discharge within the Gutter Section W	Q _w =	1.6	3.3	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.36	0.55	sq ft
Velocity within the Gutter Section W	V _W =	4.6	6.0	fps
Water Depth for Design Condition	d _{LOCAL} =	8.1	9.3	inches
Grate Analysis (Calculated)	GLOCAL -	MINOR	MAJOR	moneo
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E = E _{o-GRATE} =	N/A N/A	N/A N/A	"
-	-o-GRATE -	MINOR	MAJOR	_
Under No-Clogging Condition	v -	N/A	N/A	6
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A N/A	N/A N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A N/A	N/A N/A	_
Interception Rate of Side Flow	R _x =		N/A N/A	- 4-
Interception Capacity	Q _i =	N/A		cfs
Under Clogging Condition	. .	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	-
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	_	MINOR	MAJOR	-
Equivalent Slope S_e (based on grate carry-over)	S _e =	0.229	0.157	ft/ft
Required Length L_T to Have 100% Interception	L _T =	5.87	12.40	ft
Under No-Clogging Condition		MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	5.00	5.00	ft
Interception Capacity	Q _i =	2.0	3.9	cfs
Under Clogging Condition		MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.00	1.00]
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	
Effective (Unclogged) Length	L _e =	4.50	4.50	ft
Actual Interception Capacity	Q _a =	1.9	3.6	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.2	2.9	cfs
Summary		MINOR	MAJOR	•
Total Inlet Interception Capacity	Q =	1.9	3.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.2	2.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	93	55	%

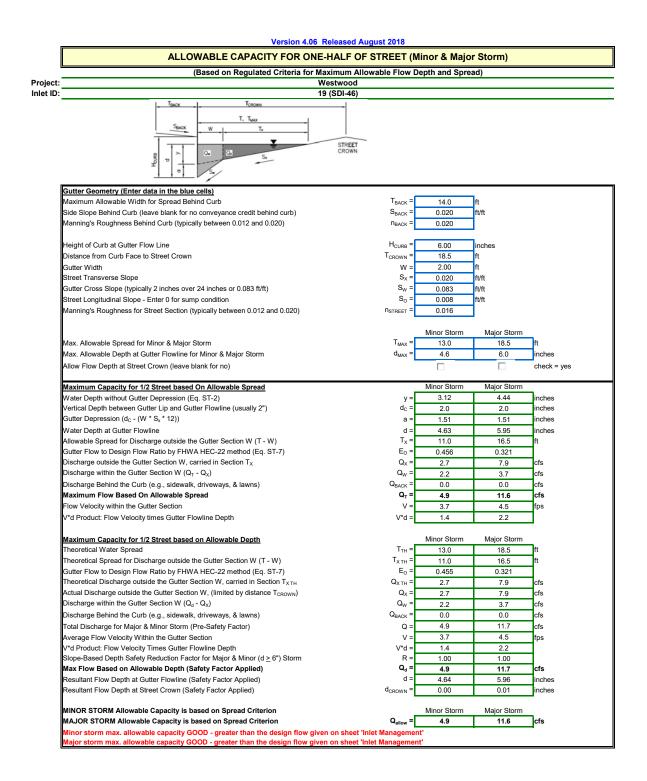

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	2.2	6.3	cfs
Water Spread Width	Т=	6.0	10.2	ft
Water Depth at Flowline (outside of local depression)	d =	2.9	4.0	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.826	0.567	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.4	2.7	cfs
Discharge within the Gutter Section W	Q _w =	1.8	3.6	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.32	0.49	sq ft
Velocity within the Gutter Section W	V _W =	5.6	7.2	fps
Water Depth for Design Condition	d _{LOCAL} =	7.9	9.0	inches
Grate Analysis (Calculated)	LOONE	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	GIGINIE	MINOR	MAJOR	-
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	٦
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	195
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = $Q_0 - Q_a$ (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	-0	MINOR	MAJOR	010
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.243	0.174	ft/ft
Required Length L _T to Have 100% Interception	L _T =	6.02	12.02	ft
Under No-Clogging Condition	-1	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	5.00	5.00	ft
Interception Capacity	Qi =	2.1	3.9	cfs
Under Clogging Condition	Qi -	MINOR	3.9 MAJOR	013
Clogging Condition	CurbCoef =	1.00	1.00	ר I
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	-
Effective (Unclogged) Length		4.50	4.50	ft
Actual Interception Capacity	Q _a =	4.50 2.0	4.50 3.6	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _a = Q _b =	0.2	2.7	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a Summary	ч _b –	0.2 MINOR	Z.7 MAJOR	015
Summary Total Inlet Interception Capacity	Q =	2.0	MAJOR 3.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q = Q _b =	0.2	3.6	cfs
l otal inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage = Q ₂ /Q ₂ =		92		cts %
Capture Fercentage - Wa/Wo =	C% =	92	57	70

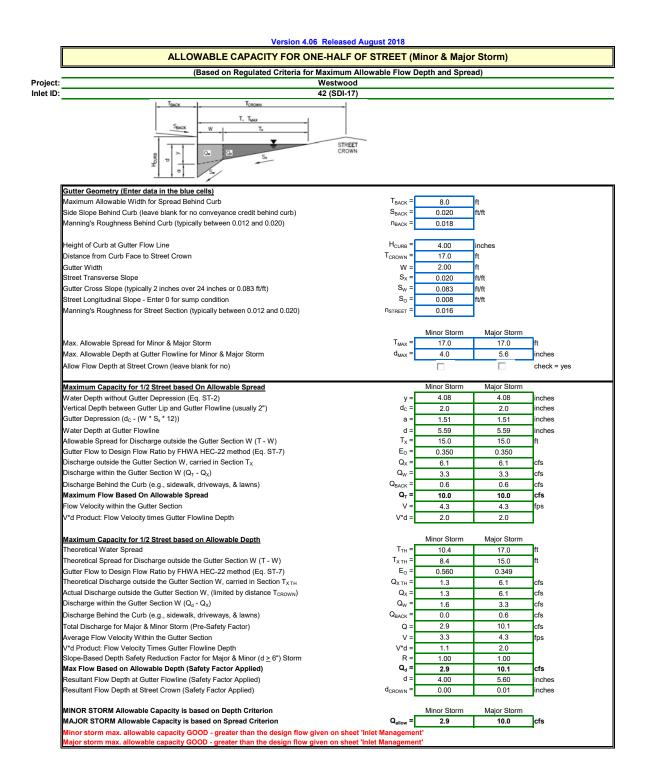


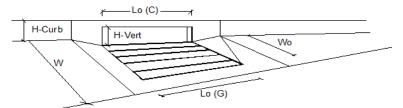

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	1.4	3.9	cfs
Water Spread Width	Т=	4.5	8.2	ft
Water Depth at Flowline (outside of local depression)	d =	2.6	3.5	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.924	0.675	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.1	1.3	cfs
Discharge within the Gutter Section W	Q _w =	1.3	2.6	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.26	0.42	sq ft
Velocity within the Gutter Section W	V _W =	4.9	6.3	fps
Water Depth for Design Condition	d _{LOCAL} =	7.6	8.5	inches
Grate Analysis (Calculated)	LOONE	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	GIGINIE	MINOR	MAJOR	-
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	٦
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	195
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q ₀ -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	-0	MINOR	MAJOR	010
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.271	0.203	ft/ft
Required Length L _T to Have 100% Interception	L _T =	4.54	8.75	ft
Under No-Clogging Condition	-1	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	4.54	5.00	ft
Interception Capacity	Qi =	1.4	3.1	cfs
Under Clogging Condition	Qi -	1.4 MINOR	MAJOR	013
Clogging Coefficient	CurbCoef =	1.00	1.00	ר I
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	-
Effective (Unclogged) Length		4.50	4.50	ft
Actual Interception Capacity	Q _a =	4.50 1.4	4.50 2.8	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _a = Q _b =	0.0	2.0	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a Summary	ч _b –	MINOR	1.1 MAJOR	015
Summary Total Inlet Interception Capacity	Q =	1.4	MAJOR 2.8	cfs
		0.0	2.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage = Q,/Q, =	Q _b =	100	1.1 73	cts %
Capture Fercentage - Wa/Wo =	C% =	100	13	70

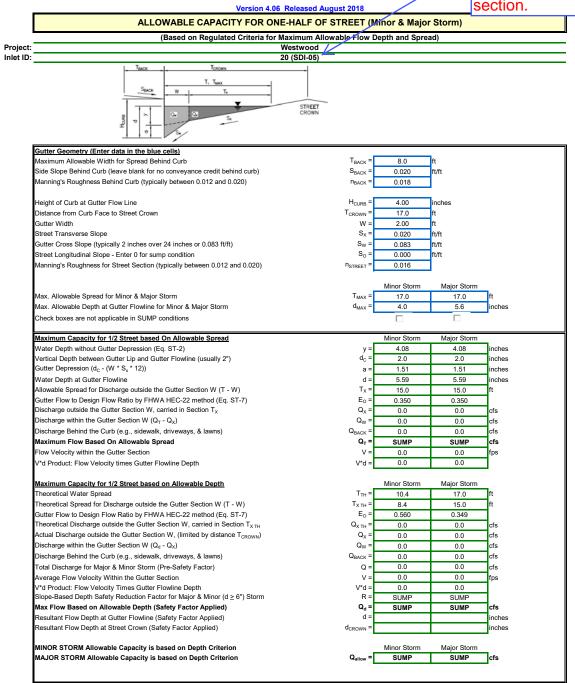

Design Information (Input)			MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	٦
Local Depression (additional to contin	a _{LOCAL} =	5.0	5.0	inches	
Total Number of Units in the Inlet (Gra	ate or Curb Opening)	No =	1	1	1
Length of a Single Unit Inlet (Grate or Curb Opening)		L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be grea	ter than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Gra	te (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curt	Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowat	ble Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street	(from Sheet Inlet Management)	Q ₀ =	2.4	7.1	cfs
Water Spread Width		Т=	7.3	12.1	ft
Water Depth at Flowline (outside of lo	cal depression)	d =	3.3	4.4	inches
Water Depth at Street Crown (or at T _M	(xax	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow		E., =	0.736	0.488	1
Discharge outside the Gutter Section	W, carried in Section T _x	Q _x =	0.6	3.6	cfs
Discharge within the Gutter Section W	1	Q _w =	1.8	3.5	cfs
Discharge Behind the Curb Face		Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	1	A _W =	0.38	0.57	sq ft
Velocity within the Gutter Section W		 V _W =	4.7	6.1	fps
Water Depth for Design Condition		d _{LOCAL} =	8.3	9.4	inches
Grate Analysis (Calculated)		LOONE	MINOR	MAJOR	
Total Length of Inlet Grate Opening		L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow		E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		-0-GRATE	MINOR	MAJOR	4
Minimum Velocity Where Grate Splas	h-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		• ₀ R _f =	N/A	N/A	100
Interception Rate of Side Flow		R _x =	N/A	N/A	-
Interception Capacity		$Q_i =$	N/A	N/A	cfs
Under Clogging Condition		Q -	MINOR	MAJOR	010
Clogging Coefficient for Multiple-unit	Grate Inlet	GrateCoef =	N/A	N/A	ר
Clogging Factor for Multiple-unit Grate		GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multip		L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splas		V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	n-Over Begins	v _o = R _f =	N/A	N/A N/A	ips
Interception Rate of Side Flow		R _x =	N/A	N/A N/A	-
		$Q_a =$	N/A	N/A	cfs
Actual Interception Capacity Carry-Over Flow = Q _o -Q _a (to be appl	ind to our bononing or port d/c inlot)		N/A N/A	N/A N/A	
		Q _b =	MINOR	MAJOR	cfs
Curb or Slotted Inlet Opening Analy		e -			6.16
Equivalent Slope S _e (based on grate of		S _e =	0.220	0.153	ft/ft
Required Length L _T to Have 100% Inte	erception	L _T =	6.40	13.14	ft
Under No-Clogging Condition			MINOR	MAJOR	٦.
Effective Length of Curb Opening or S	slotted inlet (minimum of L, L_T)	L =	6.40	10.00	ft
Interception Capacity		Q _i =	2.4	6.5	cfs
Under Clogging Condition		-	MINOR	MAJOR	7
Clogging Coefficient		CurbCoef =	1.25	1.25	4
Clogging Factor for Multiple-unit Curb	Opening or Slotted Inlet	CurbClog =	0.06	0.06	4
Effective (Unclogged) Length		L _e =	8.75	8.75	ft
Actual Interception Capacity		Q _a =	2.4	6.4	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a		Q _b =	0.0	0.7	cfs
Summary			MINOR	MAJOR	_
Total Inlet Interception Capacity		Q =	2.4	6.4	cfs
Total Inlet Carry-Over Flow (flow by	vpassing inlet)	Q _b =	0.0	0.7	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	90	%

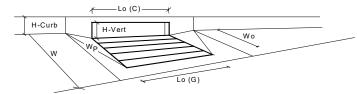

Design Information (Input)			MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continue	ous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		No =	1	1	7
Length of a Single Unit Inlet (Grate or C	urb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greate	r than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)		C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb		C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable	Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (f		Q ₀ =	1.9	5.0	cfs
Water Spread Width		T =	7.0	11.2	ft
Water Depth at Flowline (outside of loca	al depression)	d =	3.2	4.2	inches
Water Depth at Street Crown (or at T _{MA}	x)	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow		E. =	0.751	0.523	
Discharge outside the Gutter Section W	, carried in Section T _x	Q _x =	0.5	2.4	cfs
Discharge within the Gutter Section W	-	Q _w =	1.4	2.6	cfs
Discharge Behind the Curb Face		Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W		A _W =	0.37	0.53	sq ft
Velocity within the Gutter Section W		V _W =	3.9	4.9	fps
Water Depth for Design Condition		d _{LOCAL} =	8.2	9.2	inches
Grate Analysis (Calculated)		-LOOAL	MINOR	MAJOR	
Total Length of Inlet Grate Opening		L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow		E – E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		-o-GRATE -	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-	Over Regine	V _o =	N/A	N/A	fno
	Over Begins				fps
Interception Rate of Frontal Flow		R _f =	N/A N/A	N/A N/A	_
Interception Rate of Side Flow		R _x =			
Interception Capacity		Q _i =	N/A	N/A	cfs
Under Clogging Condition		f	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Gr		GrateCoef =	N/A	N/A	-
Clogging Factor for Multiple-unit Grate		GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple		L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-	Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	_
Interception Rate of Side Flow		R _x =	N/A	N/A	_
Actual Interception Capacity		Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applie		Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analys	is (Calculated)		MINOR	MAJOR	_
Equivalent Slope S _e (based on grate ca	rry-over)	S _e =	0.224	0.162	ft/ft
Required Length L_T to Have 100% Inter	ception	L _T =	5.52	10.49	ft
Under No-Clogging Condition			MINOR	MAJOR	_
Effective Length of Curb Opening or Slo	otted Inlet (minimum of L, L _T)	L =	5.52	10.00	ft
Interception Capacity		Q _i =	1.9	5.0	cfs
Under Clogging Condition			MINOR	MAJOR	
Clogging Coefficient		CurbCoef =	1.25	1.25	7
Clogging Factor for Multiple-unit Curb C	pening or Slotted Inlet	CurbClog =	0.06	0.06	1
Effective (Unclogged) Length		L _e =	8.75	8.75	ft
Actual Interception Capacity		Q _a =	1.9	4.9	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a		Q _b =	0.0	0.1	cfs
Summary		-0	MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	1.9	4.9	cfs
Total Inlet Carry-Over Flow (flow byp	assing inlet)	Q _b =	0.0	0.1	cfs
Capture Percentage = Q _a /Q _o =		с% =	100	98	%
		0% =	100	30	70

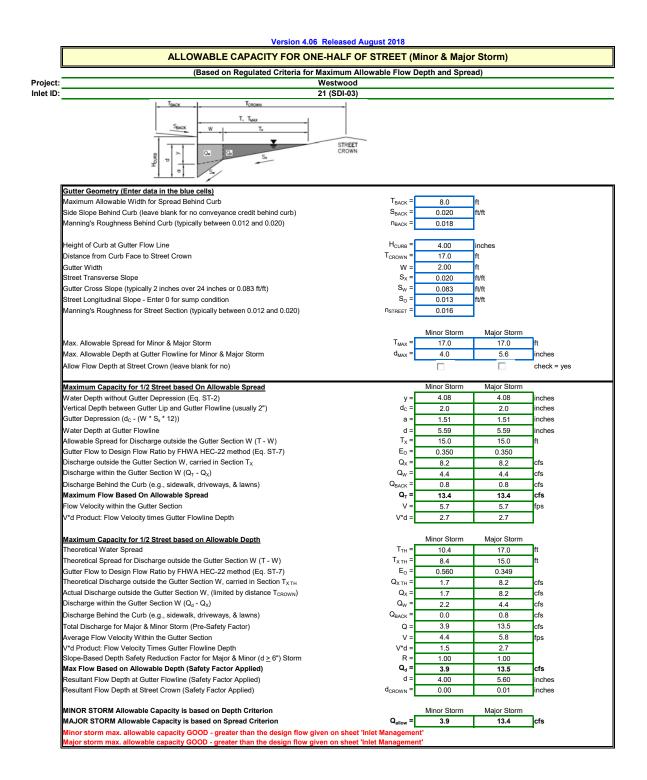

Design Information (Input)			MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continue	ous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		No =	1	1	7
Length of a Single Unit Inlet (Grate or C	urb Opening)	L ₀ =	10.00	10.00	ft
Width of a Unit Grate (cannot be greate	r than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)		C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb (Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable	Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (f		Q ₀ =	2.4	6.9	cfs
Water Spread Width		Т=	8.5	13.6	ft
Water Depth at Flowline (outside of loca	al depression)	d =	3.6	4.8	inches
Water Depth at Street Crown (or at T _{MA})	x)	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow		E,=	0.658	0.438	
Discharge outside the Gutter Section W	, carried in Section T _x	Q _x =	0.8	3.8	cfs
Discharge within the Gutter Section W	-	Q _w =	1.6	3.0	cfs
Discharge Behind the Curb Face		Q _{BACK} =	0.0	0.1	cfs
Flow Area within the Gutter Section W		A _W =	0.43	0.63	sq ft
Velocity within the Gutter Section W		V _W =	3.7	4.7	fps
Water Depth for Design Condition		d _{LOCAL} =	8.6	9.8	inches
Grate Analysis (Calculated)		GEOCAE	MINOR	MAJOR	incheo
Total Length of Inlet Grate Opening		L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow			N/A	N/A	
Under No-Clogging Condition		E _{0-GRATE} =	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-	Over Regine	V ₀ =	N/A	N/A	fno
	Over begins		N/A N/A	N/A N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A N/A	N/A N/A	_
Interception Rate of Side Flow		R _x =			
Interception Capacity		Q _i =	N/A	N/A	cfs
Under Clogging Condition		. .	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Gr		GrateCoef =	N/A	N/A	-
Clogging Factor for Multiple-unit Grate I		GrateClog =	N/A	N/A	4
Effective (unclogged) Length of Multiple		L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-	Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	_
Interception Rate of Side Flow		R _x =	N/A	N/A	_
Actual Interception Capacity		Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied		Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analys	is (Calculated)		MINOR	MAJOR	_
Equivalent Slope S _e (based on grate ca	rry-over)	S _e =	0.198	0.139	ft/ft
Required Length L_T to Have 100% Inter-	ception	L _T =	6.47	12.96	ft
Under No-Clogging Condition		_	MINOR	MAJOR	_
Effective Length of Curb Opening or Slo	otted Inlet (minimum of L, L _T)	L =	6.47	10.00	ft
Interception Capacity		Q _i =	2.4	6.3	cfs
Under Clogging Condition		•	MINOR	MAJOR	
Clogging Coefficient		CurbCoef =	1.25	1.25	7
Clogging Factor for Multiple-unit Curb C	pening or Slotted Inlet	CurbClog =	0.06	0.06	1
Effective (Unclogged) Length		L _e =	8.75	8.75	ft
Actual Interception Capacity		Q _a =	2.4	6.2	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a		Q _b =	0.0	0.7	cfs
Summary		~	MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	2.4	6.2	cfs
Total Inlet Carry-Over Flow (flow byp	assing inlet)	Q _b =	0.0	0.2	cfs
Capture Percentage = Q ₂ /Q ₂ =		с% =	100	89	%
		0%=	100	03	70


Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _r -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	•	MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	1.7	5.7	cfs
Water Spread Width	т =	7.4	12.9	ft
Water Depth at Flowline (outside of local depression)	d =	3.3	4.6	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.730	0.460	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.5	3.1	cfs
Discharge within the Gutter Section W	Q _w =	1.2	2.6	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.1	cfs
Flow Area within the Gutter Section W	A _W =	0.38	0.60	sq ft
Velocity within the Gutter Section W	V _W =	3.3	4.4	fps
Water Depth for Design Condition	d _{LOCAL} =	8.3	9.6	inches
Grate Analysis (Calculated)	LOOVE	MINOR	MAJOR	1
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	-o-gRATE	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	v₀ = R _f =	N/A	N/A	ips
Interception Rate of Side Flow		N/A N/A	N/A	-
	R _x =	N/A N/A	N/A N/A	cfs
Interception Capacity	Q _i =	MINOR	MAJOR	cis
Under Clogging Condition	Oranta Oranta	N/A	N/A	7
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =			-
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	6
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft fr
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q, =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	-
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.218	0.145	ft/ft
Required Length L_T to Have 100% Interception	L _T =	5.16	11.54	ft
Under No-Clogging Condition	-	MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	5.16	10.00	ft
Interception Capacity	Q _i =	1.7	5.5	cfs
Under Clogging Condition	_	MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	1.7	5.4	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	0.3	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.7	5.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.3	cfs
Capture Percentage = Q_a/Q_a =	C% =	100	95	%

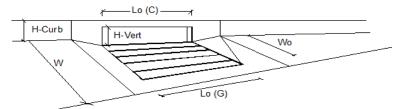


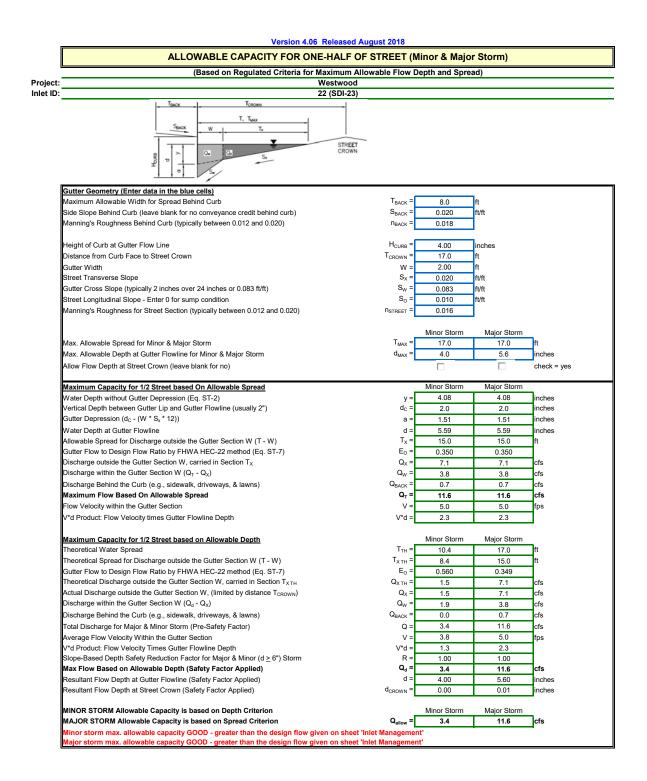

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	-
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	1.5	4.3	cfs
Water Spread Width	T =	7.5	12.3	ft
Water Depth at Flowline (outside of local depression)	d =	3.3	4.5	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E,=	0.720	0.481	
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	0.4	2.2	cfs
Discharge within the Gutter Section W	Q _w =	1.1	2.1	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.39	0.58	sq ft
Velocity within the Gutter Section W	V _W =	2.8	3.6	fps
Water Depth for Design Condition	d _{LOCAL} =	6.3	7.5	inches
Grate Analysis (Calculated)	LUCAL	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E = E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	-o-GRATE -	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		N/A N/A	N/A N/A	ips
-	R _f =	N/A N/A	N/A N/A	-
Interception Rate of Side Flow	R _x =			ata
Interception Capacity	Q _i =	N/A MINOR	N/A MAJOR	cfs
Under Clogging Condition			1	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	_
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.155	0.110	ft/ft
Required Length L_T to Have 100% Interception	L _T =	5.56	11.11	ft
Under No-Clogging Condition	-	MINOR	MAJOR	_
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	5.56	10.00	ft
Interception Capacity	Q _i =	1.5	4.2	cfs
Under Clogging Condition	•	MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	7
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	7
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	1.5	4.2	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	0.1	cfs
Summary	-	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.5	4.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.1	cfs

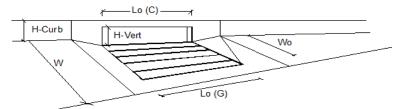


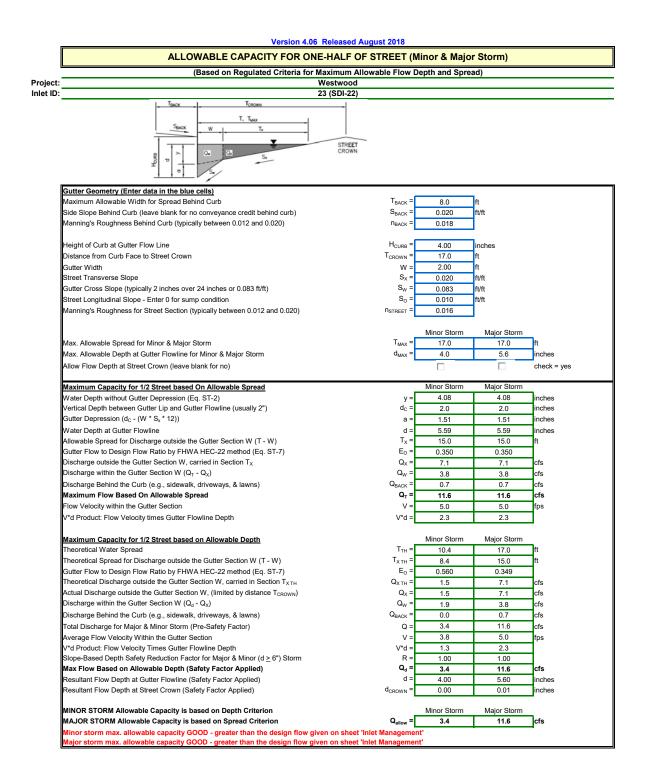


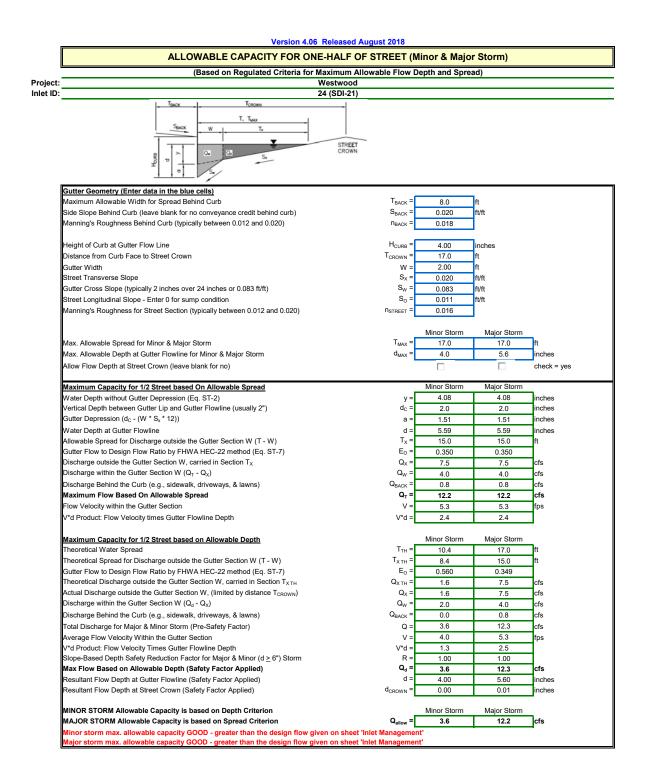
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W_ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	2.4	6.6	cfs
Water Spread Width	T =	9.5	14.6	ft
Water Depth at Flowline (outside of local depression)	d =	3.8	5.0	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E., =	0.605	0.409	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.9	3.8	cfs
Discharge within the Gutter Section W	Q _w =	1.5	2.6	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.2	cfs
Flow Area within the Gutter Section W	A _W =	0.46	0.67	sq ft
Velocity within the Gutter Section W	V _W =	3.1	3.9	fps
Water Depth for Design Condition	d _{LOCAL} =	8.8	10.0	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	-	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	· •	MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = $Q_0 - Q_a$ (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.184	0.131	ft/ft
Required Length L _T to Have 100% Interception	L _T =	6.53	12.61	ft
Under No-Clogging Condition	· •	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	6.53	10.00	ft
Interception Capacity	Q; =	2.4	6.0	cfs
Under Clogging Condition		MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	ן ר
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	2.4	5.9	cfs
Carry-Over Flow = Q _{b/GRATE} -Q _a	Q _b =	0.0	0.7	cfs
Summary		MINOR	MAJOR	-
Total Inlet Interception Capacity	Q =	2.4	5.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.7	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	89	%
	- 70			

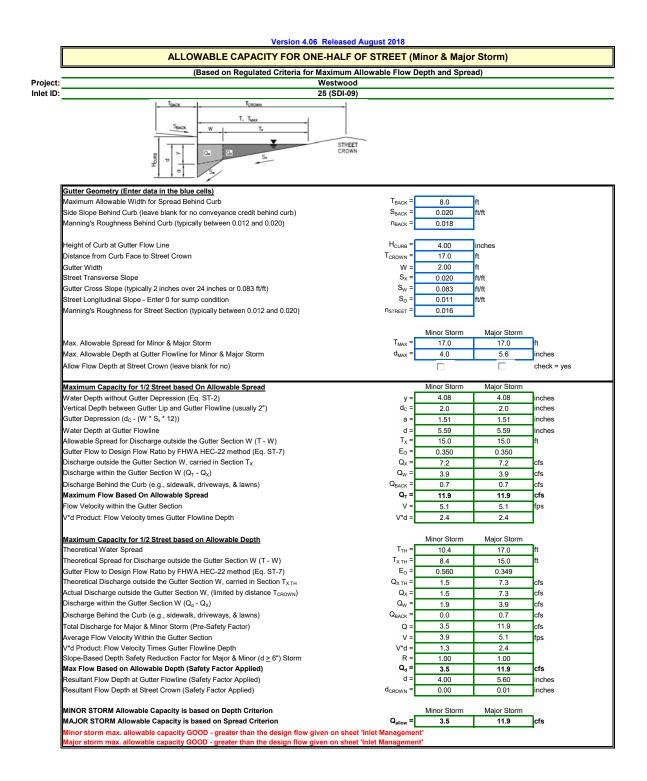


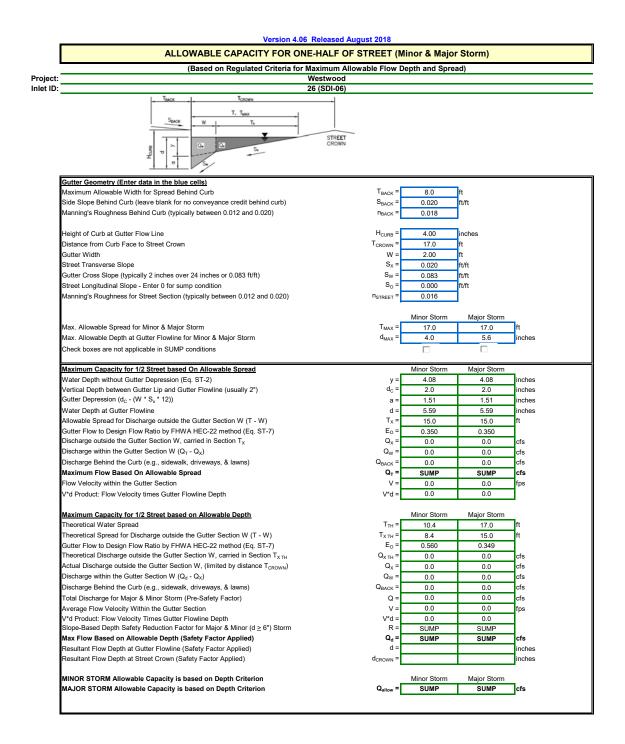

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	5.00	5.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	-
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.0	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	-
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	-
Grate Capacity as a Weir (based on Modified HEC22 Method)	° L	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	10	MINOR	MAJOR	-1···
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	7
Clogging Factor for Multiple Units	Clog =	0.06	0.06	-
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	2.6	7.3	cfs
Interception with Clogging	Q _{wa} =	2.5	6.9	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	19.5	21.8	cfs
Interception with Clogging	Q _{oa} =	18.3	20.5	cfs
Curb Opening Capacity as Mixed Flow	-04	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	6.7	11.8	cfs
Interception with Clogging	Q _{ma} =	6.3	11.0	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	2.5	6.9	cfs
Resultant Street Conditions	curb	MINOR	MAJOR	
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	10.00	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	GROWN			
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
	d _{Grate} =	N/A	N/A	ft
Depth for Grate Midwidth		0.17	0.30	ft
Depth for Grate Midwidth Depth for Curb Opening Weir Equation	d _{Curb} =			-
	RF _{Combination} =	0.38	0.53	
Depth for Curb Opening Weir Equation		0.38	0.53 0.91	-
Depth for Curb Opening Weir Equation Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =			-
Depth for Curb Opening Weir Equation Combination Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets	RF _{Combination} = RF _{Curb} =	0.79	0.91	3
Depth for Curb Opening Weir Equation Combination Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets	RF _{Combination} = RF _{Curb} =	0.79	0.91	3
Depth for Curb Opening Weir Equation Combination Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets	RF _{Combination} = RF _{Curb} =	0.79 N/A	0.91 N/A	cfs

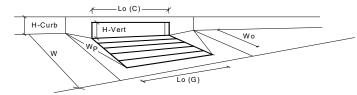


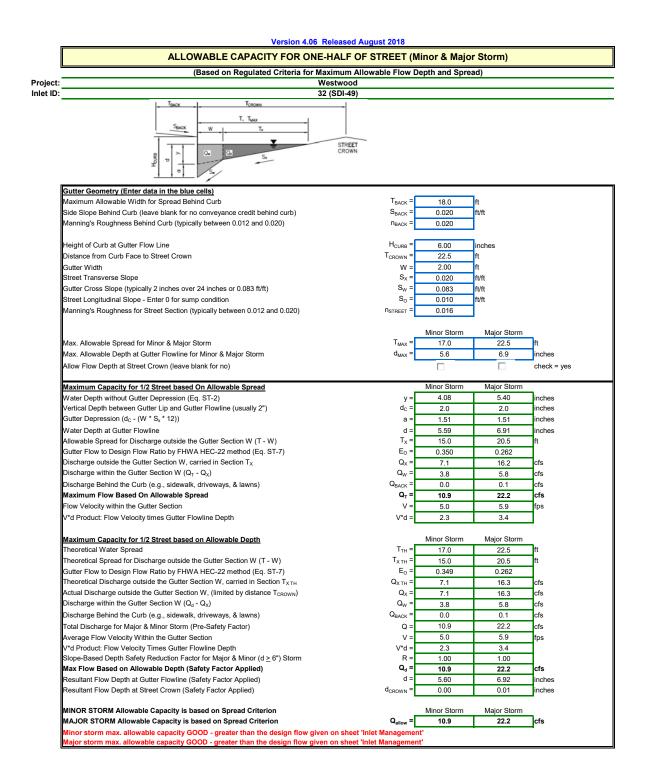

Design Information (Input)			MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	٦
Local Depression (additional to contin	uous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Gra	ate or Curb Opening)	No =	1	1	1
Length of a Single Unit Inlet (Grate or	Curb Opening)	L ₀ =	10.00	10.00	ft
Width of a Unit Grate (cannot be grea	ter than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Gra	te (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curt	Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	1
Street Hydraulics: OK - Q < Allowat	ble Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street	(from Sheet Inlet Management)	Q ₀ =	2.7	8.5	cfs
Water Spread Width		Т=	8.7	14.4	ft
Water Depth at Flowline (outside of lo	cal depression)	d =	3.6	5.0	inches
Water Depth at Street Crown (or at T _M	MAX)	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow		E., =	0.646	0.415	
Discharge outside the Gutter Section	W, carried in Section T _x	Q _x =	1.0	4.9	cfs
Discharge within the Gutter Section W	1	Q _w =	1.7	3.4	cfs
Discharge Behind the Curb Face		Q _{BACK} =	0.0	0.2	cfs
Flow Area within the Gutter Section W	1	A _W =	0.43	0.66	sq ft
Velocity within the Gutter Section W		V _w =	4.0	5.2	fps
Water Depth for Design Condition		d _{LOCAL} =	8.6	10.0	inches
Grate Analysis (Calculated)			MINOR	MAJOR	•
Total Length of Inlet Grate Opening		L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow		E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		-O-GRATE	MINOR	MAJOR	4
Minimum Velocity Where Grate Splas	h-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		- 5 R _f =	N/A	N/A	195
Interception Rate of Side Flow		R _x =	N/A	N/A	-
Interception Capacity		Q _i =	N/A	N/A	cfs
Under Clogging Condition		5	MINOR	MAJOR	010
Clogging Coefficient for Multiple-unit	Grate Inlet	GrateCoef =	N/A	N/A	ר
Clogging Factor for Multiple-unit Grate		GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multip		L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splas		V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	ips
Interception Rate of Side Flow		R _x =	N/A	N/A	-
Actual Interception Capacity		$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be appl	ied to curb opening or peyt d/s inlet)	Q _a =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analy		α _b –	MINOR	MAJOR	LIS
Equivalent Slope Se (based on grate of		S _e =			ft/ft
			0.195	0.133	ft
Required Length L _T to Have 100% Inte	erception	L _T =	6.98	14.77	π
Under No-Clogging Condition		. г	MINOR	MAJOR	1 0
Effective Length of Curb Opening or S	Source inflet (minimum of L, L_T)	L=	6.98	10.00	ft
Interception Capacity		Q _i =	2.7	7.2	cfs
Under Clogging Condition			MINOR	MAJOR	-
Clogging Coefficient		CurbCoef =	1.25	1.25	4
Clogging Factor for Multiple-unit Curb	Opening or Slotted Inlet	CurbClog =	0.06	0.06	4
Effective (Unclogged) Length		L _e =	8.75	8.75	ft
Actual Interception Capacity		Q _a =	2.7	7.0	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a		Q _b =	0.0	1.5	cfs
Summary		_	MINOR	MAJOR	_
Total Inlet Interception Capacity		Q =	2.7	7.0	cfs
Total Inlet Carry-Over Flow (flow by	/passing inlet)	Q _b =	0.0	1.5	cfs
Capture Percentage = Q _a /Q _o =		С% =	100	82	%


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	2.6	9.0	cfs
Water Spread Width	Т =	9.2	15.5	ft
Water Depth at Flowline (outside of local depression)	d =	3.7	5.2	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E., =	0.620	0.384	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	1.0	5.3	cfs
Discharge within the Gutter Section W	Q _w =	1.6	3.3	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.4	cfs
Flow Area within the Gutter Section W	A _W =	0.45	0.71	sq ft
Velocity within the Gutter Section W	V _W =	3.5	4.7	fps
Water Depth for Design Condition	d _{LOCAL} =	8.7	10.2	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	-0-GRATE	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	195
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	Q -	MINOR	MAJOR	010
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	v ₀ - R _f =	N/A	N/A N/A	ips
Interception Rate of Side Flow	R _x =	N/A	N/A N/A	-
	$Q_a =$	N/A	N/A	cfs
Actual Interception Capacity Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)			N/A N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	Q _b =	N/A MINOR	MAJOR	CIS
	с. –Г			610
Equivalent Slope Se (based on grate carry-over)	S _e =	0.188	0.124	ft/ft
Required Length L_T to Have 100% Interception	L _T =	6.84	15.29	ft
Under No-Clogging Condition	. г	MINOR	MAJOR	٦.
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L =	6.84	10.00	ft
Interception Capacity	Q _i =	2.6	7.4	cfs
Under Clogging Condition	_	MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	4
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	4
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	2.6	7.1	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	1.9	cfs
Summary	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	2.6	7.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	79	%

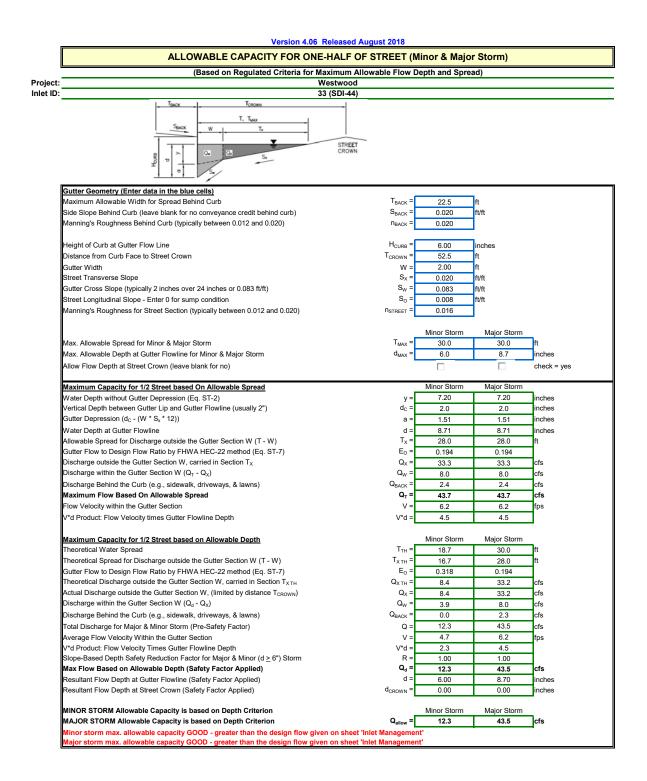

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q _o =	2.1	6.2	cfs
Water Spread Width	т =	8.3	13.4	ft
Water Depth at Flowline (outside of local depression)	d =	3.5	4.7	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.671	0.442	
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	0.7	3.4	cfs
Discharge within the Gutter Section W	Q _w =	1.4	2.7	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.1	cfs
Flow Area within the Gutter Section W	A _W =	0.42	0.62	sq ft
Velocity within the Gutter Section W	 V _W =	3.4	4.3	fps
Water Depth for Design Condition	d _{LOCAL} =	8.5	9.7	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	-
Under No-Clogging Condition	GOVIE	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	190
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	Q -	MINOR	MAJOR	olo
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	103
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Actual Interception Capacity	$Q_a =$	N/A N/A	N/A	cfs
Carry-Over Flow = Q_0-Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A N/A	N/A N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	α _b –	MINOR	MAJOR	CIS
	с _ Г		1	6.10
Equivalent Slope Se (based on grate carry-over)	S _e =	0.202	0.140	ft/ft
Required Length L _T to Have 100% Interception	L _T =	5.94	12.12	ft
Under No-Clogging Condition	. г	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L =	5.00	5.00	ft
Interception Capacity	Q _i =	2.0	3.8	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.00	1.00	_
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	4
Effective (Unclogged) Length	L _e =	4.50	4.50	ft
Actual Interception Capacity	Q _a =	1.9	3.5	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.2	2.7	cfs
Summary	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	1.9	3.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.2	2.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	92	56	%

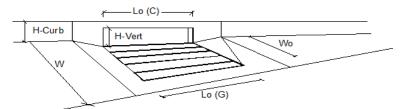

Design Information (Input)		MINOR	MAJOR	1
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	w. =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	2.0	8.0	cfs
Water Spread Width	Т =	7.8	14.5	ft
Water Depth at Flowline (outside of local depression)	d =	3.4	5.0	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.702	0.410	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.6	4.6	cfs
Discharge within the Gutter Section W	Q _w =	1.4	3.2	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.2	cfs
Flow Area within the Gutter Section W	A _W =	0.40	0.67	sq ft
Velocity within the Gutter Section W	V _W =	3.5	4.8	fps
Water Depth for Design Condition	d _{LOCAL} =	8.4	10.0	inches
Grate Analysis (Calculated)	LOUVE	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	OBINITE	MINOR	MAJOR	-
Minimum Velocity Where Grate Splash-Over Begins	V., =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	100
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = $Q_n - Q_n$ (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	-0	MINOR	MAJOR	010
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.210	0.131	ft/ft
Required Length L _T to Have 100% Interception	L _T =	5.67	14.26	ft
Under No-Clogging Condition	- [MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	5.67	10.00	ft
Interception Capacity	Qi =	2.0	6.9	cfs
Under Clogging Condition	Qi -	2.0 MINOR	MAJOR	018
Clogging Coefficient	CurbCoef =	1.25	1.25	ר I
Clogging Coefficient	CurbClog =	0.06	0.06	-
Effective (Unclogged) Length		8.75	8.75	ft
Actual Interception Capacity	L _e = Q _a =	2.0	6.75 6.7	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	Q _a = Q _b =	0.0	1.3	cis
Carry-Over Flow – Q _{b(GRATE)} -Q _a Summary	ч _b =	MINOR	1.3 MAJOR	010
Total Inlet Interception Capacity	Q =	2.0	MAJOR 6.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q = Q _b =	2.0	6.7 1.3	cfs
Capture Percentage = Q_a/Q_a =	с _ь – С% =	100	1.3	%
	U% =	100	04	/0



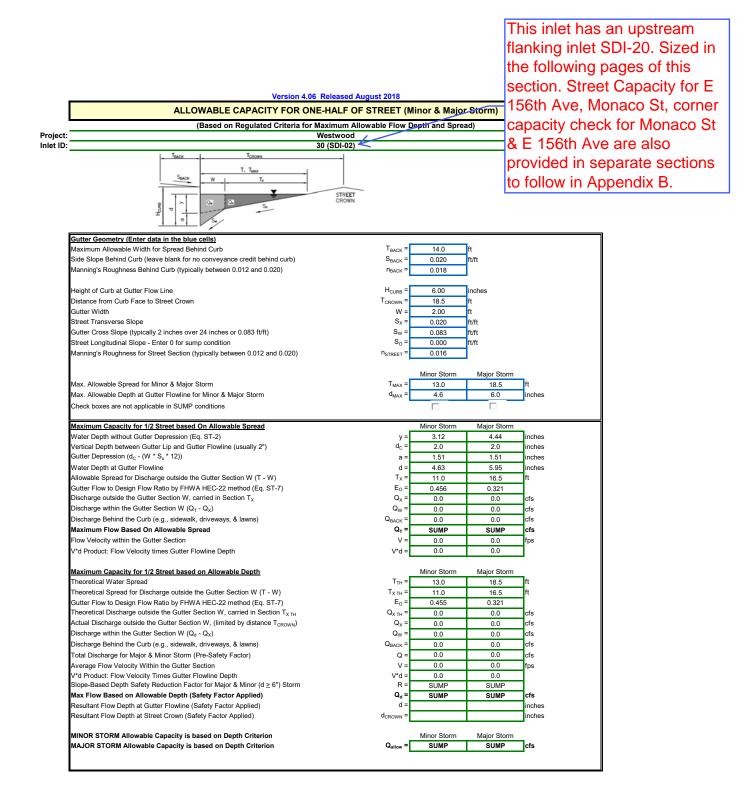


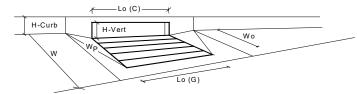
Design Information (Input)			MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	٦
Local Depression (additional to contin	uous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Gra	ite or Curb Opening)	No =	1	1	1
Length of a Single Unit Inlet (Grate or	Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be great	ter than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Gra	te (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curt	Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	1
Street Hydraulics: OK - Q < Allowat	ble Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street	(from Sheet Inlet Management)	Q ₀ =	1.9	5.3	cfs
Water Spread Width		T =	7.8	12.5	ft
Water Depth at Flowline (outside of lo	cal depression)	d =	3.4	4.5	inches
Water Depth at Street Crown (or at T _N	MAX)	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow		E ₀ =	0.703	0.474	1
Discharge outside the Gutter Section	N, carried in Section T _x	Q _x =	0.6	2.8	cfs
Discharge within the Gutter Section W	1	Q _w =	1.3	2.5	cfs
Discharge Behind the Curb Face		Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	!	A _W =	0.40	0.58	sq ft
Velocity within the Gutter Section W		V _W =	3.4	4.3	fps
Water Depth for Design Condition		d _{LOCAL} =	8.4	9.5	inches
Grate Analysis (Calculated)			MINOR	MAJOR	•
Total Length of Inlet Grate Opening		L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow		E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		0-GIVATE	MINOR	MAJOR	-
Minimum Velocity Where Grate Splas	h-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	190
Interception Rate of Side Flow		R _x =	N/A	N/A	-
Interception Capacity		Q _i =	N/A	N/A	cfs
Under Clogging Condition		u .	MINOR	MAJOR	010
Clogging Coefficient for Multiple-unit (Grate Inlet	GrateCoef =	N/A	N/A	٦
Clogging Factor for Multiple-unit Grate		GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multip		L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splas		V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	ips
Interception Rate of Side Flow		R _x =	N/A	N/A	-
Actual Interception Capacity		$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be appli	ied to curb opening or peyt d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analy		Q _b -	MINOR	MAJOR	LIS
Equivalent Slope Se (based on grate of		S _e =	-		ft/ft
			0.210	0.149	ft
Required Length L _T to Have 100% Inte	aception	L _T =	5.56	10.96	π
Under No-Clogging Condition		. г	MINOR	MAJOR	1 0
Effective Length of Curb Opening or S	nottea iniet (minimum of L, L _T)	L=	5.56	10.00	ft
Interception Capacity		Q _i =	1.9	5.2	cfs
Under Clogging Condition		-	MINOR	MAJOR	7
Clogging Coefficient		CurbCoef =	1.25	1.25	4
Clogging Factor for Multiple-unit Curb	Opening or Slotted Inlet	CurbClog =	0.06	0.06	4
Effective (Unclogged) Length		L _e =	8.75	8.75	ft
Actual Interception Capacity		Q _a =	1.9	5.1	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a		Q _b =	0.0	0.2	cfs
Summary		_	MINOR	MAJOR	_
Total Inlet Interception Capacity		Q =	1.9	5.1	cfs
Total Inlet Carry-Over Flow (flow by	passing inlet)	Q _b =	0.0	0.2	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	97	%

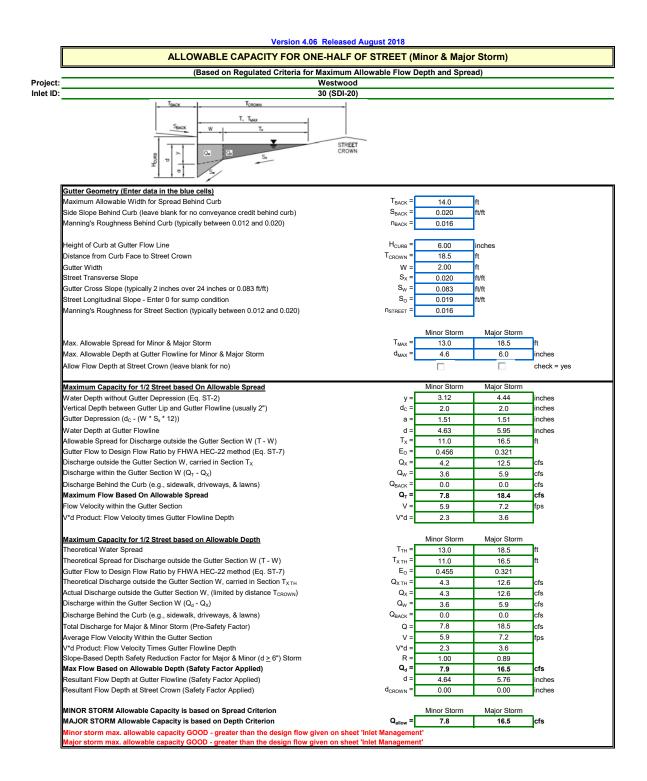

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	5.00	5.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.0	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	1
Grate Flow Analysis (Calculated)	/	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	
Clogging Factor for Multiple Units	Clog =	0.06	0.06	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	2.6	7.3	cfs
Interception with Clogging	Q _{wa} =	2.5	6.9	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	19.5	21.8	cfs
Interception with Clogging	Q _{oa} =	18.3	20.5	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	6.7	11.8	cfs
Interception with Clogging	Q _{ma} =	6.3	11.0	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	2.5	6.9	cfs
Resultant Street Conditions	···ouri/	MINOR	MAJOR	
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	10.4	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
,				_
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.17	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.38	0.53	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	0.91	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_			_
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.5	6.9	cfs



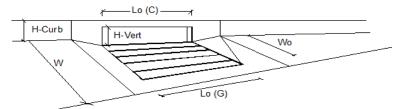
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	0.9	2.2	cfs
Water Spread Width	Т =	5.1	8.5	ft
Water Depth at Flowline (outside of local depression)	d =	2.7	3.5	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E., =	0.883	0.660	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.1	0.7	cfs
Discharge within the Gutter Section W	Q _w =	0.8	1.5	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.29	0.42	sq ft
Velocity within the Gutter Section W	V _W =	2.7	3.4	fps
Water Depth for Design Condition	d _{LOCAL} =	5.7	6.5	inches
Grate Analysis (Calculated)	-LOCAL	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	-o-GRATE	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fee
		N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A N/A	_
Interception Rate of Side Flow	R _x =			. 4
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	. .	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	_
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L, =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	_	MINOR	MAJOR	_
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.186	0.144	ft/ft
Required Length L_T to Have 100% Interception	L _T =	4.01	7.11	ft
Under No-Clogging Condition	_	MINOR	MAJOR	_
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	4.01	7.11	ft
Interception Capacity	Q _i =	0.9	2.2	cfs
Under Clogging Condition	_	MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	7
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	0.9	2.2	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	0.0	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.9	2.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs

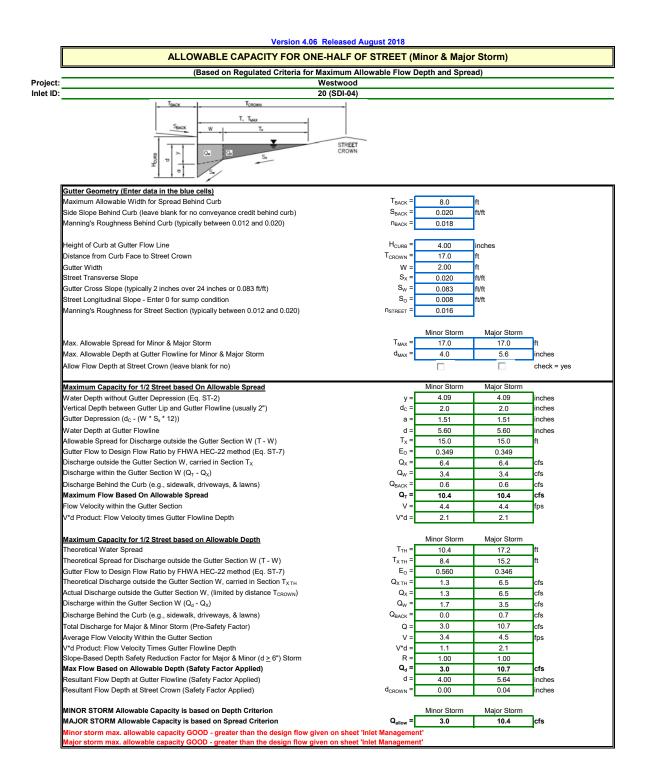


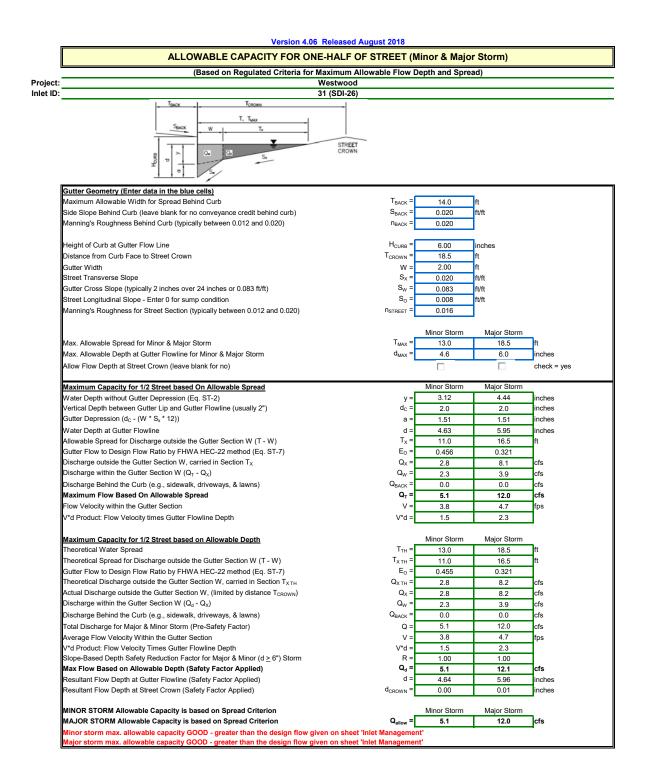

Version 4.06 Released August 2018

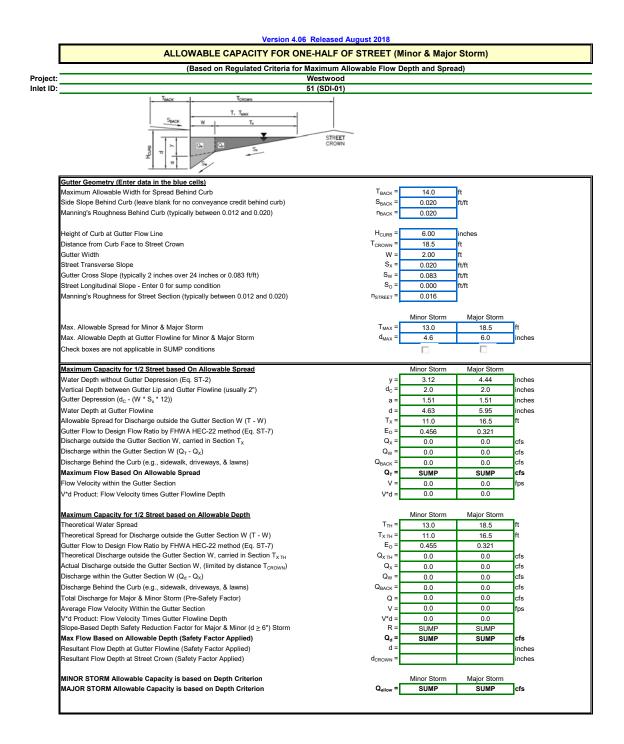

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	-
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W. =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	1.9	4.1	cfs
Water Spread Width	т=	8.3	11.9	ft
Water Depth at Flowline (outside of local depression)	d =	3.5	4.4	inches
Water Depth at Street Crown (or at T _{MAX})	d _{crown} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E, =	0.669	0.497	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.6	2.1	cfs
Discharge within the Gutter Section W	Q_ =	1.3	2.0	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.42	0.56	sq ft
Velocity within the Gutter Section W	V _W =	3.0	3.6	fps
Water Depth for Design Condition	d _{LOCAL} =	6.5	7.4	inches
Grate Analysis (Calculated)	GEOCAE	MINOR	MAJOR	Interior
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	-o-GRATE	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	v _o = R _f =	N/A	N/A N/A	ips
		N/A N/A	N/A N/A	-
Interception Rate of Side Flow Interception Capacity	R _x = Q _i =	N/A N/A	N/A N/A	cfs
Under Clogging Condition	Qi -	MINOR	MAJOR	CIS
	0	N/A	N/A	7
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A N/A	N/A N/A	-
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =		N/A N/A	ft
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A		-
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	-
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.146	0.113	ft/ft
Required Length L _T to Have 100% Interception	L _T =	6.48	10.76	ft
Under No-Clogging Condition	-	MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	6.48	10.00	ft
Interception Capacity	Q _i =	1.9	4.1	cfs
Under Clogging Condition	_	MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	1.9	4.0	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	0.1	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.9	4.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.1	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	1 98	%

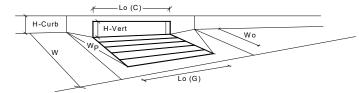
Flow goes to roadside ditch section 12. Ditch has been sized for this bypass flow and the flow from its own tributary area basin O8. Ditch sizing has been provided in a separate section to follow in Appendix B.

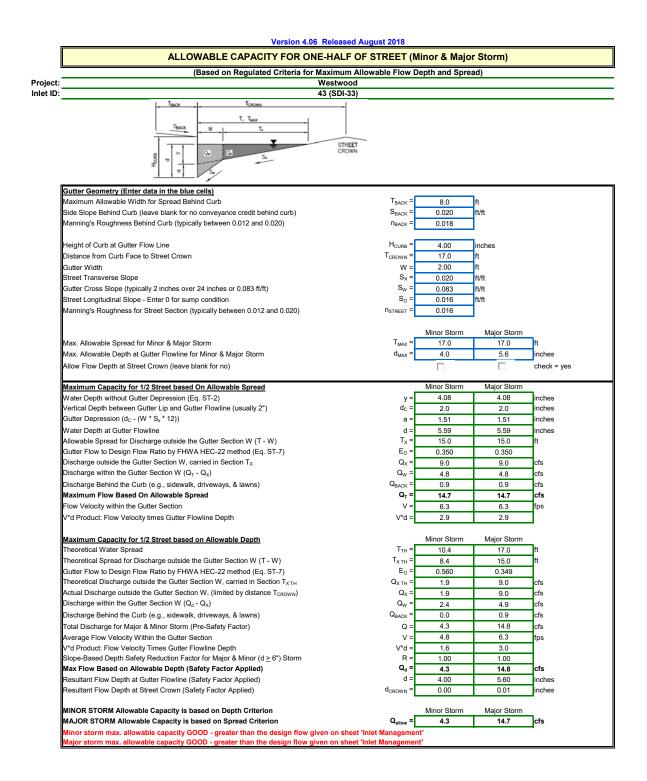



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.6	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	1
Grate Flow Analysis (Calculated)	/	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	
Clogging Factor for Multiple Units	Clog =	0.06	0.06	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	4.3	8.6	cfs
Interception with Clogging	Q _{wa} =	4.0	8.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	17.3	19.4	cfs
Interception with Clogging	Q _{oa} =	16.2	18.2	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	8.0	12.1	cfs
Interception with Clogging	Q _{ma} =	7.5	11.3	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	4.0	8.1	cfs
Resultant Street Conditions	out	MINOR	MAJOR	
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	13.0	18.5	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
,				_
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.22	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.44	0.56	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.84	0.93	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
				_
	_	MINOR	MAJOR	_
	Q _a =	4.0	8.1	cfs
Total Inlet Interception Capacity (assumes clogged condition)	a		0.1	0.0

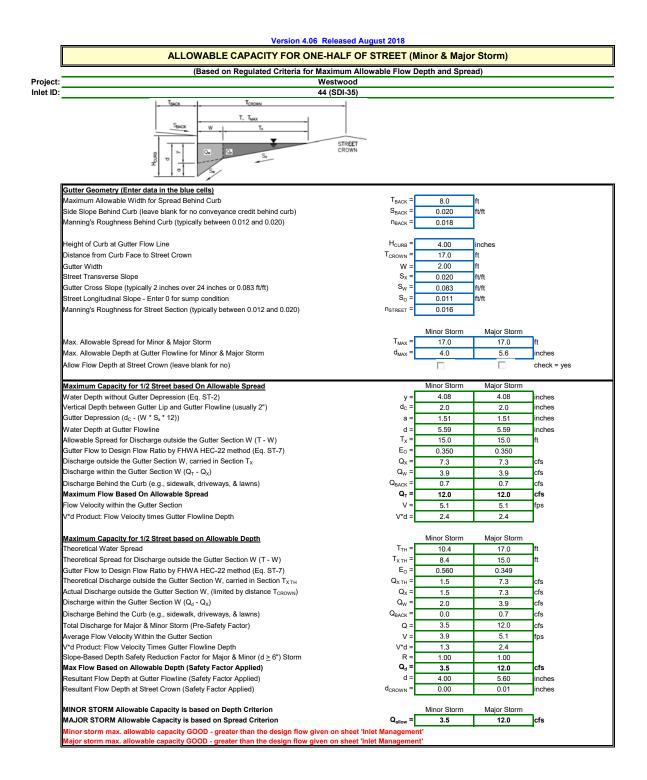

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q _o =	4.1	13.1	cfs
Water Spread Width	Т =	9.8	16.1	ft
Water Depth at Flowline (outside of local depression)	d =	3.9	5.4	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E., =	0.588	0.370	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	1.7	8.3	cfs
Discharge within the Gutter Section W	Q _w =	2.4	4.8	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.48	0.73	sq ft
Velocity within the Gutter Section W	V _w =	5.1	6.6	fps
Water Depth for Design Condition	d _{LOCAL} =	6.9	8.4	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	-
Under No-Clogging Condition	0-GIVIL	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	190
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	9	MINOR	MAJOR	0.0
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	195
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q_0-Q_a (to be applied to curb opening or next d/s inlet)	$Q_b =$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	-0 	MINOR	MAJOR	015
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.131	0.089	ft/ft
Required Length L _T to Have 100% Interception		10.60	22.81	ft
Under No-Clogging Condition	LT -	MINOR	MAJOR	IL
	F			- -
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L=	10.00	10.00	ft
Interception Capacity	Q _i =	4.1	8.5	cfs
Under Clogging Condition	.	MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	-1
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	-],
Effective (Unclogged) Length	L, =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	4.0	8.1	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.1	5.0	cfs
Summary	-	MINOR	MAJOR	- .
Total Inlet Interception Capacity	Q =	4.0	8.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	5.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	98	62	%

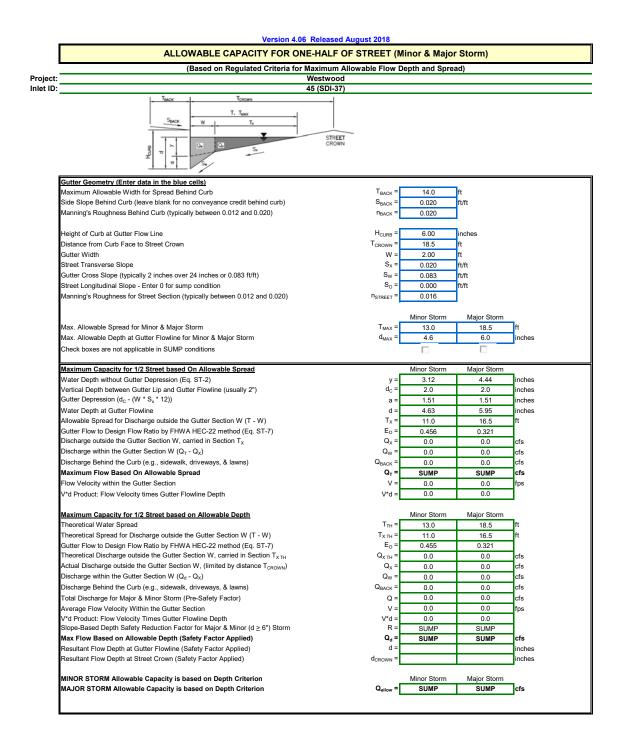

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	ng Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value	0.1) C ₁ -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	·	MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Manageme	$Q_o =$	2.9	10.3	cfs
Water Spread Width	T =	10.2	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	4.0	5.6	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.570	0.350	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	1.2	6.3	cfs
Discharge within the Gutter Section W	Q _w =	1.7	3.4	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.6	cfs
Flow Area within the Gutter Section W	A _W =	0.49	0.77	sq ft
Velocity within the Gutter Section W	V _W =	3.4	4.4	fps
Water Depth for Design Condition	d _{LOCAL} =	9.0	10.6	inches
Grate Analysis (Calculated)	Ebort	MINOR	MAJOR	1
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	GRATE	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	•°° –	N/A	N/A	ips
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	G -	MINOR	MAJOR	015
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit Grate Inlet			-	-
	GrateClog =	N/A N/A	N/A N/A	ft
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =		-	
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q_0-Q_a (to be applied to curb opening or next d/s	inlet) Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	-
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.174	0.115	ft/ft
Required Length L _T to Have 100% Interception	L _T =	7.39	16.57	ft
Under No-Clogging Condition		MINOR	MAJOR	٦.
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T	L =	5.00	5.00	ft
Interception Capacity	$Q_i =$	2.5	4.6	cfs
Under Clogging Condition		MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.00	1.00	4
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	4
Effective (Unclogged) Length	L _e =	4.50	4.50	ft
Actual Interception Capacity	Q _a =	2.4	4.2	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.5	6.0	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.4	4.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.5	6.0	cfs
Capture Percentage = Q _a /Q _o =	С% =	82	41	%

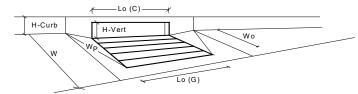




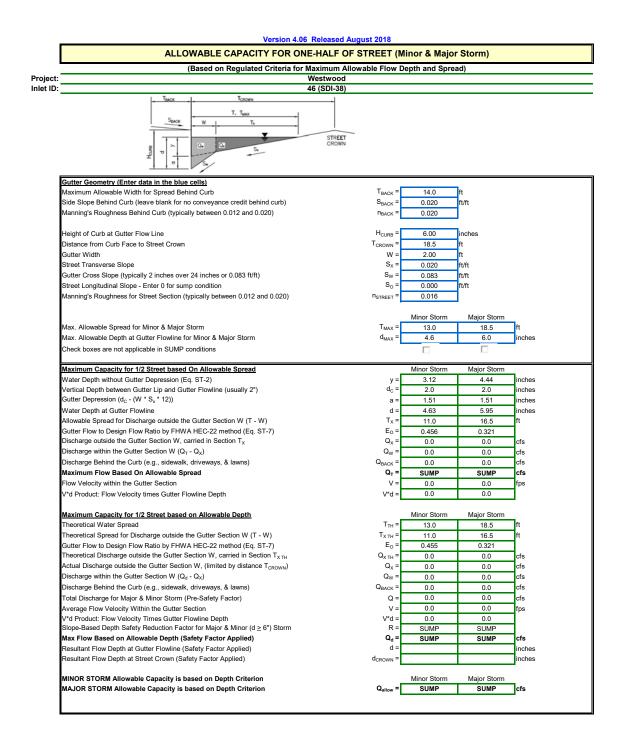
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a')		3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	a _{LOCAL} = No =	1	3.0	inches
Length of a Single Unit Inlet (Grate of Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	n.
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.5)	C _f -G = C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < Allowable Street Capacity'	0 _f -0 -	MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	2.6	6.5	cfs
Water Spread Width	α ₀ = T =	9.6	14.4	ft
Water Depth at Flowline (outside of local depression)	d =	3.8	5.0	inches
Water Depth at Street Crown (or at T _{MAX})	d _{cROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.599	0.413	inones
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	1.0	3.8	cfs
Discharge within the Gutter Section W	Q _w =	1.5	2.7	cfs
Discharge Behind the Curb Face		0.0	0.0	cfs
Flow Area within the Gutter Section W	Q _{BACK} = A _W =	0.0	0.66	sq ft
Velocity within the Gutter Section W	A _W = V _W =	3.3	4.0	fps
Water Depth for Design Condition	d _{LOCAL} =	6.8	4.0	inches
Grate Analysis (Calculated)	ULOCAL -	MINOR	MAJOR	inches
	L =	N/A	N/A	ft
Total Length of Inlet Grate Opening		N/A N/A	N/A N/A	n.
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	MINOR	MAJOR	
Under No-Clogging Condition	v -	N/A	N/A	
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A N/A	N/A N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A N/A	N/A N/A	_
Interception Rate of Side Flow	R _x =	N/A N/A	N/A N/A	. (.
Interception Capacity	Q _i =	MINOR	MAJOR	cfs
Under Clogging Condition	0	N/A		7
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =		N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A	- ,
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q ₀ -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.132	0.098	ft/ft
Required Length L _T to Have 100% Interception	L _T =	7.86	14.58	ft
Under No-Clogging Condition	-	MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	7.86	10.00	ft
Interception Capacity	Q _i =	2.5	5.7	cfs
Under Clogging Condition	-	MINOR	MAJOR	_ I
Clogging Coefficient	CurbCoef =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	4
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	2.5	5.5	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	1.0	cfs
Summary	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.5	5.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	85	%


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.6	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	-
Grate Orifice Coefficient (typical value 2.10 - 0.00)	$C_{o}(G) =$	N/A	N/A	-
Curb Opening Information	00 (0) -	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	_
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	4
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	_
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	_	MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	-	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	State	MINOR	MAJOR	010
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	
Clogging Factor for Multiple Units	Clog =	0.06	0.06	
Curb Opening as a Weir (based on Modified HEC22 Method)	olog -	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	4.3	8.6	cfs
Interception with Clogging	Q _{wa} =	4.0	8.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	-wa	MINOR	MAJOR	dia
Interception without Clogging	Q _{oi} =	17.3	19.4	cfs
		-	19.4	cfs
Interception with Clogging	Q _{oa} =	16.2 MINOR		015
Curb Opening Capacity as Mixed Flow	o - F	MINOR	MAJOR	1 -4-
Interception without Clogging	Q _{mi} =	8.0	12.1	cfs
Interception with Clogging	Q _{ma} =	7.5	11.3	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	4.0	8.1	cfs
Resultant Street Conditions	-	MINOR	MAJOR	-
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	13.0	18.5	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
Low Head Performance Reduction (Calculated)	_	MINOR	MAJOR	_
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.22	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.44	0.56	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.84	0.93	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.0	8.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.2	3.7	cfs


Design Information (Input)		MINOR	MAJOR	1
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a')		5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	a _{LOCAL} = No =	1	1	incries
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.3)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < Allowable Street Capacity'	0 _f -0 -	MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	2.2	7.8	cfs
Water Spread Width	ч., – Т =	7.5	13.4	ft
Water Depth at Flowline (outside of local depression)	d =	3.3	4.7	inches
Water Depth at Street Crown (or at T_{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.720	0.445	litorico
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.6	4.3	cfs
Discharge within the Gutter Section W	Q _w =	1.6	3.4	cfs
Discharge Behind the Curb Face		0.0	0.1	cfs
Flow Area within the Gutter Section W	Q _{BACK} = A _W =	0.39	0.1	sq ft
Velocity within the Gutter Section W	A _W = V _W =	4.1	5.5	fps
Water Depth for Design Condition		8.3	9.7	inches
	d _{LOCAL} =		9.7 MAJOR	incries
Grate Analysis (Calculated)	F	MINOR N/A	N/A	
Total Length of Inlet Grate Opening	L=			ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	٦.
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	_
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	-	MINOR	MAJOR	_
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.215	0.141	ft/ft
Required Length L_T to Have 100% Interception	L _T =	6.08	13.98	ft
Under No-Clogging Condition	-	MINOR	MAJOR	_
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	6.08	10.00	ft
Interception Capacity	Q _i =	2.2	6.9	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	2.2	6.7	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	1.1	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.2	6.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.1	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	86	%
	,0			

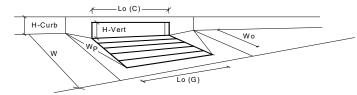


Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	2.1	8.4	cfs
Water Spread Width	т=	8.2	14.9	ft
Water Depth at Flowline (outside of local depression)	d =	3.5	5.1	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E, =	0.675	0.400	
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	0.7	4.9	cfs
Discharge within the Gutter Section W	Q _w =	1.4	3.2	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.3	cfs
Flow Area within the Gutter Section W	A _W =	0.41	0.68	sq ft
Velocity within the Gutter Section W	 V _w =	3.5	4.8	fps
Water Depth for Design Condition	d _{LOCAL} =	8.5	10.1	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	-
Under No-Clogging Condition	USINIE	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	190
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	SI -	MINOR	MAJOR	olo
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	• ₀ =	N/A	N/A	103
Interception Rate of Flow	R _x =	N/A	N/A	-
Actual Interception Capacity	$Q_a =$	N/A N/A	N/A	cfs
Carry-Over Flow = Q_0-Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A N/A	N/A N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	α _b –	MINOR	MAJOR	CIS
	o _		1	6.10
Equivalent Slope Se (based on grate carry-over)	S _e =	0.203	0.128	ft/ft
Required Length L _T to Have 100% Interception	L _T =	6.01	14.63	ft
Under No-Clogging Condition	. г	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L=	6.01	10.00	ft
Interception Capacity	Q _i =	2.1	7.1	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	_
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	4
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	2.1	6.9	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	1.5	cfs
Summary	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	2.1	6.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	82	%

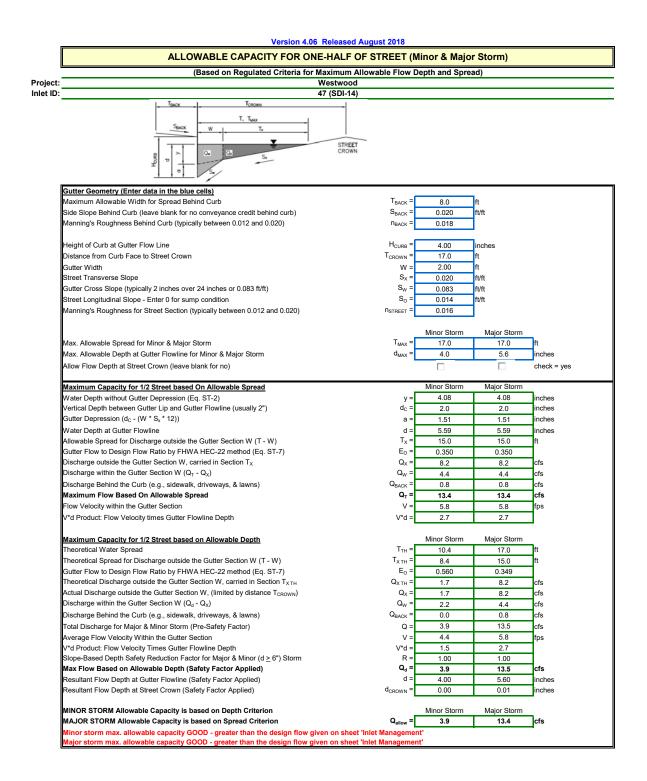


INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

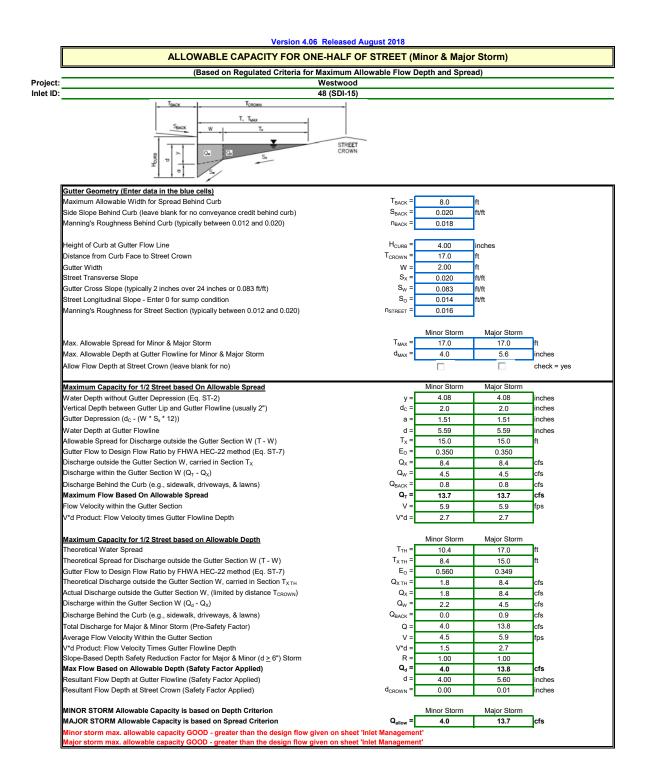


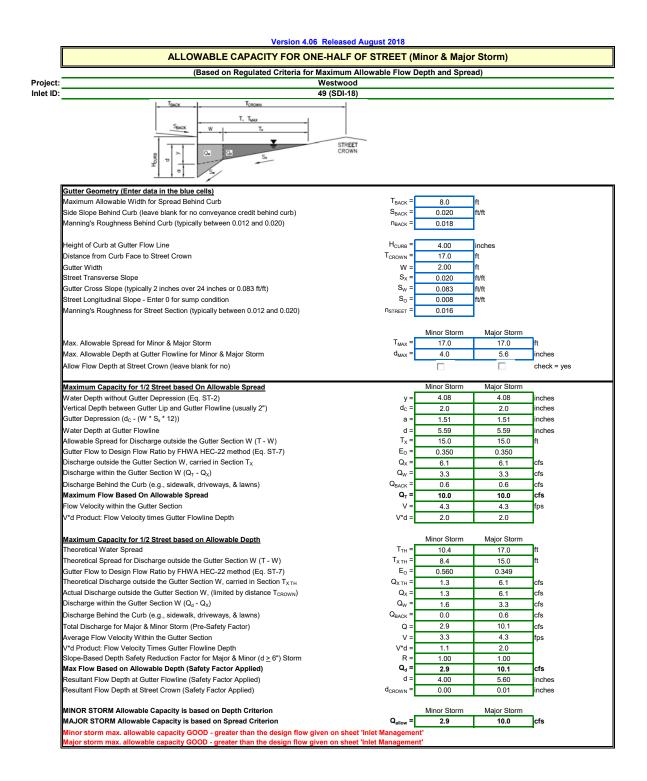
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.6	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)	-	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	-	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	3.2	5.9	cfs
Interception with Clogging	Q _{wa} =	2.9	5.3	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	_
Interception without Clogging	Q _{oi} =	8.6	9.7	cfs
Interception with Clogging	Q _{oa} =	7.8	8.7	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	4.9	7.0	cfs
Interception with Clogging	Q _{ma} =	4.4	6.3	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	2.9	5.3	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	13.0	18.5	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Grate} =	0.22	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.59	0.76	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	-
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
··g ·····-	Graid			
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.9	5.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.0	2.4	cfs
	- FLAN REQUIRED -		4.7	

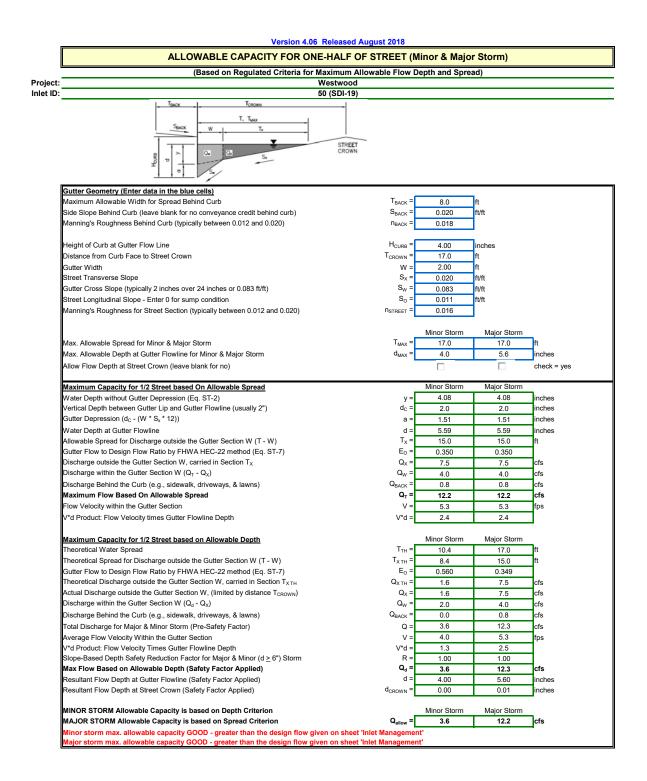


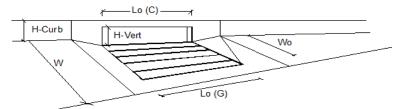
INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

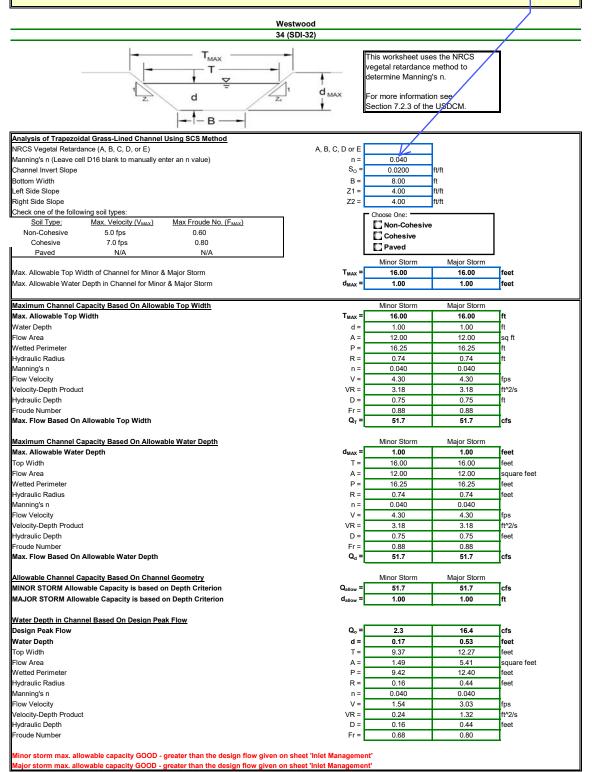

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	٦
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.6	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	-4
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)	/	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	-4
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	3.2	5.9	cfs
Interception with Clogging	Q _{wa} =	2.9	5.3	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	8.6	9.7	cfs
Interception with Clogging	Q _{oa} =	7.8	8.7	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	4.9	7.0	cfs
Interception with Clogging	Q _{ma} =	4.4	6.3	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	2.9	5.3	cfs
Resultant Street Conditions	out	MINOR	MAJOR	
Total Inlet Length	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	13.0	18.5	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
,				-
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.22	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.59	0.76	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	-			_
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.9	5.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.2	4.0	cfs

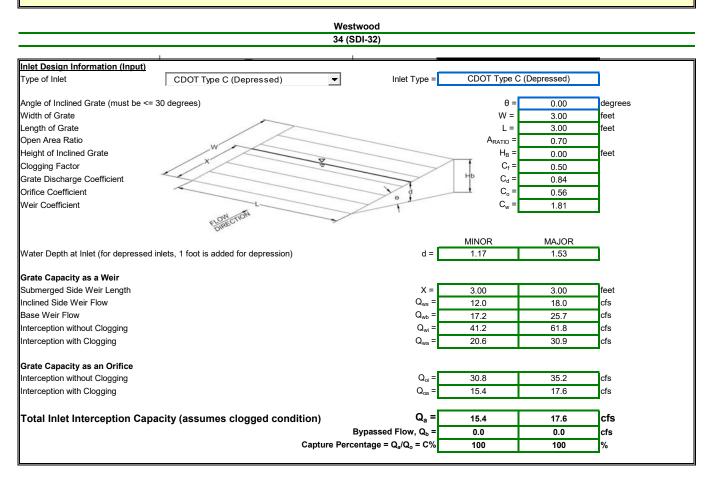

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	-	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	w. =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	1.7	7.2	cfs
Water Spread Width	т=	6.8	13.4	ft
Water Depth at Flowline (outside of local depression)	d =	3.1	4.7	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.770	0.443	
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	0.4	4.0	cfs
Discharge within the Gutter Section W	Q _w =	1.3	3.1	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.1	cfs
Flow Area within the Gutter Section W	A _W =	0.36	0.62	sq ft
Velocity within the Gutter Section W	V _W =	3.6	5.0	fps
Water Depth for Design Condition	d _{LOCAL} =	8.1	9.7	inches
Grate Analysis (Calculated)	ULOCAL -	MINOR	MAJOR	incries
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
		N/A N/A	N/A	it.
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	MINOR	MAJOR	
Under No-Clogging Condition	V -	-		6
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	. .	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	_
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	-	MINOR	MAJOR	
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.228	0.140	ft/ft
Required Length L_T to Have 100% Interception	L _T =	5.05	13.30	ft
Under No-Clogging Condition	-	MINOR	MAJOR	_
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	5.05	10.00	ft
Interception Capacity	Q _i =	1.6	6.5	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	1.6	6.3	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	0.9	cfs
Summary	`.	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.6	6.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.9	cfs
Capture Percentage = Q_a/Q_a =	C% =	100	88	%
UT 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	÷,3 =			17


Design Information (Input)		MINOR	MAJOR	1
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W. =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q _o =	1.7	8.7	cfs
Water Spread Width	T =	6.8	14.4	ft
Water Depth at Flowline (outside of local depression)	d =	3.1	5.0	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E., =	0.769	0.414	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.4	5.0	cfs
Discharge within the Gutter Section W	Q _w =	1.3	3.5	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.2	cfs
Flow Area within the Gutter Section W	A _W =	0.36	0.66	sq ft
Velocity within the Gutter Section W	V _W =	3.6	5.3	fps
Water Depth for Design Condition	d _{LOCAL} =	8.1	10.0	inches
Grate Analysis (Calculated)	LOONE	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	GIVIL	MINOR	MAJOR	-
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	_	MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	٦
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	195
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q ₀ -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	-0	MINOR	MAJOR	010
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.228	0.132	ft/ft
Required Length L _T to Have 100% Interception	L _T =	5.13	15.01	ft
Under No-Clogging Condition	- L	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	5.13	10.00	ft
Interception Capacity	Qi =	1.7	7.3	cfs
Under Clogging Condition	Qi -	MINOR	7.3 MAJOR	013
Clogging Condition	CurbCoef =	1.25	1.25	ר I
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	-
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	1.7	0.75 7.1	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _a = Q _b =	0.0	1.6	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a Summary	u _b =	MINOR	1.6 MAJOR	015
Summary Total Inlet Interception Capacity	Q =	MINOR 1.7	MAJOR 7.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q = Q _b =	1.7 0.0	7.1 1.6	cfs
l otal inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage = Q ₂ /Q ₂ =	-	0.0	1.6 81	cts %
Capture Fercentage - Wa/Wo =	C% =	100	81	70



Design Information (Input)		MINOR	MAJOR]
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W. =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q _o =	2.2	8.3	cfs
Water Spread Width	т=	9.1	15.9	ft
Water Depth at Flowline (outside of local depression)	d =	3.7	5.3	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E., =	0.626	0.375	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.8	5.0	cfs
Discharge within the Gutter Section W	Q _w =	1.4	3.0	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.4	cfs
Flow Area within the Gutter Section W	A _W =	0.45	0.72	sq ft
Velocity within the Gutter Section W	V _w =	3.1	4.1	fps
Water Depth for Design Condition	d _{LOCAL} =	8.7	10.3	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	· •	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	'
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.190	0.122	ft/ft
Required Length L _T to Have 100% Interception	L _T =	6.16	14.54	ft
Under No-Clogging Condition	· •	MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	6.16	10.00	ft
Interception Capacity	Qi =	2.2	7.0	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	ן ר
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	2.2	6.8	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	1.6	cfs
Summary		MINOR	MAJOR	-
Total Inlet Interception Capacity	Q =	2.2	6.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.6	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	81	%




Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	2.2	7.8	cfs
Water Spread Width	Т=	8.3	14.3	ft
Water Depth at Flowline (outside of local depression)	d =	3.5	5.0	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.674	0.415	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.7	4.4	cfs
Discharge within the Gutter Section W	Q _w =	1.5	3.1	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.2	cfs
Flow Area within the Gutter Section W	A _W =	0.42	0.66	sq ft
Velocity within the Gutter Section W	V _W =	3.6	4.8	fps
Water Depth for Design Condition	d _{LOCAL} =	8.5	10.0	inches
Grate Analysis (Calculated)	-LOCAL	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	-0-GRATE	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	ips
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Interception Capacity	Q _i =	N/A	N/A N/A	cfs
Under Clogging Condition	Gi -	MINOR	MAJOR	CIS
	GrateCoef =	N/A	N/A	-
Clogging Coefficient for Multiple-unit Grate Inlet		N/A N/A	N/A N/A	-
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =			6
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft fr
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q, =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	-
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.203	0.133	ft/ft
Required Length L _T to Have 100% Interception	L _T =	6.11	13.95	ft
Under No-Clogging Condition	-	MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L=	6.11	10.00	ft
Interception Capacity	Q _i =	2.2	6.8	cfs
Under Clogging Condition		MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	2.2	6.6	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	1.2	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.2	6.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.2	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	85	%

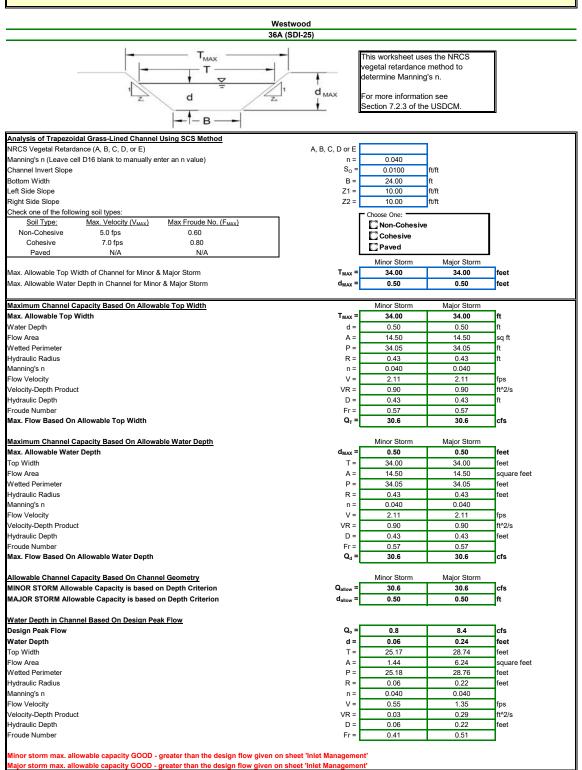
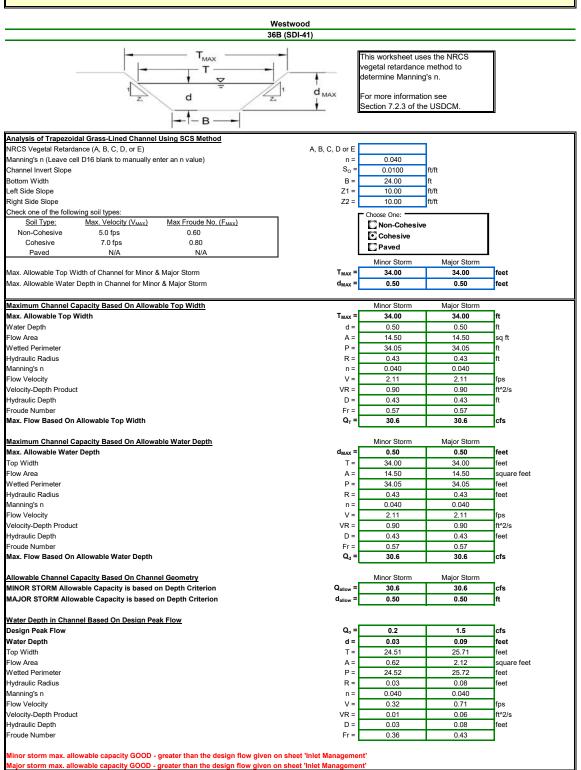
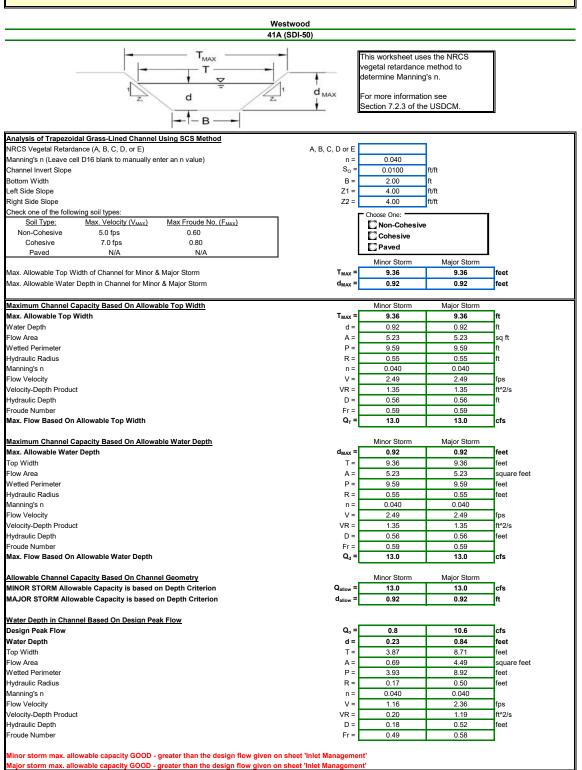
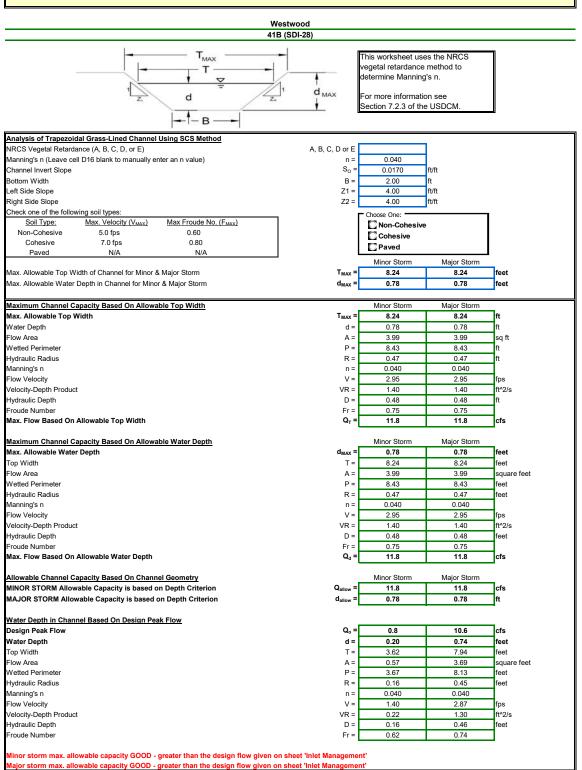

Appendix B – Hydraulic Computations Grate Inlet Sizing

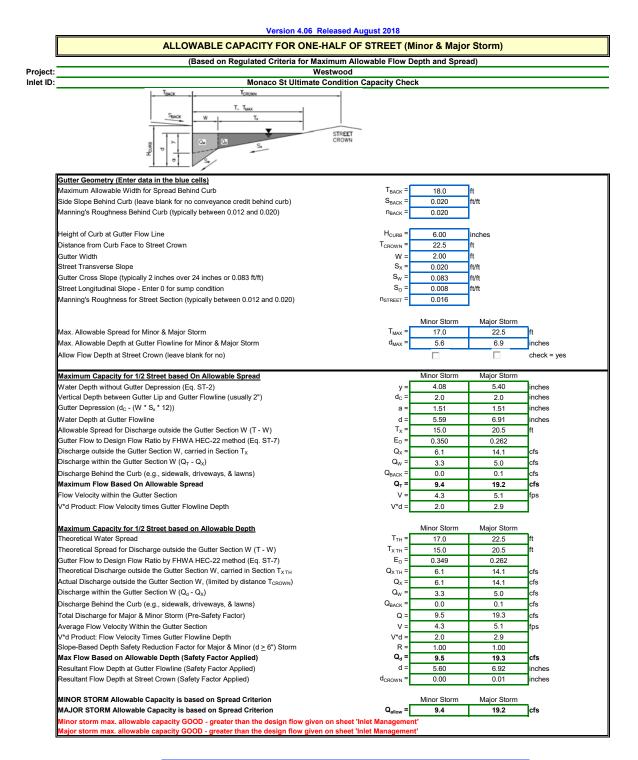
Table 8-5, Chapter 8, USDCM Vol. 1 recommends 0.04 for turfgrass sod when assessing Water Depths (Typical for all area inlets in a swale)


Version 4.06 Released August 2018

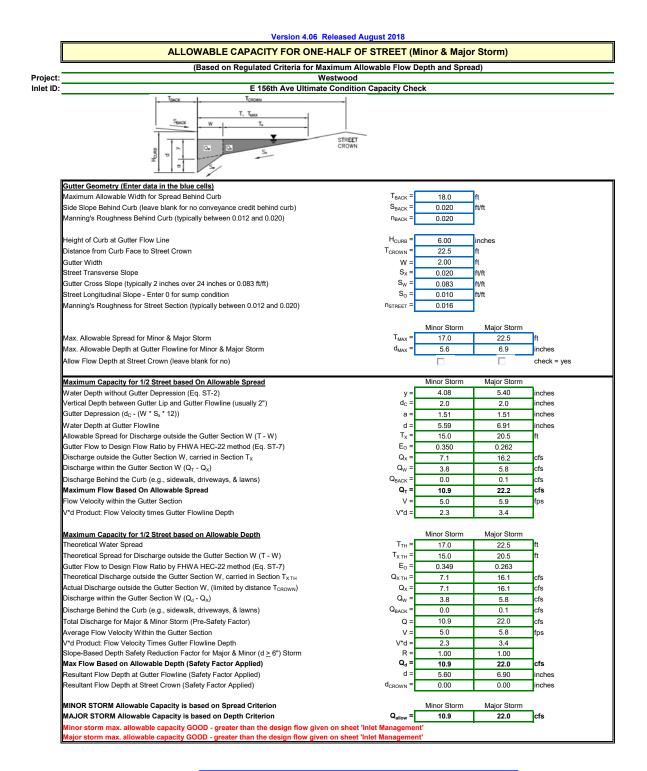



		36A (SDI-25)			
	1				
Inlet Design Information (Input)					
Type of Inlet	CDOT Type C (Depressed)	🚽 Inlet Type =	CDOT Type C (Depressed)	
Angle of Inclined Grate (must be <	<= 30 degrees)		θ =	0.00	degrees
Width of Grate			W =	3.00	feet
Length of Grate			L =	3.00	feet
Open Area Ratio			A _{RATIO} =	0.70	
Height of Inclined Grate	W		Н _в =	0.00	feet
Clogging Factor	X	2	C,=	0.50	-1
Grate Discharge Coefficient	4		Hb C _d =	0.84	
Orifice Coefficient			C_ =	0.56	-1
Weir Coefficient		0	C _w =	1.81	
	NN 10N				
	FURECT	*			
			MINOR	MAJOR	
Water Depth at Inlet (for depresse	ed inlets, 1 foot is added for depression)	d =	1.06	1.24	
		-			
Grate Capacity as a Weir		_			_
		X =	3.00	3.00	feet
Submerged Side Weir Length			3.00		1001
Submerged Side Weir Length Inclined Side Weir Flow		Q _{ws} =	10.3	13.0	cfs
		Q _{ws} = Q _{wb} =			
Inclined Side Weir Flow		Q _{ws} =	10.3	13.0	cfs
Inclined Side Weir Flow Base Weir Flow		Q _{ws} = Q _{wb} =	10.3 14.8	13.0 18.6	cfs cfs
Inclined Side Weir Flow Base Weir Flow Interception without Clogging Interception with Clogging		$Q_{ws} = Q_{wb} = Q_{wb} = Q_{wi} = Q_{wi}$	10.3 14.8 35.4	13.0 18.6 44.7	cfs cfs cfs
Inclined Side Weir Flow Base Weir Flow Interception without Clogging Interception with Clogging Grate Capacity as an Orifice		$\begin{array}{l} \mathbf{Q}_{\mathbf{w}\mathbf{u}} = \\ \mathbf{Q}_{\mathbf{w}\mathbf{b}} = \\ \mathbf{Q}_{\mathbf{w}\mathbf{b}} = \\ \mathbf{Q}_{\mathbf{w}\mathbf{u}} = \\ \mathbf{Q}_{\mathbf{w}\mathbf{u}} = \end{array}$	10.3 14.8 35.4 17.7	13.0 18.6 44.7 22.4	cfs cfs cfs cfs cfs
Inclined Side Weir Flow Base Weir Flow Interception without Clogging Interception with Clogging Grate Capacity as an Orifice Interception without Clogging		$Q_{ws} = Q_{wb} = Q_{wb} = Q_{wb} = Q_{wa} = Q$	10.3 14.8 35.4 17.7 29.3	13.0 18.6 44.7 22.4 31.6	cfs cfs cfs cfs cfs cfs
Inclined Side Weir Flow Base Weir Flow Interception without Clogging Interception with Clogging Grate Capacity as an Orifice		$\begin{array}{l} \mathbf{Q}_{\mathbf{w}\mathbf{u}} = \\ \mathbf{Q}_{\mathbf{w}\mathbf{b}} = \\ \mathbf{Q}_{\mathbf{w}\mathbf{b}} = \\ \mathbf{Q}_{\mathbf{w}\mathbf{u}} = \\ \mathbf{Q}_{\mathbf{w}\mathbf{u}} = \end{array}$	10.3 14.8 35.4 17.7	13.0 18.6 44.7 22.4	cfs cfs cfs cfs cfs
Inclined Side Weir Flow Base Weir Flow Interception without Clogging Interception with Clogging Grate Capacity as an Orifice Interception without Clogging Interception with Clogging	apacity (assumes clogged conditi	$Q_{wa} = Q_{wb} = Q_{wb} = Q_{wb} = Q_{wa} = Q$	10.3 14.8 35.4 17.7 29.3	13.0 18.6 44.7 22.4 31.6	cfs cfs cfs cfs cfs
Inclined Side Weir Flow Base Weir Flow Interception without Clogging Interception with Clogging Grate Capacity as an Orifice Interception without Clogging Interception with Clogging	pacity (assumes clogged conditi	$Q_{wa} = Q_{wb} = Q_{wb} = Q_{wb} = Q_{wa} = Q$	10.3 14.8 35.4 17.7 29.3 14.6	13.0 18.6 44.7 22.4 31.6 15.8	cfs cfs cfs cfs cfs cfs cfs cfs

		36B (SDI-41)			
Inlet Design Information (Input)					
Type of Inlet	CDOT Type C (Depressed)	- Inlet Type =	CDOT Type C (I	Depressed)	
Angle of Inclined Grate (must be <-	- 30 degrees)		θ =	0.00	degrees
Width of Grate	- 50 degrees)		W =	3.00	feet
Length of Grate			VV = L =	3.00	feet
Open Area Ratio			A _{RATIO} =	0.70	leet
Height of Inclined Grate	W		H _B =	0.00	feet
Clogging Factor	X	8	C _f =	0.00	leet
	4/		Hb C _d =	0.50	-
Grate Discharge Coefficient Orifice Coefficient	2		C ₀ =		-
				0.56	_
Weir Coefficient			C _w =	1.81	
	PLOW CTIC.	\sim			
	0		MINOR	MAJOR	
Water Depth at Iplat (for depressor	inlets, 1 foot is added for depression)	d =	1.03	1.09	-
Water Depth at Iniet (10) depressed	Timets, Thou is added for depression)	u -	1.03	1.09	
Grate Capacity as a Weir					
Submerged Side Weir Length		X =	3.00	3.00	feet
Inclined Side Weir Flow		Q _{ws} =	9.9	10.7	cfs
Base Weir Flow		Q _{wb} =	14.1	15.3	cfs
		Q _{wi} =	33.8	36.8	cfs
Interception without Clogging					cfs
		Q _{wa} =	16.9	18.4	0.0
Interception with Clogging		Q _{wa} =	16.9	18.4	
Interception with Clogging Grate Capacity as an Orifice				-	
Interception with Clogging Grate Capacity as an Orifice Interception without Clogging		Q _{oi} =	28.8	29.6	cfs
Interception with Clogging				-	-
Interception with Clogging Grate Capacity as an Orifice Interception without Clogging Interception with Clogging	pacity (assumes clogged condit	Q _{o1} = Q _{on} =	28.8	29.6	cfs
Interception with Clogging Grate Capacity as an Orifice Interception without Clogging Interception with Clogging	acity (assumes clogged condit	Q _{o1} = Q _{on} =	28.8 14.4	29.6 14.8	cfs cfs

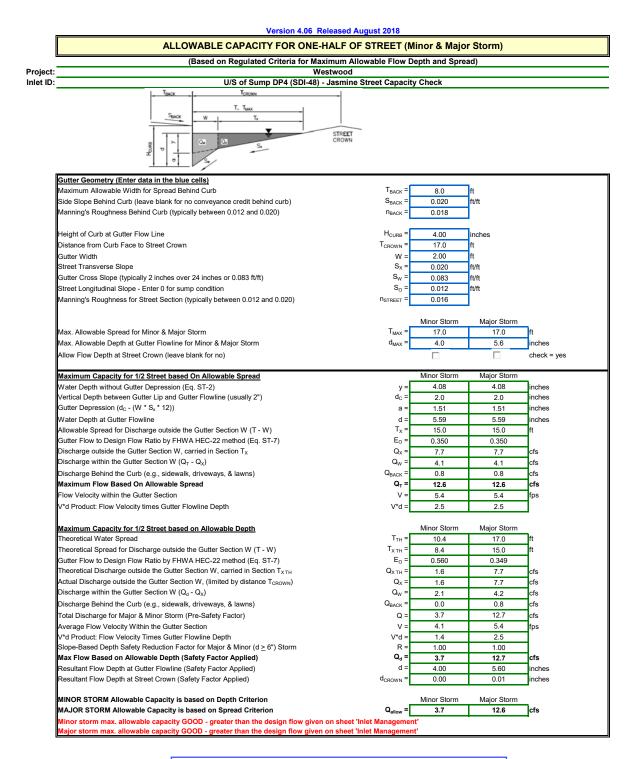


		41A (SDI-50)				
Inlet Design Information (Inpu	<u>it)</u>	*				
Type of Inlet	CDOT Type C	👻 Inlet T	ype =	CDOT Ty	pe C	
Angle of Inclined Grate (must be	e <= 30 degrees)			θ =	0.00	degrees
Width of Grate				W =	3.00	feet
Length of Grate				L =	3.00	feet
Open Area Ratio				A _{RATIO} =	0.70	
Height of Inclined Grate	W			H _B =	0.00	feet
Clogging Factor	X	<u>Å</u>	1	C _f =	0.50	-
Grate Discharge Coefficient	4			Hb C _d =	0.96	-
Orifice Coefficient	4			C_ =	0.64	-
Weir Coefficient		• •		C _w =	2.05	-
	WH TON			- w	2.00	
	FLORECT	~				
	0.			MINOR	MAJOR	
Nater Depth at Inlet (for depres	sed inlets. 1 foot is added for depression	on)	d =	MINOR 0.23	MAJOR 0.84	-
Water Depth at Inlet (for depres	sed inlets, 1 foot is added for depression	on)	d =	-		
	sed inlets, 1 foot is added for depression	on)	d =	-		
Water Depth at Inlet (for depres Grate Capacity as a Weir Submerged Side Weir Length	sed inlets, 1 foot is added for depression	n)	d =	-		feet
Grate Capacity as a Weir	sed inlets, 1 foot is added for depression			0.23	0.84	feet
Grate Capacity as a Weir Submerged Side Weir Length	sed inlets, 1 foot is added for depression		X =	0.23	0.84	
Grate Capacity as a Weir Submerged Side Weir Length Inclined Side Weir Flow	sed inlets, 1 foot is added for depression		X = Q _{ws} =	0.23 3.00 1.2	0.84 3.00 8.3	cfs
Grate Capacity as a Weir Submerged Side Weir Length Inclined Side Weir Flow Base Weir Flow	sed inlets, 1 foot is added for depression		X = Q _{ws} = Q _{wb} =	0.23 3.00 1.2 1.7	0.84 3.00 8.3 11.8	cfs cfs
Grate Capacity as a Weir Submerged Side Weir Length Inclined Side Weir Flow Base Weir Flow Interception without Clogging Interception with Clogging	sed inlets, 1 foot is added for depression		X = Q _{ws} = Q _{wb} = Q _{wi} =	0.23 3.00 1.2 1.7 4.2	0.84 3.00 8.3 11.8 28.4	cfs cfs cfs
Grate Capacity as a Weir Submerged Side Weir Length Inclined Side Weir Flow Base Weir Flow Interception without Clogging Interception with Clogging Grate Capacity as an Orifice	sed inlets, 1 foot is added for depression		X = Q _{wb} = Q _{wi} = Q _{wa} =	0.23 3.00 1.2 1.7 4.2 2.1	0.84 3.00 8.3 11.8 28.4 14.2	cfs cfs cfs cfs cfs
Grate Capacity as a Weir Submerged Side Weir Length Inclined Side Weir Flow Base Weir Flow Interception without Clogging Interception with Clogging Grate Capacity as an Orifice Interception without Clogging	uer		X = $Q_{ws} =$ $Q_{wb} =$ $Q_{wi} =$ $Q_{wa} =$ $Q_{oi} =$	0.23 3.00 1.2 1.7 4.2 2.1 15.6	0.84 3.00 8.3 11.8 28.4 14.2 29.6	cfs cfs cfs cfs cfs cfs
Grate Capacity as a Weir Submerged Side Weir Length Inclined Side Weir Flow Base Weir Flow Interception without Clogging Interception with Clogging Grate Capacity as an Orifice	uer		X = Q _{wb} = Q _{wi} = Q _{wa} =	0.23 3.00 1.2 1.7 4.2 2.1	0.84 3.00 8.3 11.8 28.4 14.2	cfs cfs cfs cfs cfs
Grate Capacity as a Weir Submerged Side Weir Length Inclined Side Weir Flow Base Weir Flow Interception without Clogging Interception with Clogging Grate Capacity as an Orifice Interception with Clogging Interception with Clogging			X = $Q_{ws} =$ $Q_{wb} =$ $Q_{wi} =$ $Q_{wa} =$ $Q_{oi} =$	0.23 3.00 1.2 1.7 4.2 2.1 15.6	0.84 3.00 8.3 11.8 28.4 14.2 29.6	cfs cfs cfs cfs cfs
Grate Capacity as a Weir Submerged Side Weir Length Inclined Side Weir Flow Base Weir Flow Interception without Clogging Interception with Clogging Grate Capacity as an Orifice Interception with Clogging Interception with Clogging	sed inlets, 1 foot is added for depression		$X = $ $Q_{ws} = $ $Q_{wb} = $ $Q_{wi} = $ $Q_{oi} = $ $Q_{oa} = $ $Q_{a} = $	0.23 3.00 1.2 1.7 4.2 2.1 15.6 7.8	0.84 3.00 8.3 11.8 28.4 14.2 29.6 14.8	cfs cfs cfs cfs cfs cfs cfs

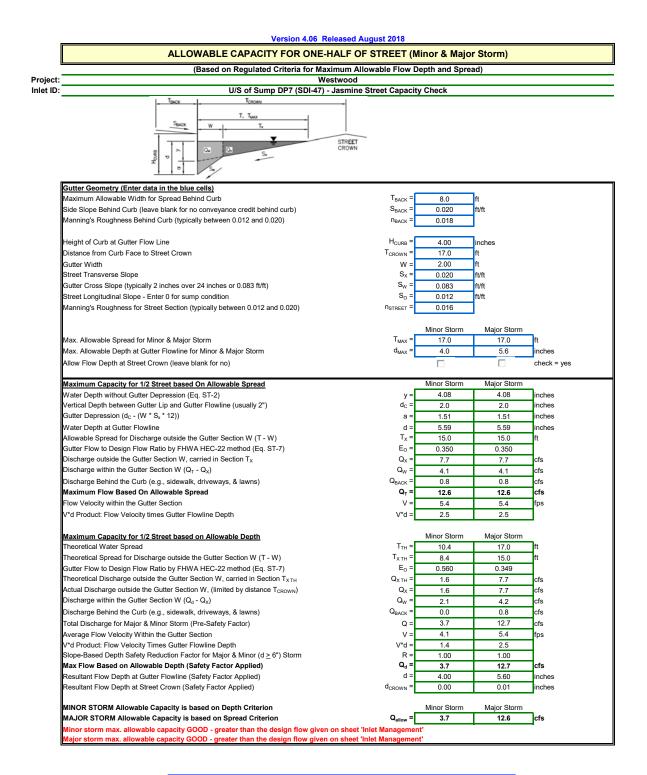


		41B (SDI-28)			
Inlet Design Information (Inp	ut)				
Type of Inlet	CDOT Type C	👻 Inlet Type =	CDOT Ty	be C	
Angle of Inclined Grate (must b	e <= 30 degrees)		θ =	0.00	degrees
Width of Grate			W =	3.00	feet
Length of Grate			L=	3.00	feet
Open Area Ratio	W		A _{RATIO} =	0.70	
Height of Inclined Grate			H _B =	0.00	feet
Clogging Factor	11	*	C _f =	0.50	
Grate Discharge Coefficient			Hb C _d =	0.96	
Orifice Coefficient	A		C_,=	0.64	
Weir Coefficient	L		C _w =	2.05	
	FLON	\checkmark			
1			MINOR	MAJOR	_
Water Depth at Inlet (for depres	ssed inlets, 1 foot is added for depression) d =	0.20	0.74	
Grate Capacity as a Weir					
Submerged Side Weir Length		X =	3.00	3.00	feet
		Q _{ws} =	1.0	6.9	cfs
Inclined Side Weir Flow					
Inclined Side Weir Flow Base Weir Flow		Q _{wb} =	1.4	9.9	cfs
			1.4 3.4	9.9 23.7	cfs cfs
Base Weir Flow		Q _{wb} =			_
Base Weir Flow Interception without Clogging Interception with Clogging		Q _{wb} = Q _{wi} =	3.4	23.7	cfs
Base Weir Flow Interception without Clogging Interception with Clogging Grate Capacity as an Orifice		Q _{wb} = Q _{wi} =	3.4	23.7	cfs
Base Weir Flow Interception without Clogging Interception with Clogging Grate Capacity as an Orifice Interception without Clogging		Q _{wb} = Q _{wi} = Q _{wa} = Q _{wa} =	3.4 1.7 14.6	23.7 11.8 27.9	cfs cfs cfs
Base Weir Flow Interception without Clogging Interception with Clogging		Q _{wb} = Q _{wi} = Q _{wa} =	3.4 1.7	23.7 11.8	cfs cfs
Base Weir Flow Interception without Clogging Interception with Clogging Grate Capacity as an Orifice Interception without Clogging Interception with Clogging	Capacity (assumes clogged cor	$ \begin{array}{c} \mathbf{Q}_{ub} = \\ \mathbf{Q}_{wa} = \\ \mathbf{Q}_{wa} = \\ \mathbf{Q}_{oa} = \\ \mathbf{Q}_{oa} = \\ \mathbf{Q}_{aa} = \\ \mathbf{Q}_{aa} = \\ \end{array} $	3.4 1.7 14.6	23.7 11.8 27.9	cfs cfs cfs
Base Weir Flow Interception without Clogging Interception with Clogging Grate Capacity as an Orifice Interception without Clogging Interception with Clogging	Capacity (assumes clogged cor	$\begin{array}{c} \mathbf{Q}_{wb}^{o} = \\ \mathbf{Q}_{wa}^{o} = \\ \mathbf{Q}_{wa} = \\ \mathbf{Q}_{oa} = \\ \mathbf{Q}_{oa} = \end{array}$	3.4 1.7 14.6 7.3	23.7 11.8 27.9 13.9	cfs cfs cfs cfs cfs

Appendix B – Hydraulic Computations Street Capacity Check

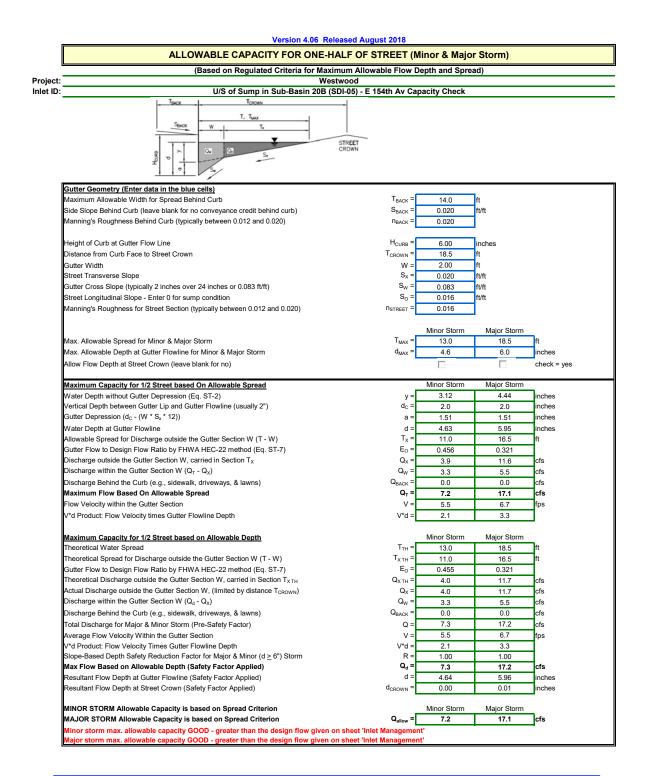


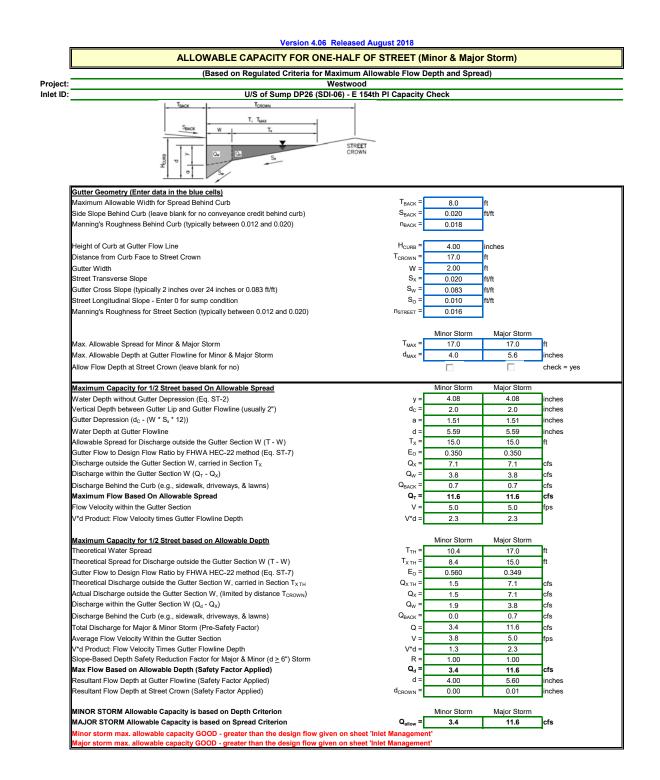
Compares against flow from Sub-Basin 30A & 30B

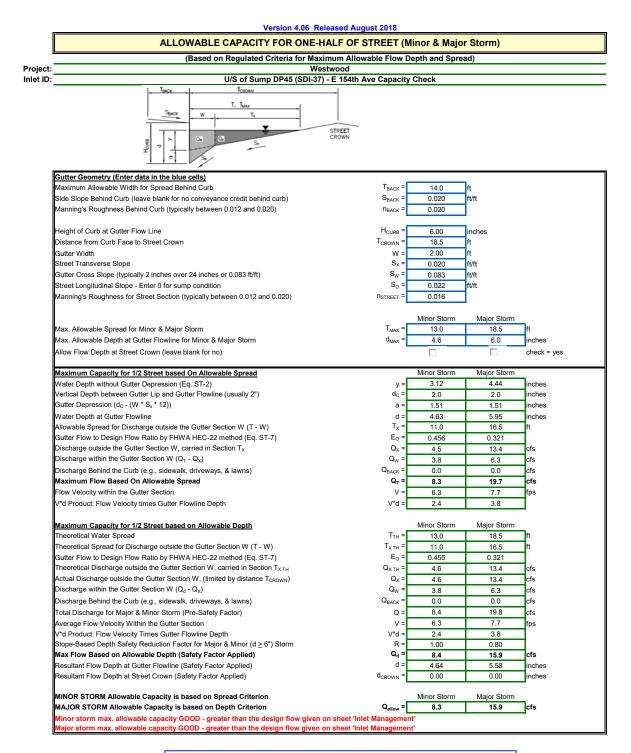


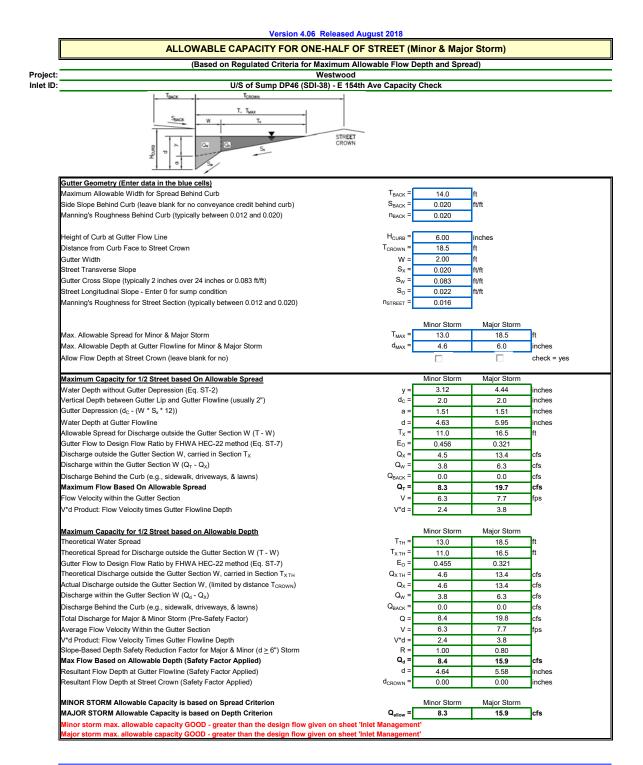
Compares against flow from Sub-Basin 30A

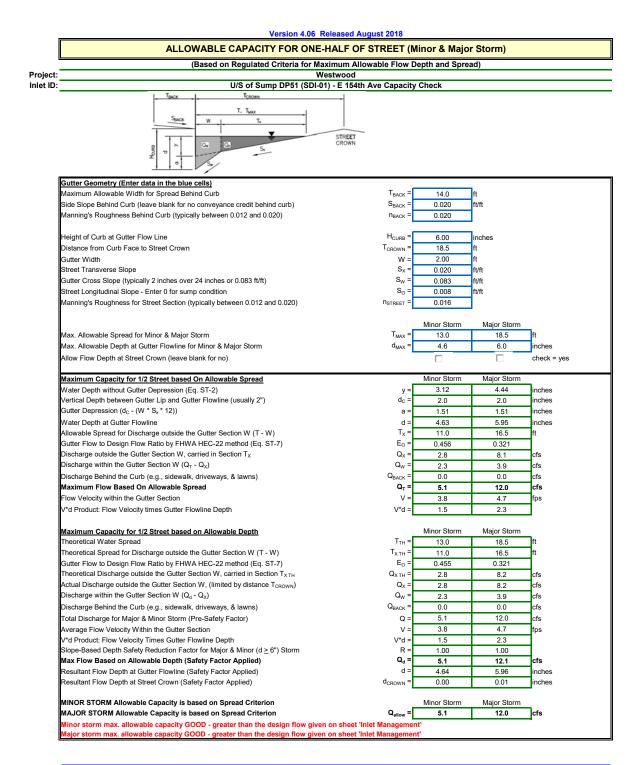
Appendix B – Hydraulic Computations Upstream of Sump Street Capacity Check

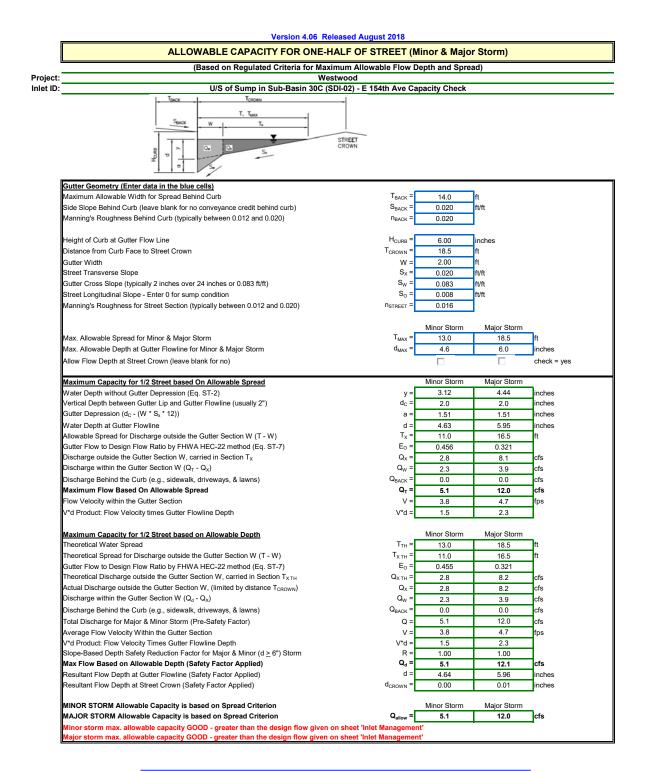

Compares against flow from Basin 4 to SDI-48


Compares against flow from Basin 7 to SDI-47

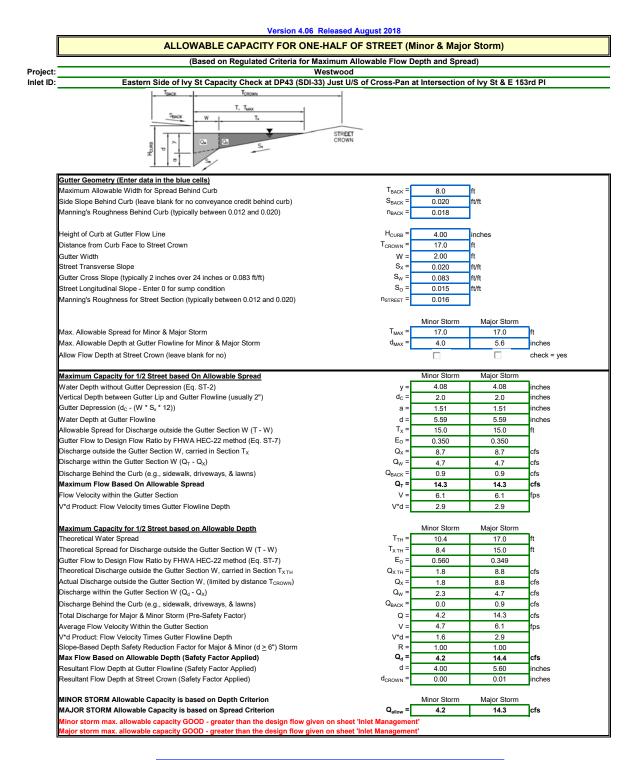

Compares against flow from Basin 10 to SDI-12


Compares against flow from Sub-Basin 20B to SDI-05 + bypass flow SDI-46


Compares against flow from Basin 26 to SDI-06 + bypass flows from SDI-21, SDI-09 & SDI-19


Compares against flow from Basin 45 to SDI-37

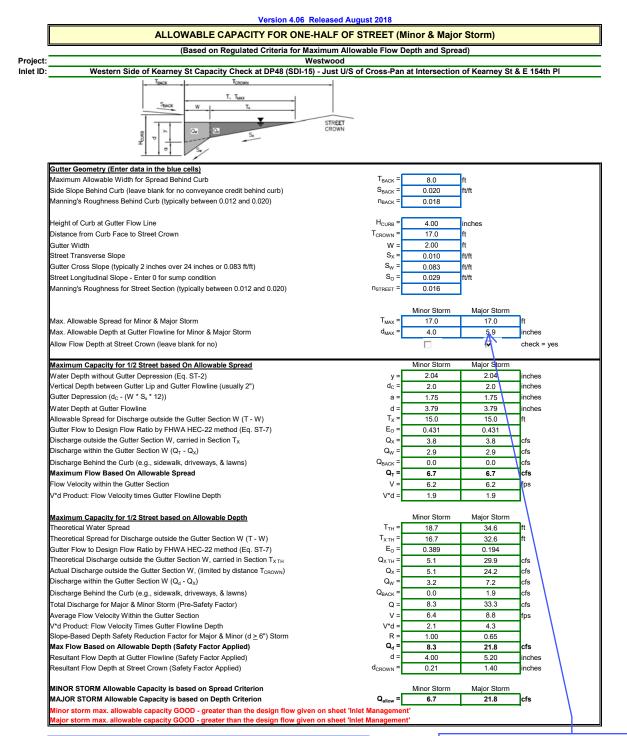
Compares against flow from Basin 46 to SDI-38 + bypass flows from SDI-40



Compares against flow from Basin 51 to SDI-01 + bypass flows from SDI-26

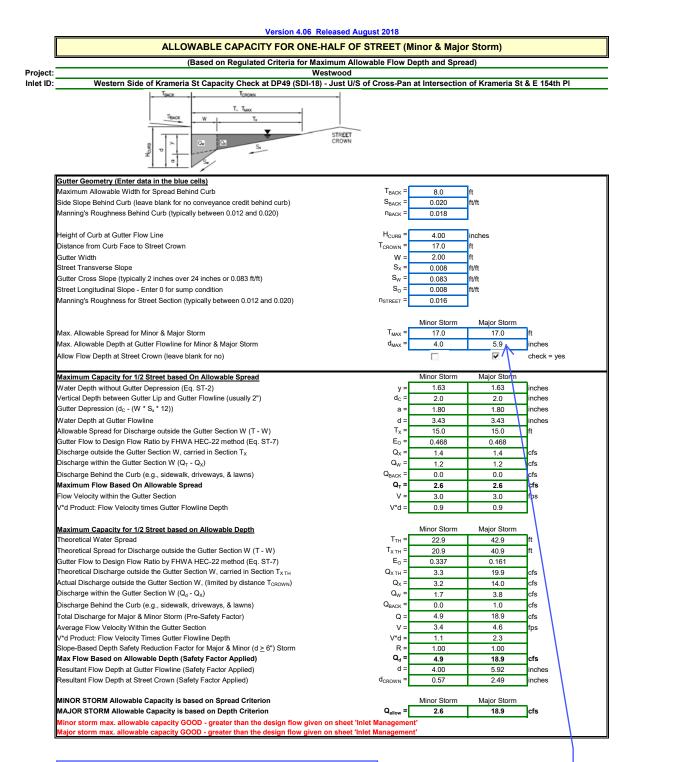
Compares against flow from Sub-Basin 30C to SDI-02

Appendix B – Hydraulic Computations Upstream of Cross-Pan Street Capacity Check

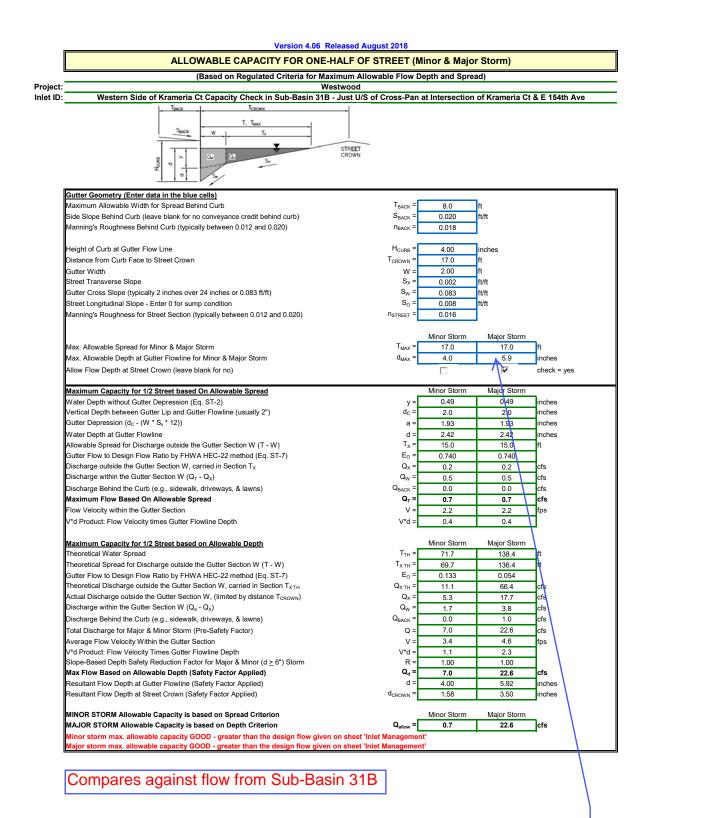


Compares against flow from Basin 43 to SDI-33

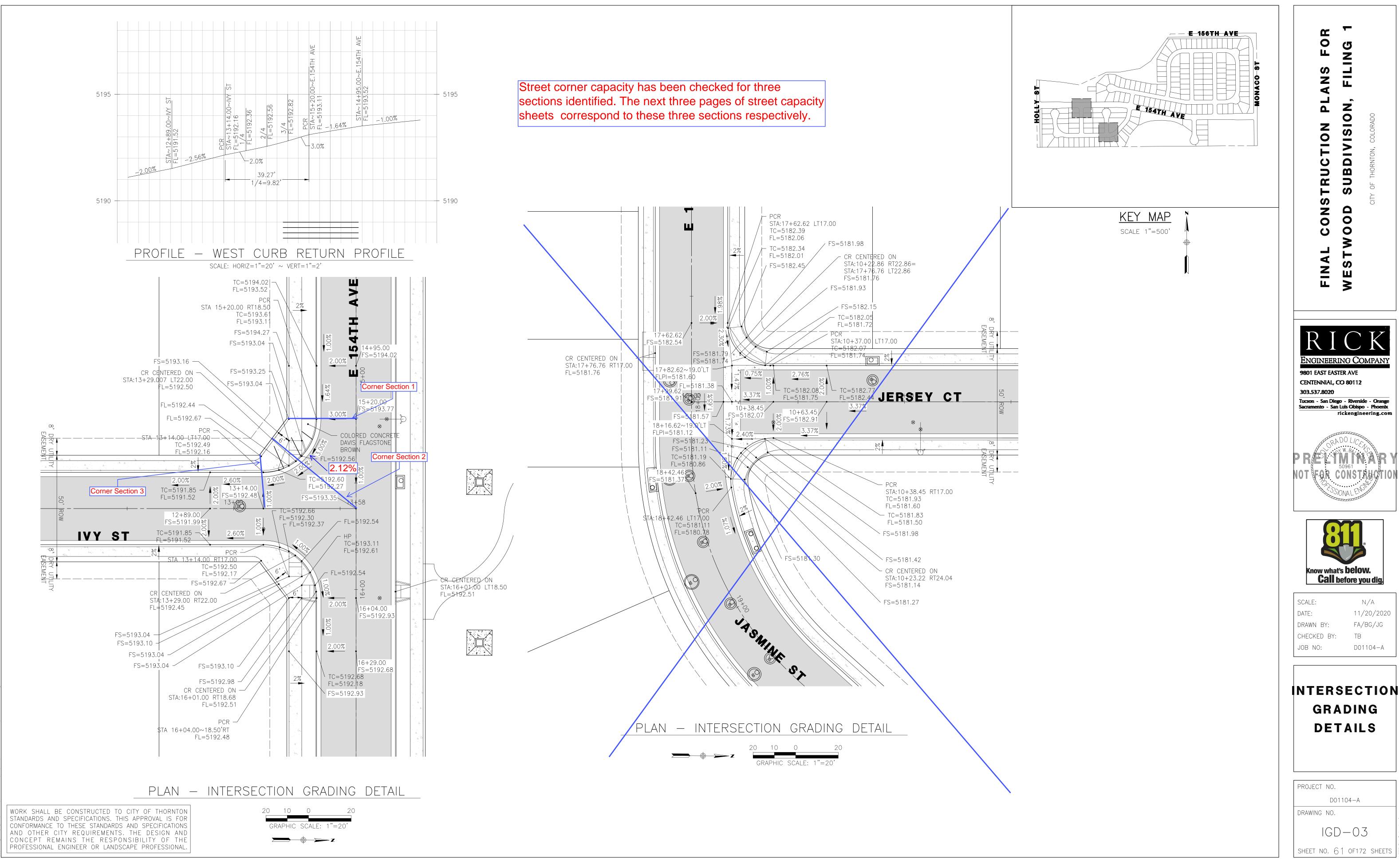
Cross-Pan Capacity Check for all cross-pans have been provided in a separate section to follow in Appendix B.



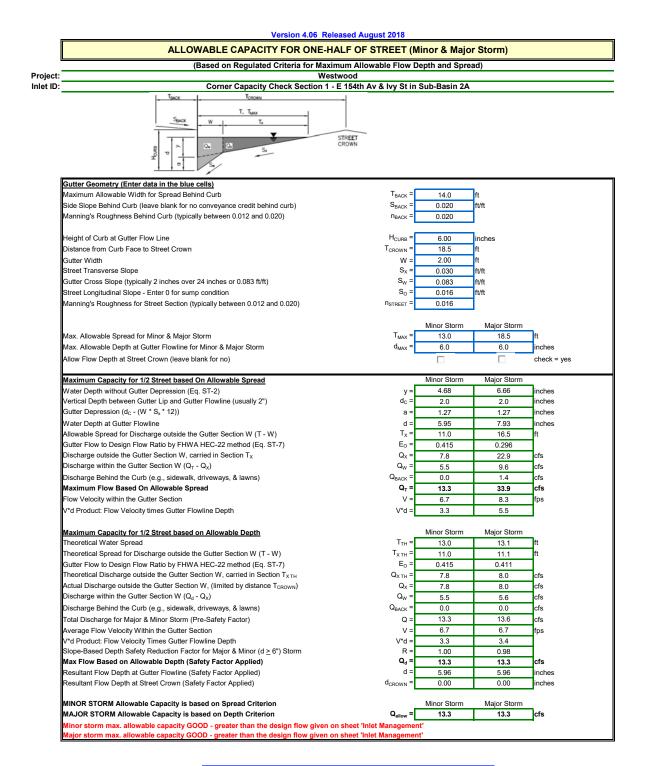
Compares against flow from Basin 44 to SDI-35

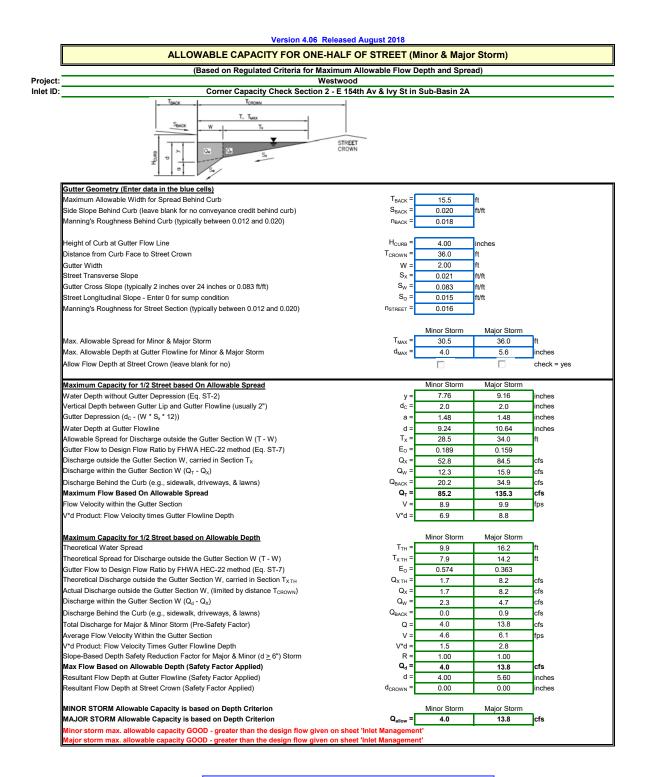

Compares against flow from Basin 48 to SDI-15 + bypass flow from SDI-24

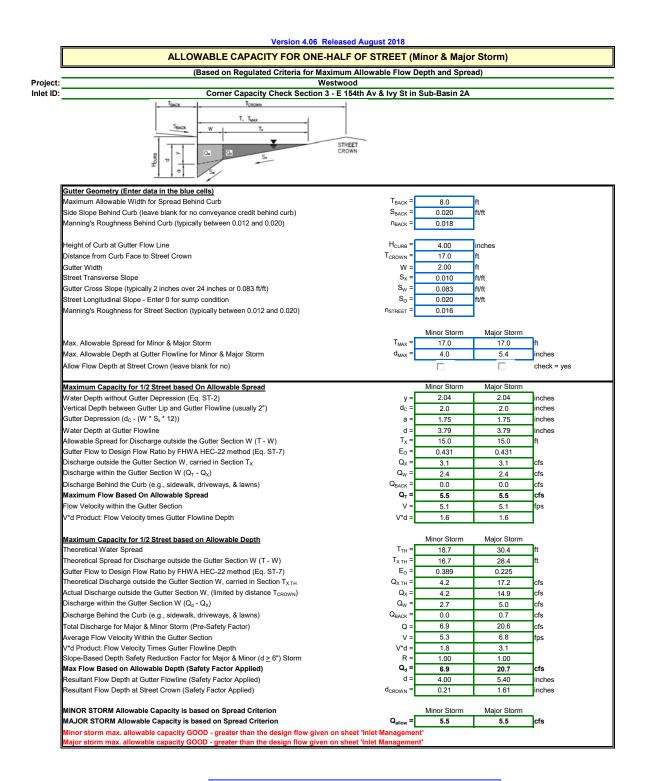
Flow goes over street crown and flows to the downstream cross-pan at the intersection of Kearney St & E 154th PI. This cross-pan capacity check has been provided in a separate section to follow in Appendix B. Cross-pan capacity check accounts for flow from DP48 to SDI-15 + all bypass flows from DP13 (SDI-24), DP14 (SDI-11), & DP47 (SDI-14).

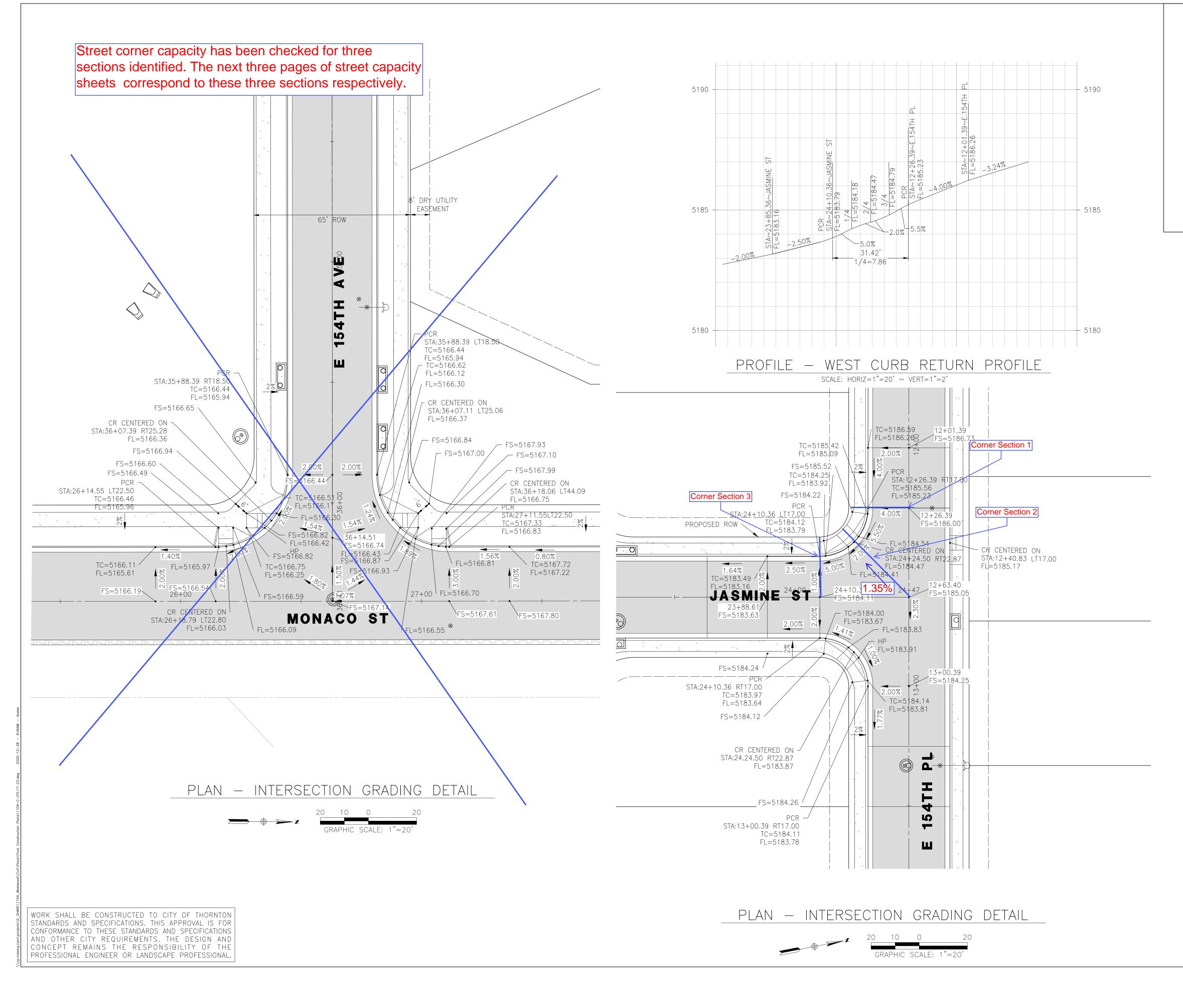


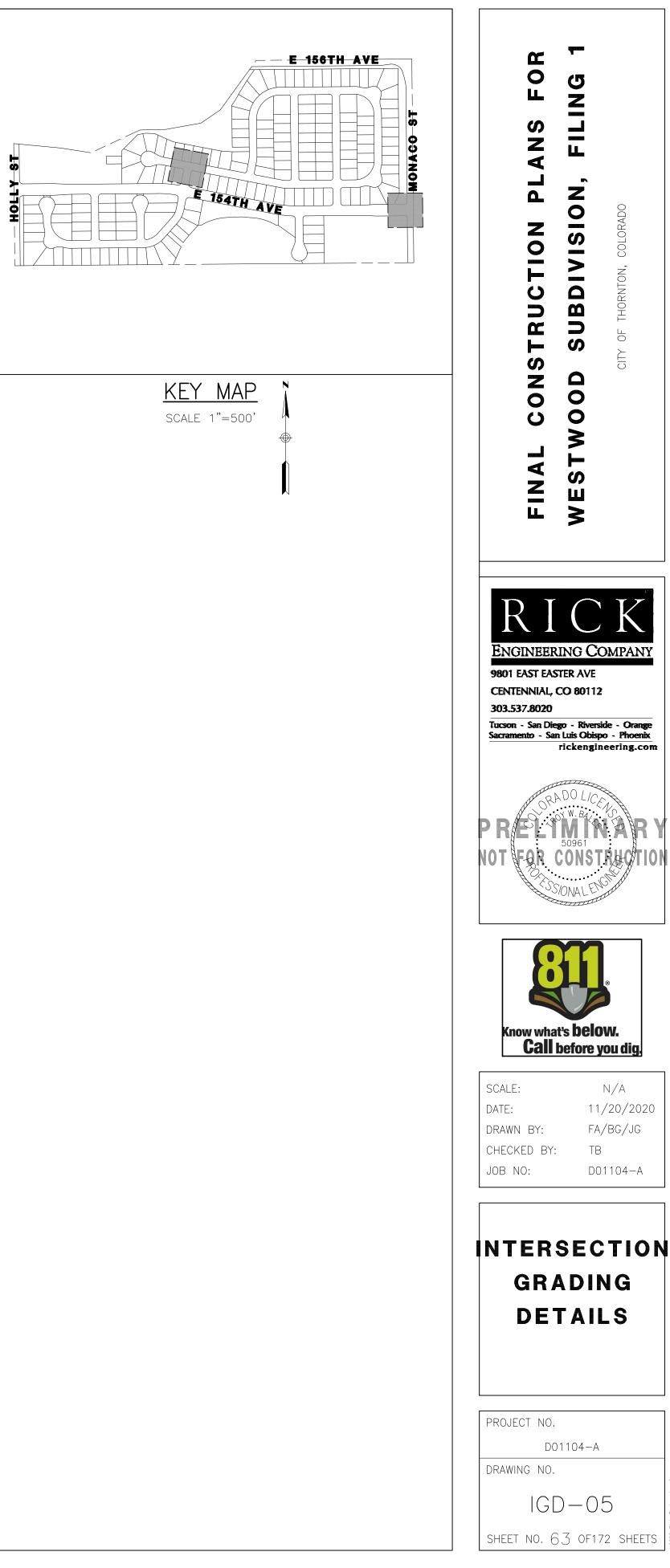
Compares against flow from Basin 49 to SDI-18 + bypass flow from SDI-27

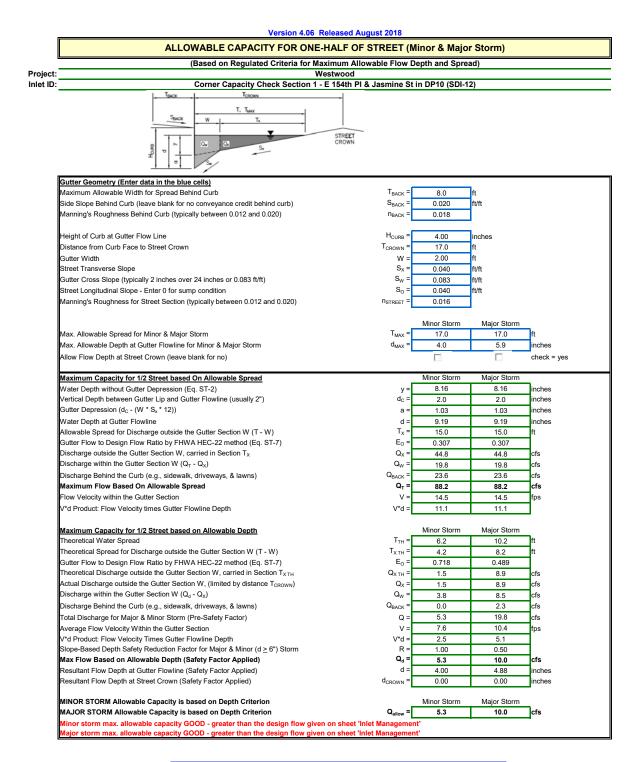

Flow goes over street crown and flows to the downstream cross-pan at the intersection of Krameria St & E 154th Pl. This cross-pan capacity check has been provided in a separate section to follow in Appendix B. Cross-pan capacity check accounts for flow from DP49 to SDI-18 + all bypass flows from DP15 (SDI-27), DP16 (SDI-16), & DP48 (SDI-15).

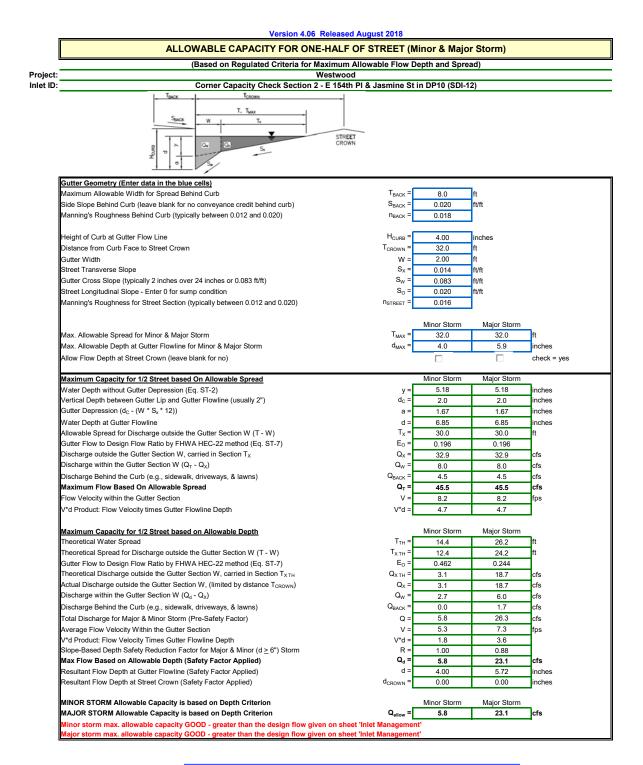

Flow goes over street crown and flows to the downstream cross-pan at the intersection of Krameria Ct & E 154th Ave This cross-pan capacity check has been provided in a separate section to follow in Appendix B. Cross-pan capacity check accounts for full flow from DP31 to SDI-26 Appendix B – Hydraulic Computations Street Corner Capacity Check

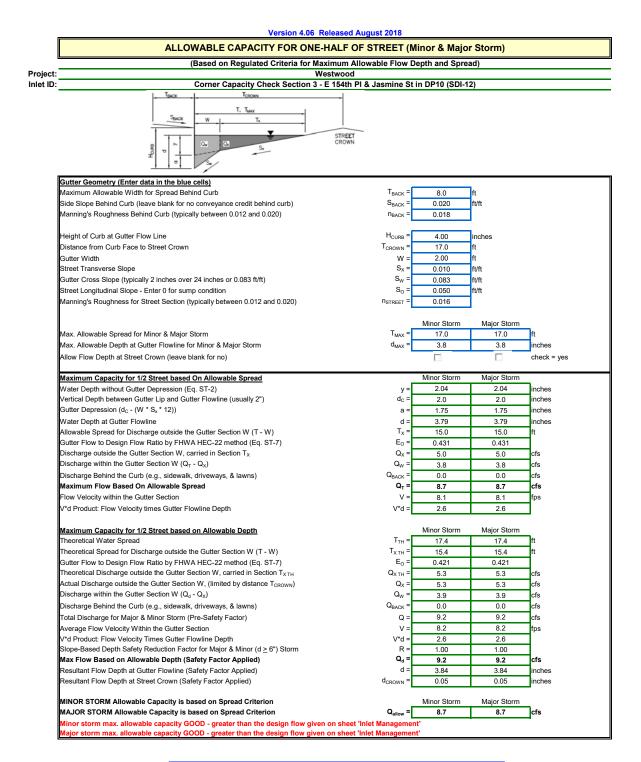

keng.com\projects\D_SHARE\1104_Westwood\Civil\Plans\Final Construction Plans\1104-C-DTL17-23.dwg 2020-12-28 - 9:25AM - t

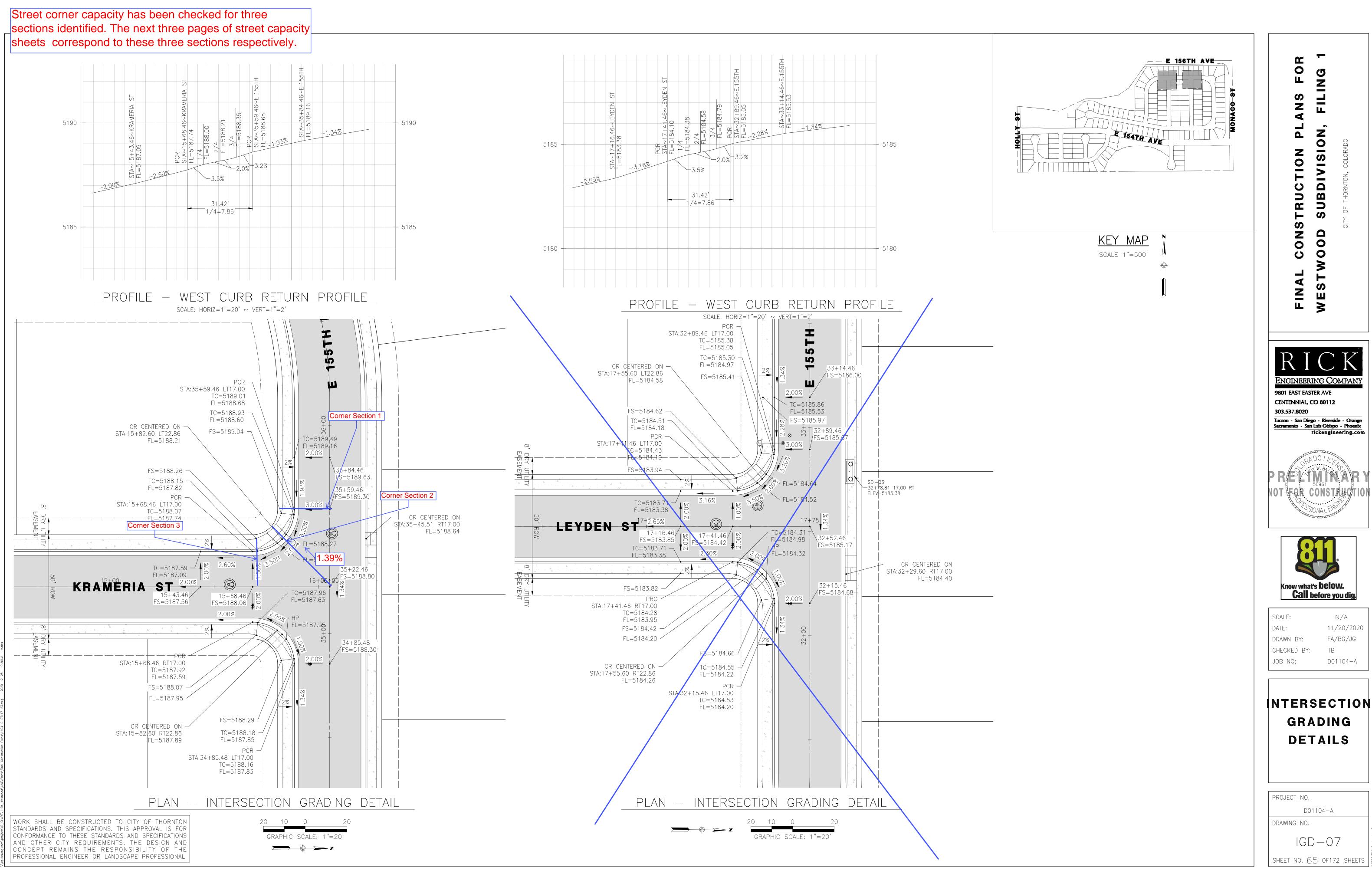

Compares against Q from Sub-Basin 2A

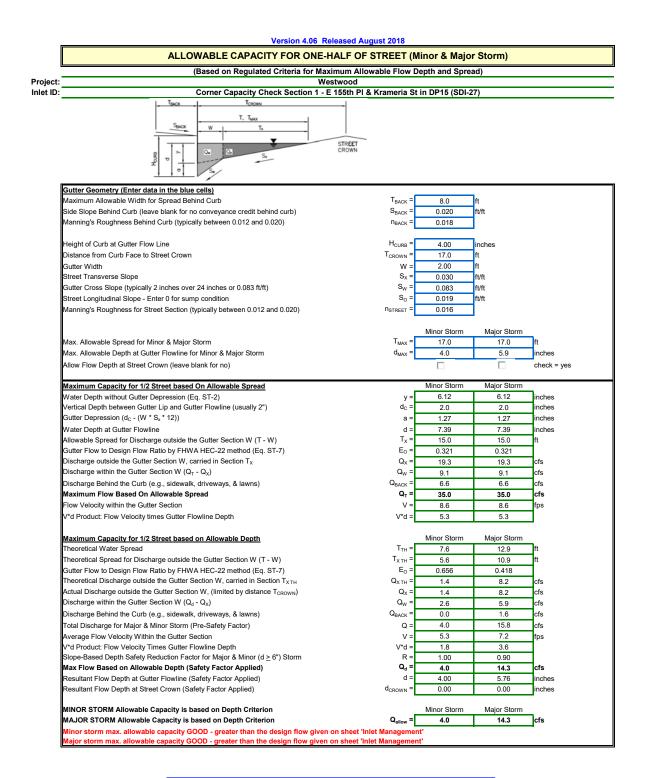



Compares against Q from Sub-Basin 2A

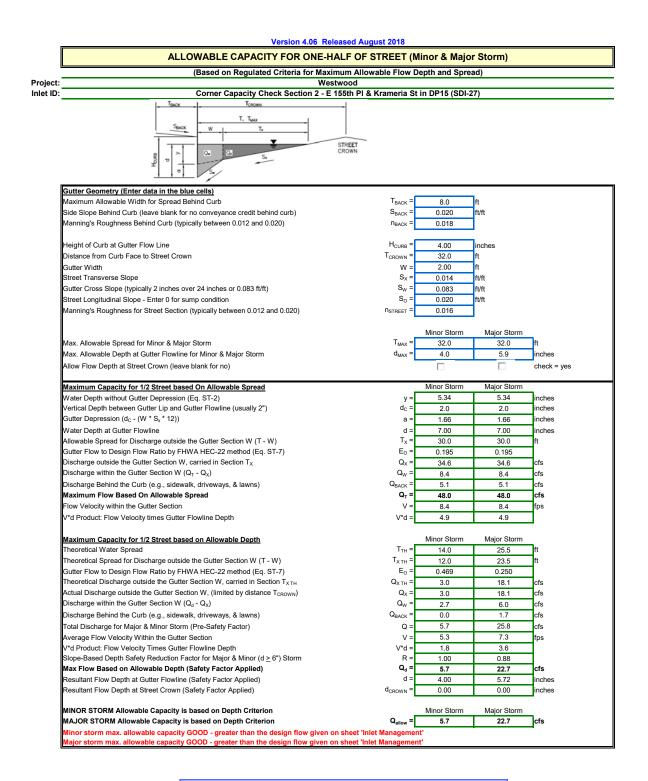

Compares against Q from Sub-Basin 2A



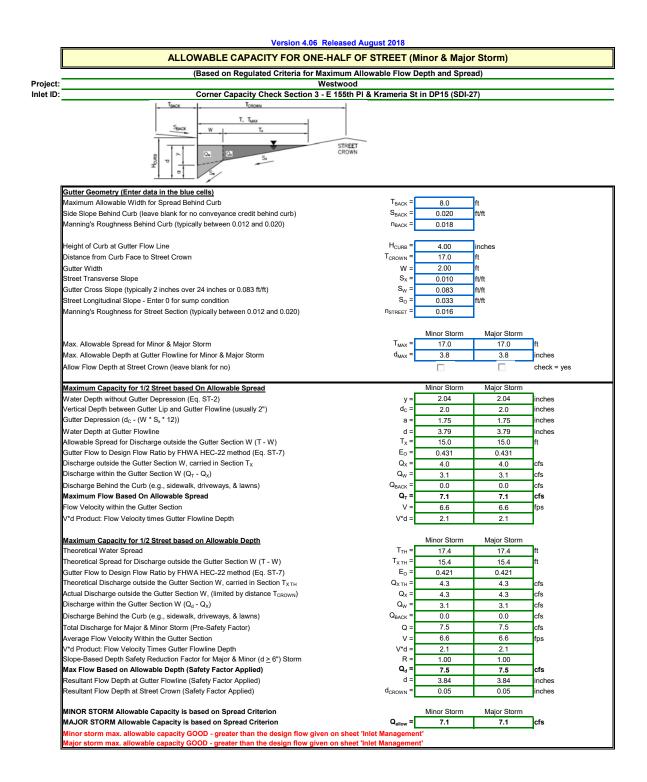

Compares against Q from Basin 10 to SDI-12

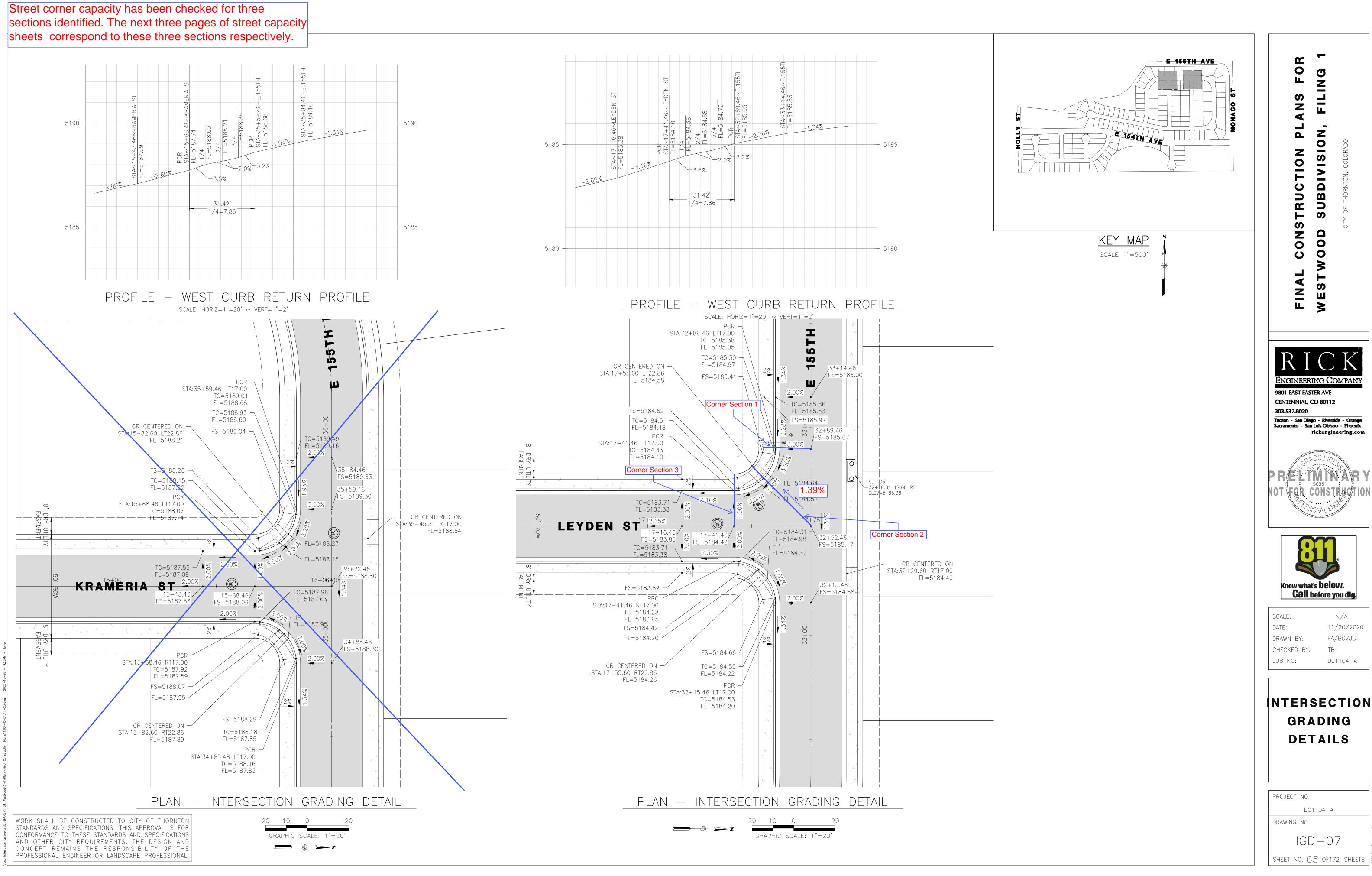


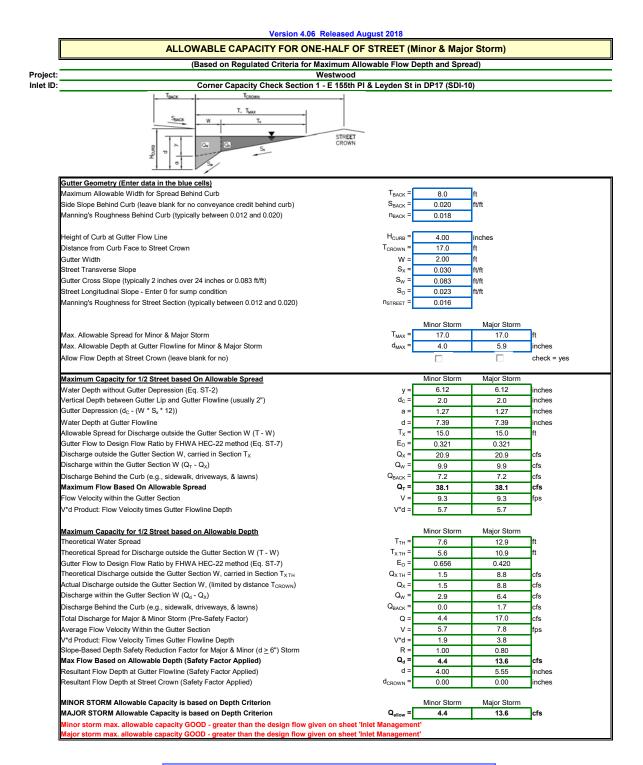
Compares against Q from Basin 10 to SDI-12



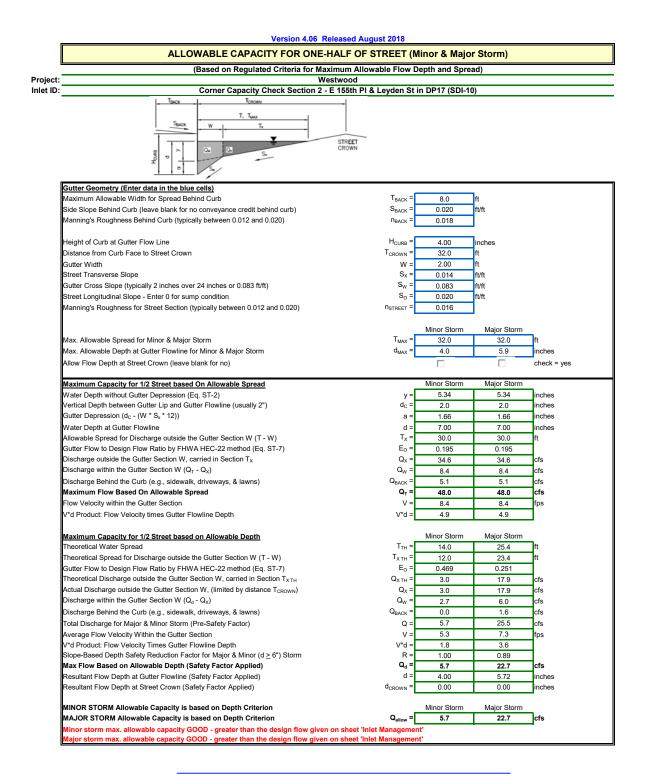
Compares against Q from Basin 10 to SDI-12



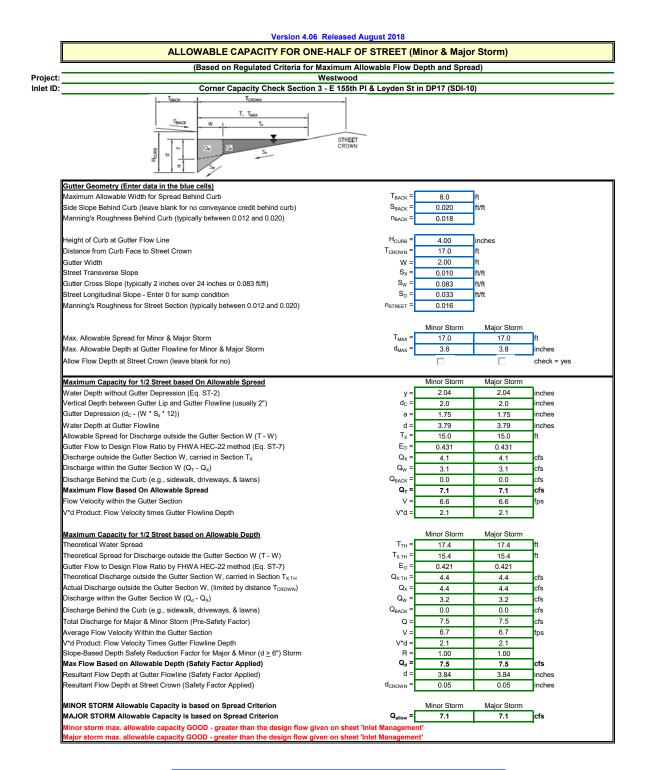

Compares against Q from Basin 15 to SDI-27

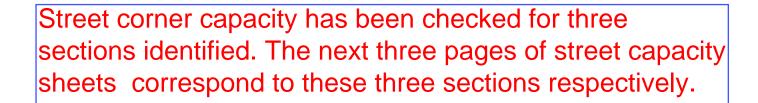


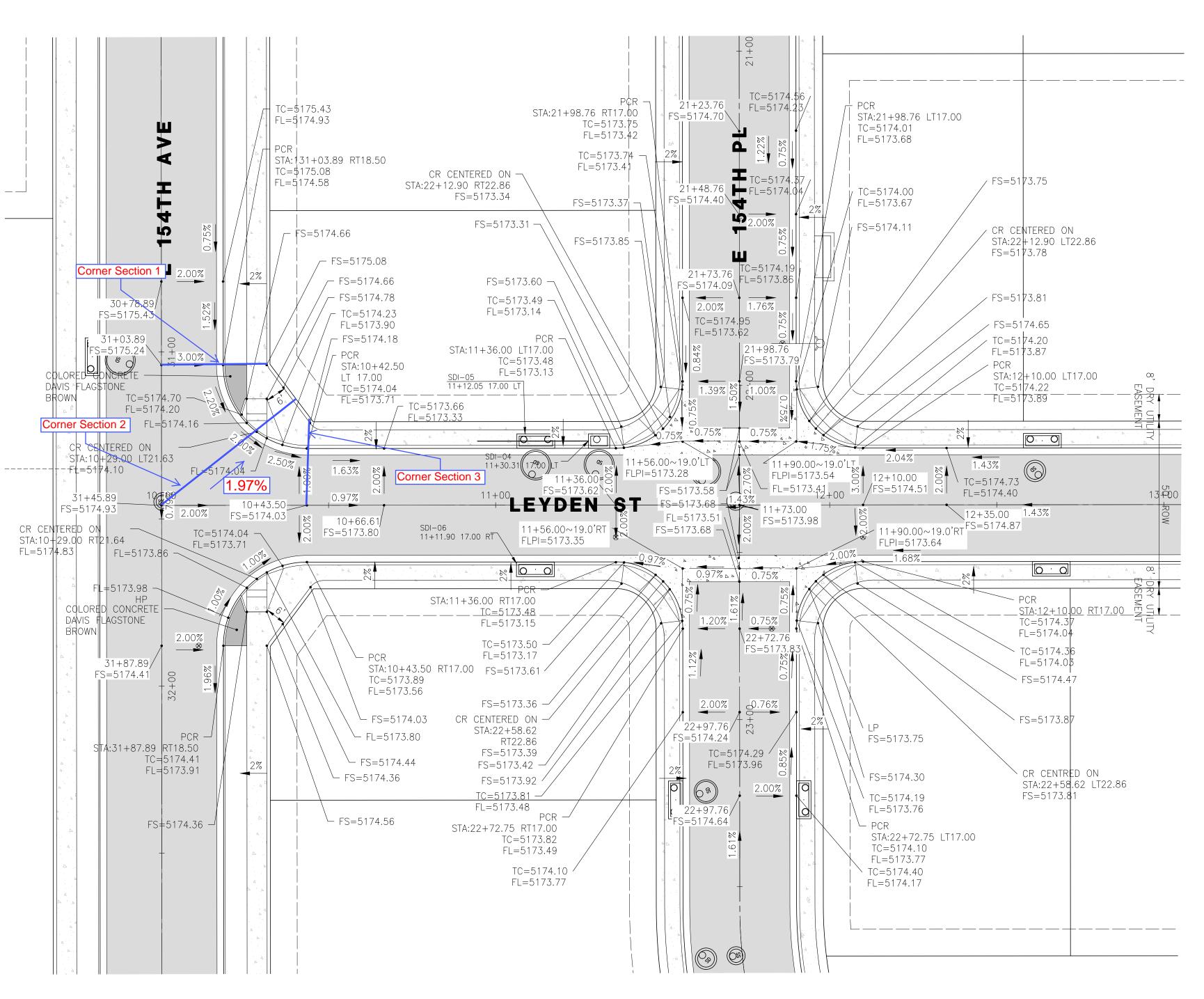
Compares against Q from Basin 15 to SDI-27



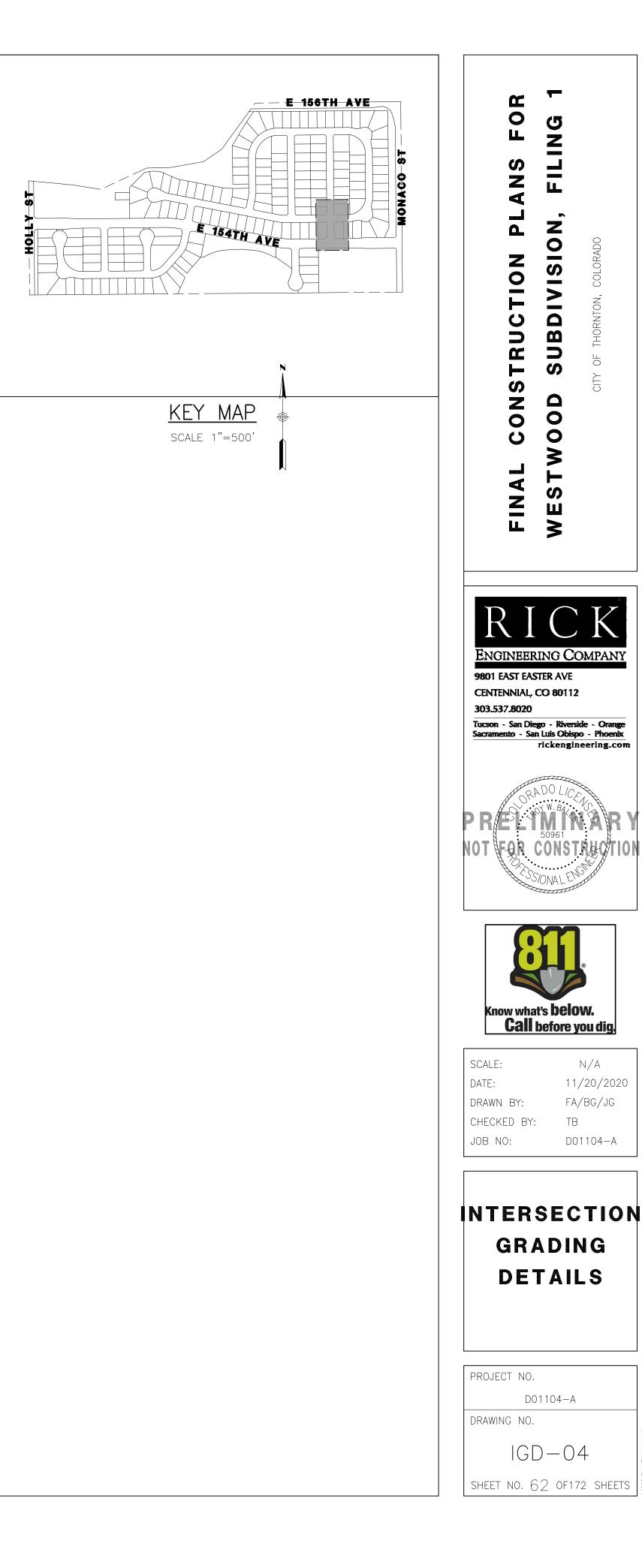
Compares against Q from Basin 15 to SDI-27



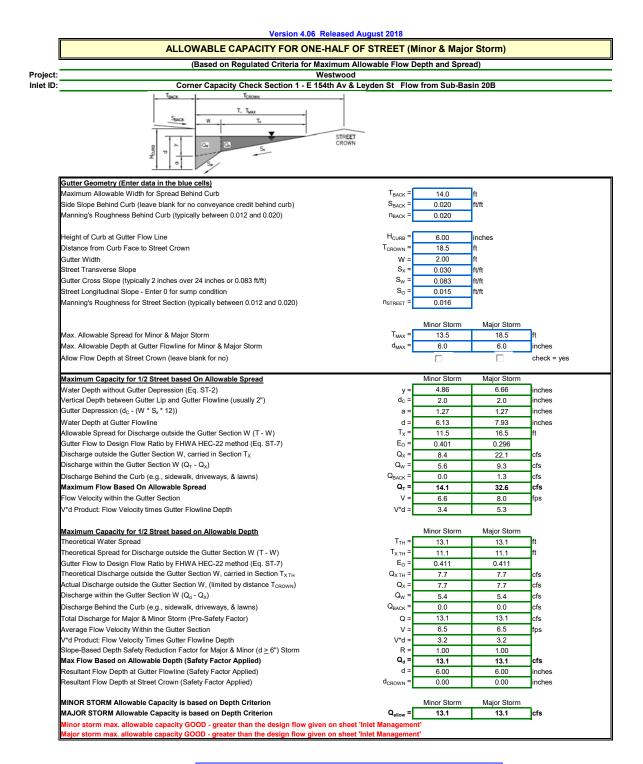

Compares against Q from Basin 17 to SDI-10



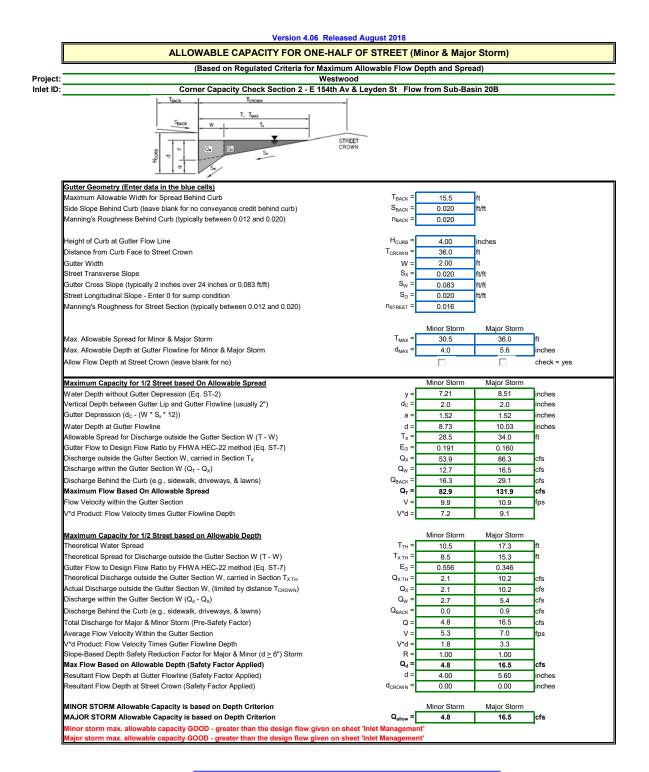
Compares against Q from Basin 17 to SDI-10


Compares against Q from Basin 17 to SDI-10

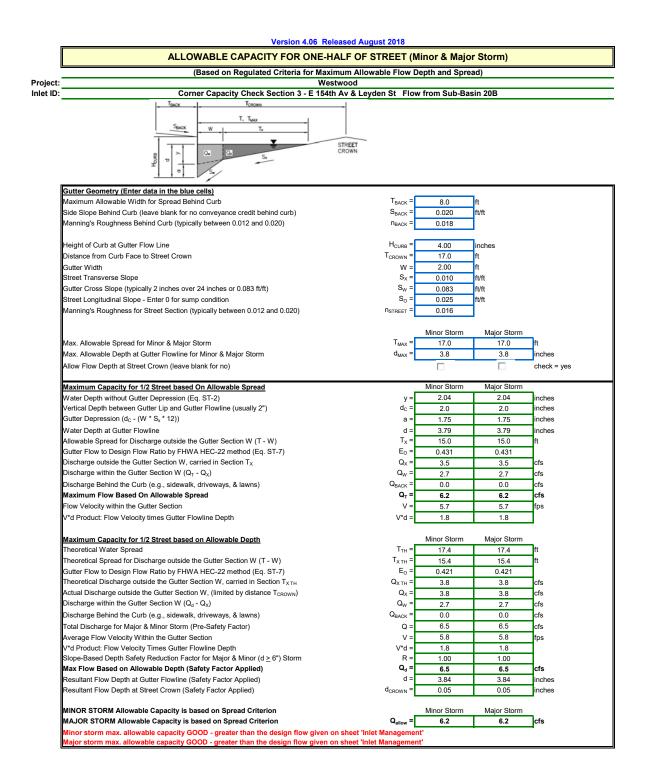
10 0 GRAPHIC SCALE: 1"=20'

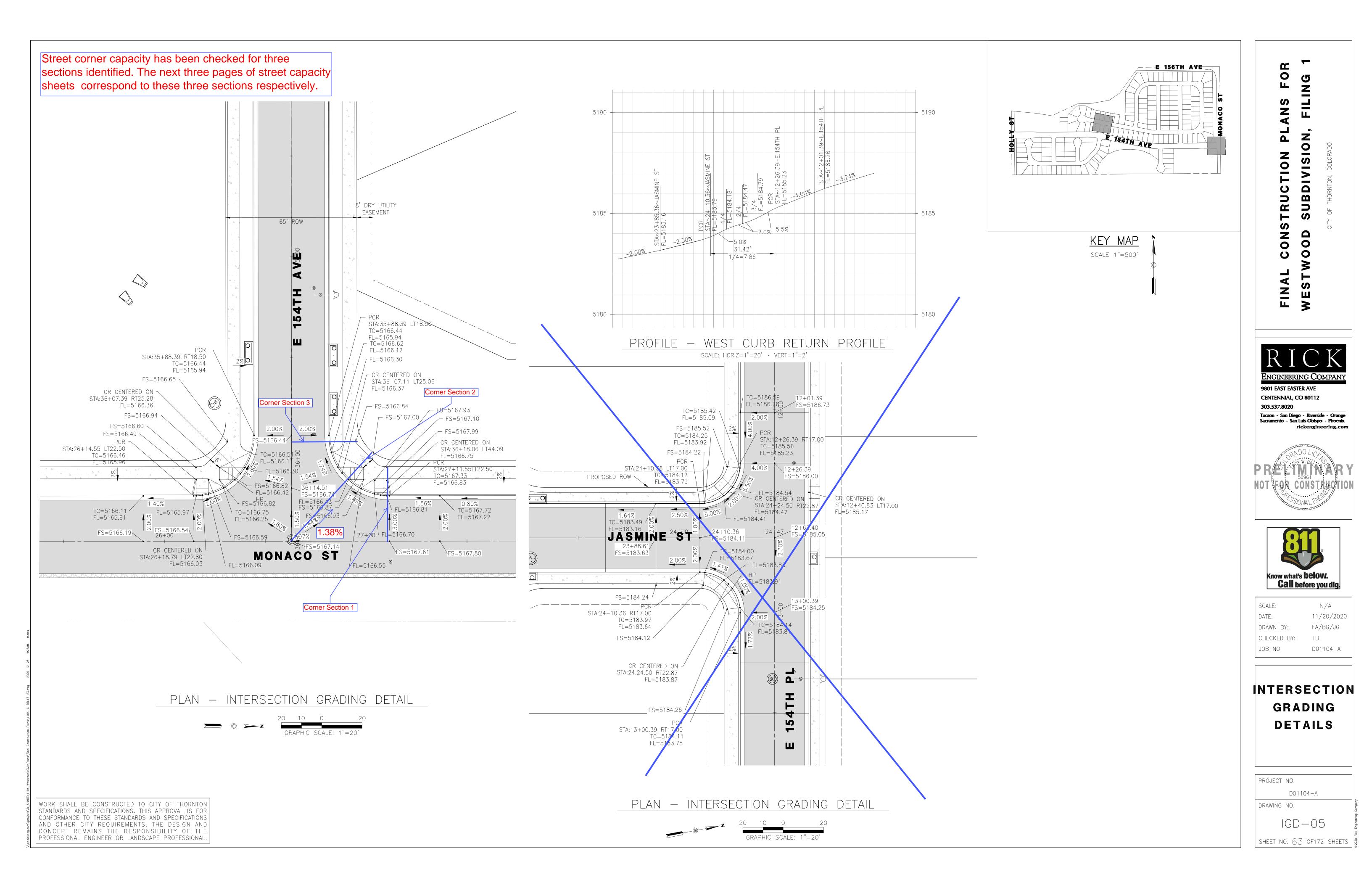

N/A

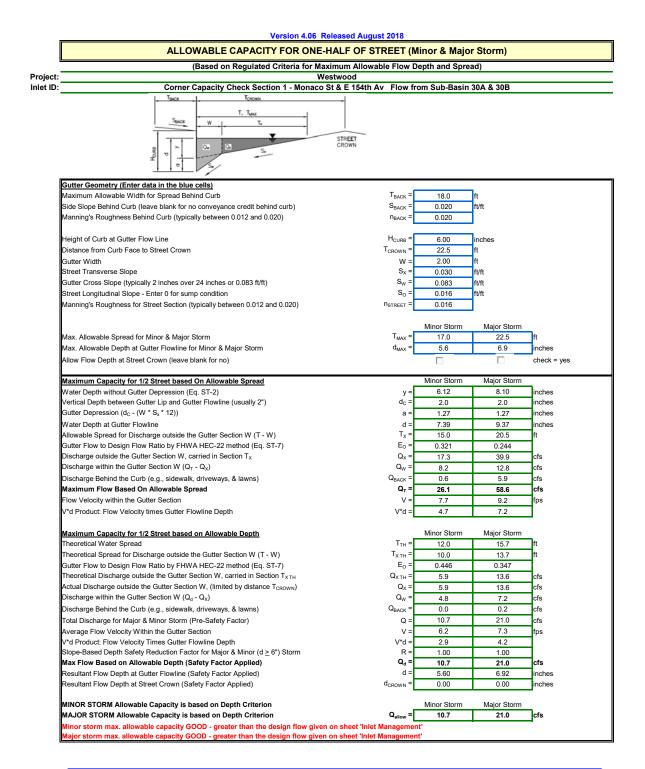
11/20/2020


FA/BG/JG

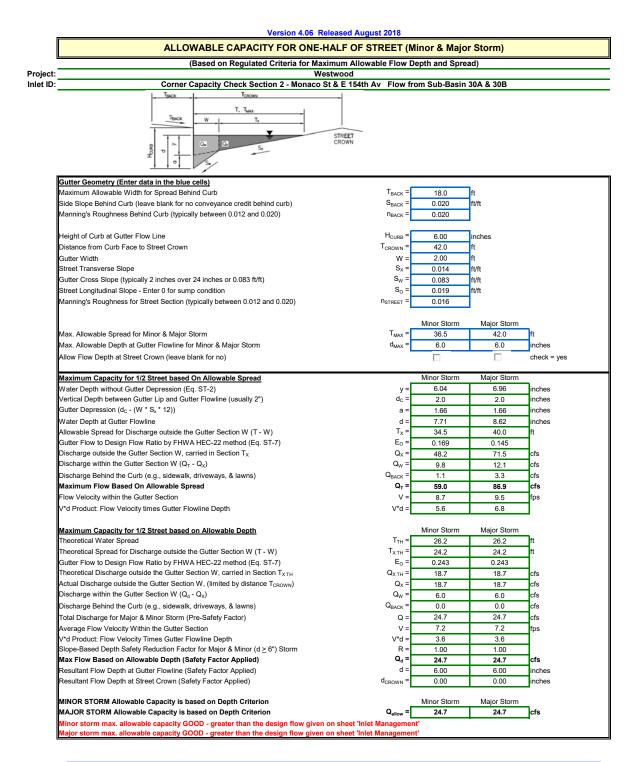
D01104-A


ΤB

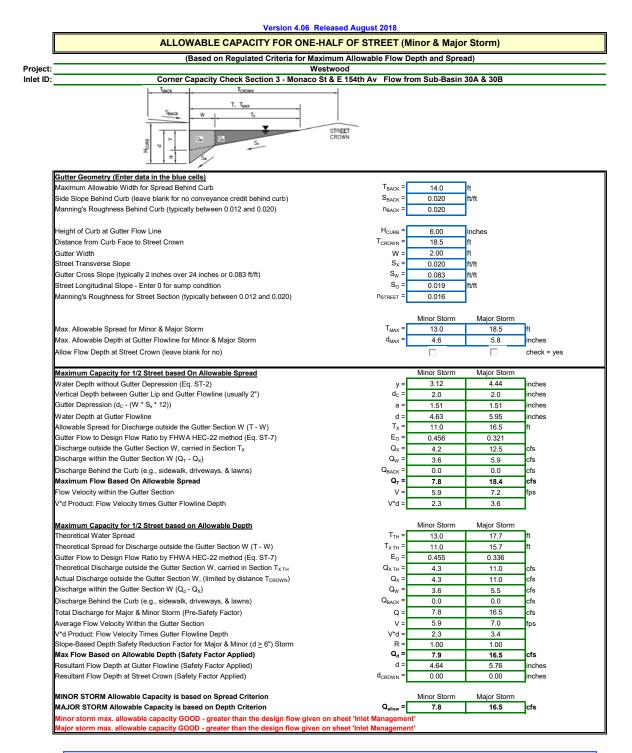

Compares against Q from Sub-Basin 20B

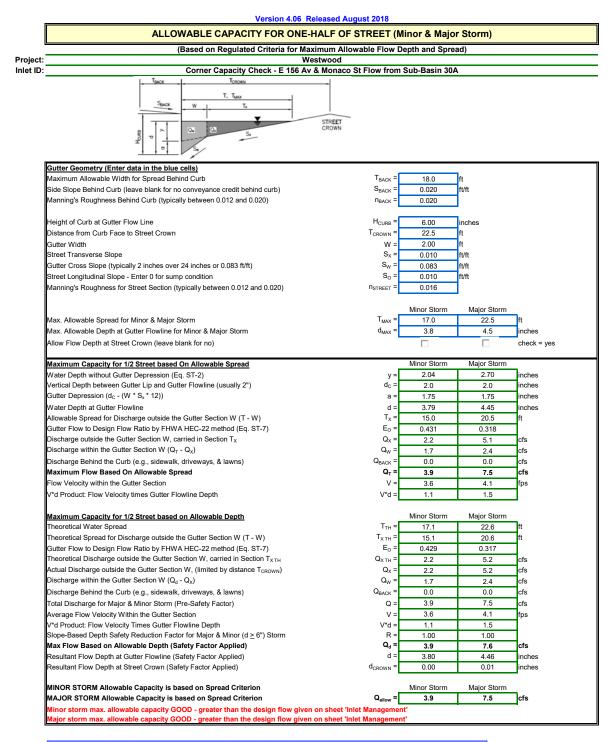


Compares against Q from Sub-Basin 20B

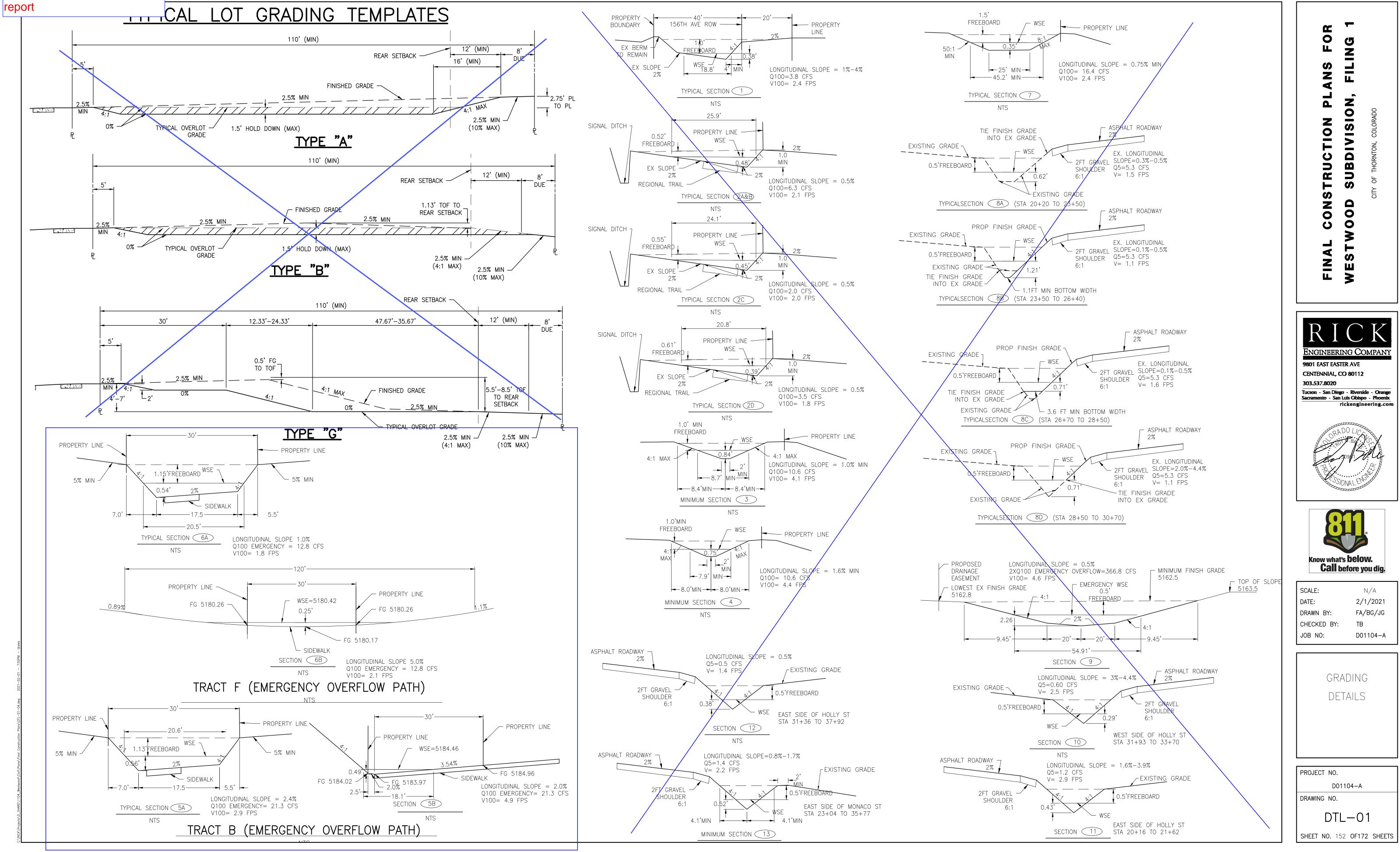


Compares against Q from Sub-Basin 20B




Compares against Q from Sub-Basin 30A (E 156th Av) & 30B (Monaco St)

Compares against Q from Sub-Basin 30A (E 156th Av) & 30B (Monaco St)


Compares against Q from Sub-Basin 30A (E 156th Av) & 30B (Monaco St)

There is no intersection detail for E 156th Ave & Monaco. However, conservatively a 1% cross-slope and 1% longitudinal slope has been used to check corner capacity.

Compares against Q from Sub-Basin 30A (E 156th Av)

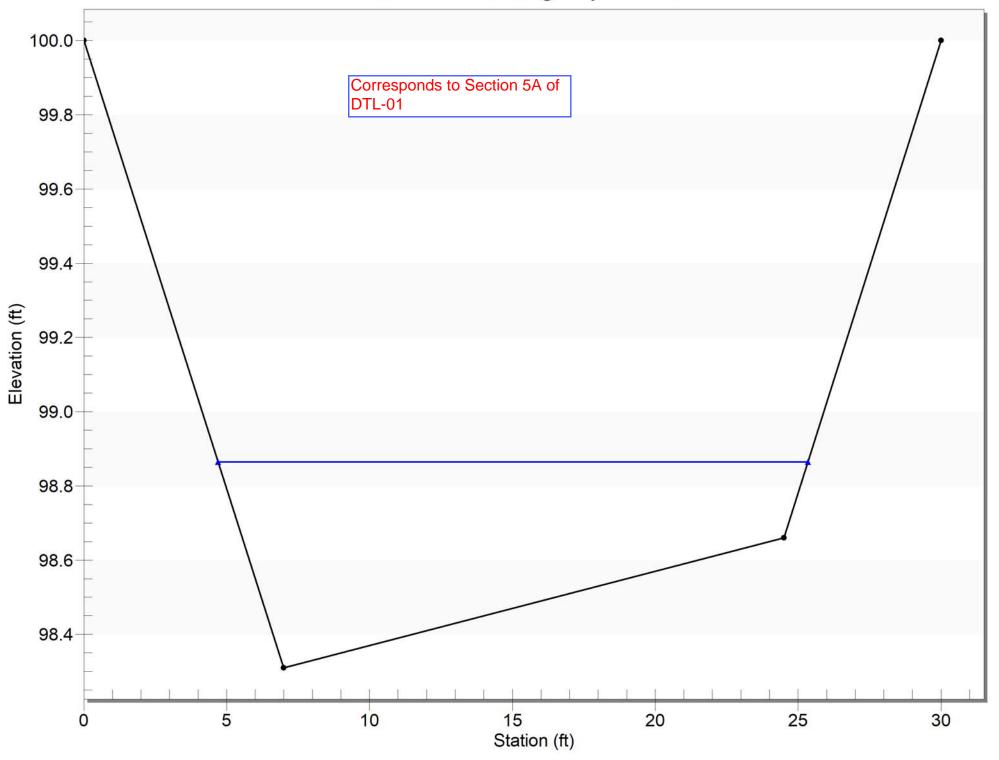
Appendix B – Hydraulic Computations Emergency Overflow Weir Section Analyses Crossed out portions are not applicable to this section of the

Hydraulic Analysis Report

Project Data

Project Title: JN:1104 Westwood - Emergency Overflow Sizing Designer: Project Date: Tuesday, August 25, 2020 Project Units: U.S. Customary Units Notes:

Channel Analysis: Tract B Section 5A - Emergency Overflow Sizing


Notes:

Input Parameters

Channel Type: Custom Cross Section

Flow from offsite basins O2, O3 & O4 + Sub-Basin 41A (SDI-50) & Sub-Basin 41B (SDI-28)

Tract B Section 5A - Emergency Overflow Weir

Cross Section Data

-Elevation (ft) Station (Typical)	Elevation (ft)	Manning's n
0.00	100.00	0.0400
7.00	98.31	0,0400
24.50	98.66	0.0400
30.00	100.00	

Corresponds to Section 5A of DTL-01 & the cross-section plotted in the previous page

> Table 8-5, Chapter 8, USDCM Vol. 1 recommends 0.04 for turfgrass sod when assessing Water Depths

Longitudinal Slope: 0.0240 ft/ft

Flow: 21.3000 cfs

Result Parameters

Depth: 0.5550 ft

Area of Flow: 7.3733 ft^2

Wetted Perimeter: 20.7340 ft

Hydraulic Radius: 0.3556 ft

Average Velocity: 2.8888 ft/s

Top Width: 20.6399 ft

Froude Number: 0.8517

Critical Depth: 0.5168 ft

Critical Velocity: 3.2315 ft/s

Critical Slope: 0.0342 ft/ft

Critical Top Width: 20.33 ft

Calculated Max Shear Stress: 0.8311 lb/ft^2

Calculated Avg Shear Stress: 0.5326 lb/ft^2

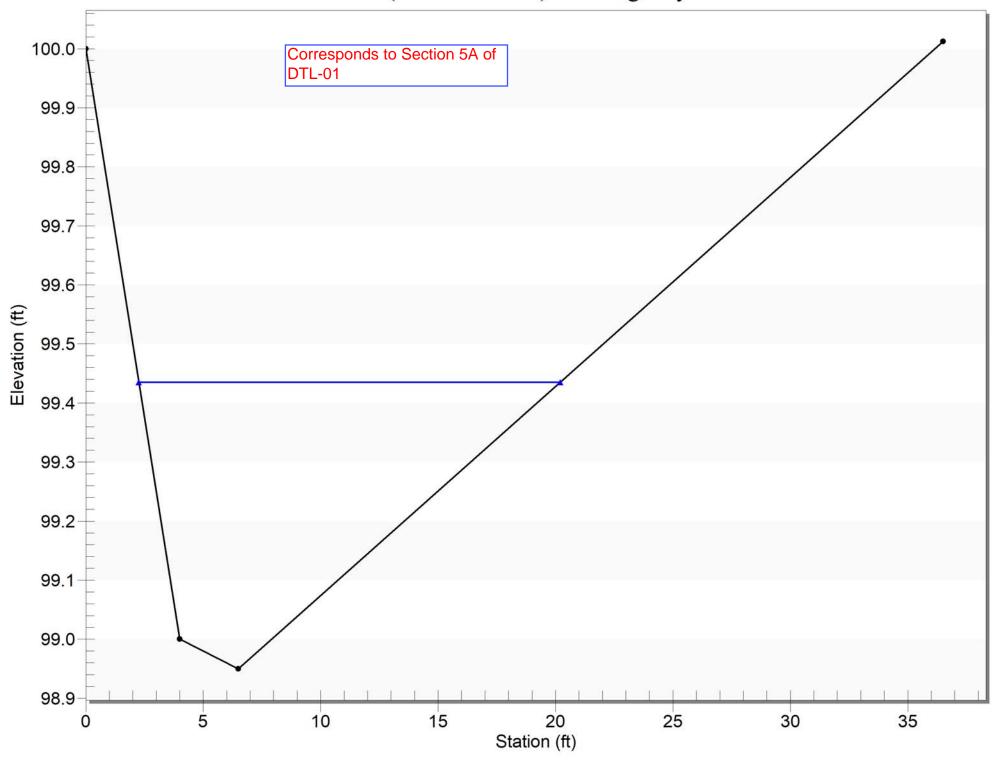
Composite Manning's n Equation: Lotter method

Manning's n: 0.0400

Flow from offsite basins O2, O3 & O4 + Sub-Basin 41A (SDI-50) & Sub-Basin 41B (SDI-28)

Table 8-5, Chapter 8, USDCM Vol. 1recommends 0.04 for turfgrass sodwhen assessing Water Depths

Channel Analysis: Tract B Section 5B (Back of Sidewalk) - Emergency Overflow Sizing


Notes:

Input Parameters

Channel Type: Custom Cross Section

Flow from offsite basins O2, O3 & O4 + Sub-Basin 41A (SDI-50) & Sub-Basin 41B (SDI-28)

Tract B Section 5B (Back of Walk) - Emergency Overflow Weir

Elevation (ft)	Elevation (ft)	Manning's n
0.00	100.00	0.0200
4.00	99.00	0.0200
6.50	98.95	0.0200
36.50	100.01	

Corresponds to Section 5B of DTL-01 & the cross-section plotted in the previous page

> Back of sidewalk manning's. Conservatively assuming 0.02 as recommended in UD-Inlet

Longitudinal Slope: 0.0200 ft/ft

Flow: 21.3000 cfs

Result Parameters

Depth: 0.4853 ft Area of Flow: 4.8571 ft²

Wetted Perimeter: 18.0144 ft

Hydraulic Radius: 0.2696 ft

Average Velocity: 4.3854 ft/s

Top Width: 17.9518 ft

Froude Number: 1.4857

Critical Depth: 0.5779 ft

Critical Velocity: 3.1997 ft/s

Critical Slope: 0.0086 ft/ft

Critical Top Width: 20.94 ft

Calculated Max Shear Stress: 0.6057 lb/ft^2

Calculated Avg Shear Stress: 0.3365 lb/ft^2

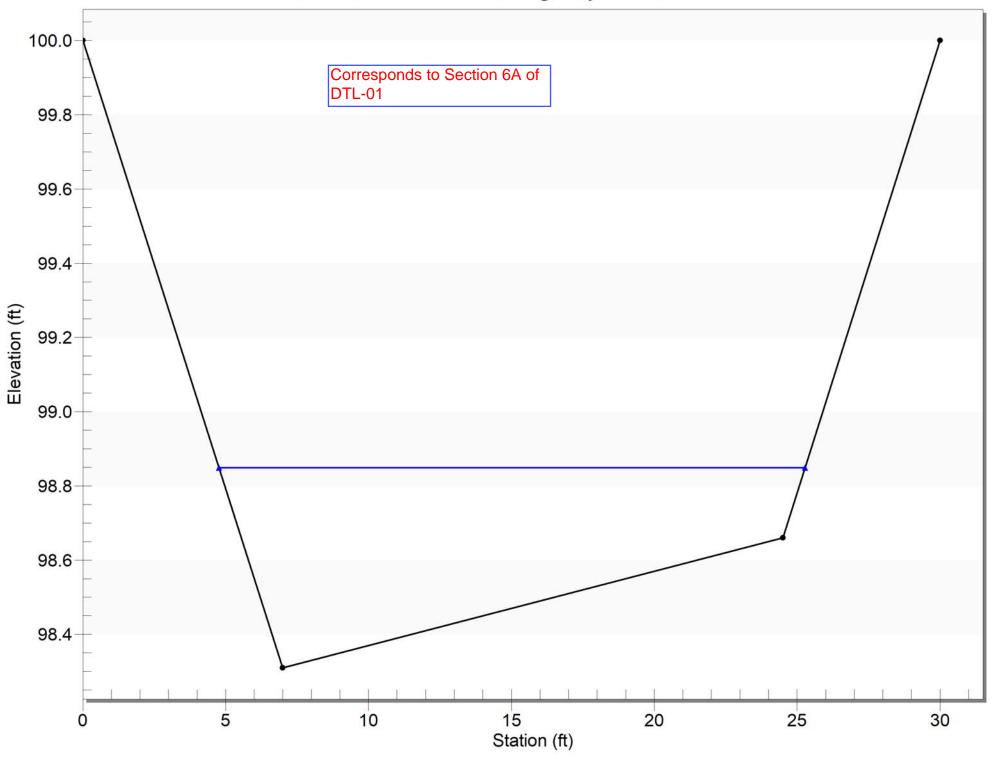
Composite Manning's n Equation: Lotter method

Manning's n: 0.0200

Flow from offsite basins O2, O3 & O4 + Sub-Basin 41A (SDI-50) & Sub-Basin 41B (SDI-28)

Back of sidewalk manning's. Conservatively assuming 0.02 as recommended in UD-Inlet

Channel Analysis: Tract F Section 6A - Emergency Overflow Sizing


Notes:

Input Parameters

Channel Type: Custom Cross Section

Flow from DP4 (SDI-48), DP7 (SDI-47) + Bypass flow from DP6 (SDI-34) & DP44 (SDI-35)

Tract F Section 6A - Emergency Overflow Weir

Elevation (ft)	Elevation (ft)	Manning's n
0.00	100.00	0.0400
7.00	98.31	97 0400
24.50	98.66	0.0400
30.00	100.00	

Corresponds to Section 6A of DTL-01 & the cross-section plotted in the previous page

Table 8-5, Chapter 8, USDCM Vol. 1recommends 0.04 for turfgrass sodwhen assessing Water Depths

Longitudinal Slope: 0.0100 ft/ft

Flow: 12.8000 cfs <

Depth: 0.5390 ft

Area of Flow: 7.0451 ft^2

Wetted Perimeter: 20.5987 ft

Hydraulic Radius: 0.3420 ft

Average Velocity: 1.8169 ft/s

Top Width: 20.5083 ft

Froude Number: 0.5463

Critical Depth: 0.4183 ft

Critical Velocity: 2.7643 ft/s

Critical Slope: 0.0378 ft/ft

Critical Top Width: 19.51 ft

Calculated Max Shear Stress: 0.3363 lb/ft^2

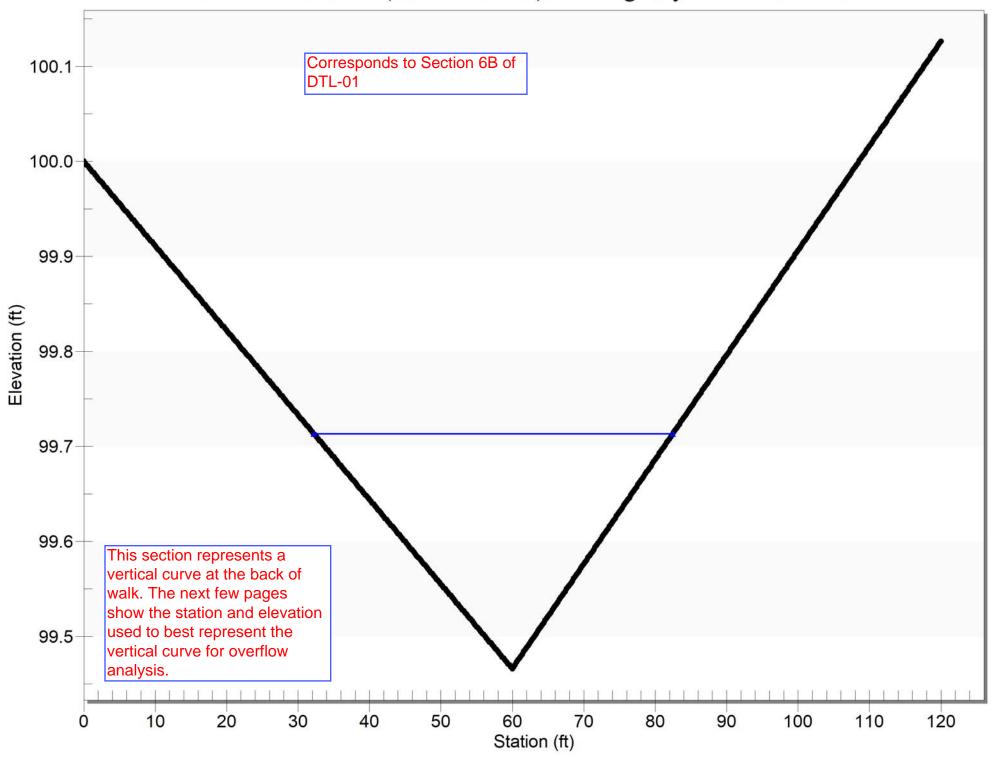
Calculated Avg Shear Stress: 0.2134 lb/ft^2

Composite Manning's n Equation: Lotter method

Manning's n: 0.0400

Table 8-5, Chapter 8, USDCM Vol. 1 recommends 0.04 for turfgrass sod when assessing Water Depths

Flow from Basin 4 (SDI-48), Basin 7 (SDI-47) + Bypass flow from SDI-34 & SDI-35


Channel Analysis: Tract F Section 6B (Back of Sidewalk) - Emergency Overflow Sizing

Notes:

Input Parameters

Channel Type: Custom Cross Section

Tract F Section 6B (Back of Walk) - Emergency Overflow Weir

Elevation (ft)	Elevation (ft)	Manning's n
Station		
0.00	100.00	0.0400
0.20	100.00	0.0400
0.40	100.00	0.0400
0.60	100.00	0.0400
0.80	99.99	0.0400
1.00	99.99	0.0400
1.20	99.99	0.0400
1.40	99.99	0.0400
1.60	99.99	0.0400
1.80	99.98	0.0400
2.00	99.98	0.0400
2.20	99.98	0.0400
2.40	99.98	0.0400
2.60	99.98	0.0400
2.80	99.97	0.0400
3.00	99.97	0.0400
3.20	99.97	0.0400
3.40	99.97	0.0400
3.60	99.97	0.0400
3.80	99.97	0.0400
4.00	99.96	0.0400
4.20	99.96	0.0400
4.40	99.96	0.0400
4.60	99.96	0.0400
4.80	99.96	0.0400
5.00	99.96	0.0400
5.20	99.95	0.0400
5.40	99.95	0.0400
5.60	99.95	0.0400
5.80	99.95	0.0400
6.00	99.95	0.0400
6.20	99.94	0.0400
6.40	99.94	0.0400
6.60	99.94	0.0400
6.80	99.94	0.0400
7.00	99.94	0.0400
7.20	99.94	0.0400
7.40	99.93	0.0400
7.60	99.93	0.0400
7.80	99.93	0.0400
8.00	99.93	0.0400
8.20	99.93	0.0400
8.40	99.92	0.0400
8.60	99.92	0.0400
8.80	99.92	0.0400
9.00	99.92	0.0400
9.20	99.92	0.0400
9.40	99.92	0.0400
9.60	99.92	0.0400
9.80	99.91	0.0400
10.00	99.91	0.0400

10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.20 12.40	99.91 99.91 99.91 99.90 99.90 99.90 99.90 99.90 99.90 99.90 99.90 99.90 99.90 99.90 99.90 99.89 99.89 99.89 99.89 99.89 99.89 99.89	0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400
10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40	99.91 99.90 99.90 99.90 99.90 99.90 99.90 99.90 99.90 99.89 99.89 99.89 99.89 99.89 99.89 99.89	0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400
10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.20 12.40	99.90 99.90 99.90 99.90 99.90 99.89 99.89 99.89 99.89 99.89 99.89	0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400
11.00 11.20 11.40 11.60 11.80 12.00 12.20 12.40	99.90 99.90 99.90 99.90 99.89 99.89 99.89 99.89 99.89 99.89	0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400
11.20 11.40 11.60 11.80 12.00 12.20 12.40	99.90 99.90 99.90 99.89 99.89 99.89 99.89 99.89 99.89	0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400
11.40 11.60 11.80 12.00 12.20 12.40	99.90 99.90 99.89 99.89 99.89 99.89 99.89	0.0400 0.0400 0.0400 0.0400 0.0400 0.0400
11.60 11.80 12.00 12.20 12.40	99.90 99.89 99.89 99.89 99.89 99.89	0.0400 0.0400 0.0400 0.0400 0.0400
11.80 12.00 12.20 12.40	99.89 99.89 99.89 99.89 99.89	0.0400 0.0400 0.0400 0.0400
12.00 12.20 12.40	99.89 99.89 99.89 99.89	0.0400 0.0400 0.0400
12.20 12.40	99.89 99.89 99.89	0.0400 0.0400
12.40	99.89 99.89	0.0400
	99.89	
40.00		0.0400
12.60	99.89	0.0+00
12.80		0.0400
13.00	99.88	0.0400
13.20	99.88	0.0400
13.40	99.88	0.0400
13.60	99.88	0.0400
13.80	99.88	0.0400
14.00	99.88	0.0400
14.20	99.87	0.0400
14.40	99.87	0.0400
14.60	99.87	0.0400
14.80	99.87	0.0400
15.00	99.87	0.0400
15.20	99.86	0.0400
15.40	99.86	0.0400
15.60	99.86	0.0400
15.80	99.86	0.0400
16.00	99.86	0.0400
16.20	99.86	0.0400
16.40	99.85	0.0400
16.60	99.85	0.0400
16.80	99.85	0.0400
	99.85	0.0400
17.20	99.85	0.0400
17.40	99.84	0.0400
17.60	99.84	0.0400
17.80	99.84	0.0400
18.00	99.84	0.0400
18.20	99.84	0.0400
18.40	99.84	0.0400
18.60	99.83	0.0400
18.80	99.83	0.0400
19.00	99.83	0.0400
19.20	99.83	0.0400
19.40	99.83	0.0400
19.60	99.83	0.0400
19.80	99.82	0.0400
20.00	99.82	0.0400
20.20	99.82	0.0400
20.40	99.82	0.0400
20.60	99.82	0.0400
20.80	99.81	0.0400
21.00	99.81	0.0400
21.20	99.81	0.0400
21.40	99.81	0.0400

04.00		0.0400
21.60	99.81	0.0400
21.80	99.81	0.0400
22.00	99.80	0.0400
22.20	99.80	0.0400
22.40	99.80	0.0400
22.60	99.80	0.0400
22.80	99.80	0.0400
23.00	99.80	0.0400
23.20	99.79	0.0400
23.40	99.79	0.0400
23.60	99.79	0.0400
23.80	99.79	0.0400
24.00	99.79	0.0400
24.20	99.78	0.0400
24.40	99.78	0.0400
24.60	99.78	0.0400
24.80	99.78	0.0400
25.00	99.78	0.0400
25.20	99.78	0.0400
25.40	99.77	0.0400
25.60	99.77	0.0400
25.80	99.77	0.0400
26.00	99.77	0.0400
26.20	99.77	0.0400
26.40	99.77	0.0400
26.60	99.76	0.0400
26.80	99.76	0.0400
27.00	99.76	0.0400
27.20	99.76	0.0400
	99.76	
27.40		0.0400
27.60	99.75	0.0400
27.80	99.75	0.0400
28.00	99.75	0.0400
28.20	99.75	0.0400
28.40	99.75	0.0400
28.60	99.75	0.0400
28.80	99.74	0.0400
29.00	99.74	0.0400
29.20	99.74	0.0400
29.40	99.74	0.0400
29.60	99.74	0.0400
29.80	99.73	0.0400
30.00	99.73	0.0400
30.20	99.73	0.0400
30.40	99.73	0.0400
30.60	99.73	0.0400
30.80	99.73	0.0400
31.00	99.72	0.0400
31.20	99.72	0.0400
31.40	99.72	0.0400
31.60	99.72	0.0400
31.80	99.72	0.0400
32.00	99.72	0.0400
32.20	99.71	0.0400
32.40	99.71	0.0400
32.60	99.71	0.0400
32.80	99.71	0.0400
52.00	33.11	0.0400

33.00	99.71	0.0400
33.20	99.70	0.0400
33.40	99.70	0.0400
33.60	99.70	0.0400
33.80	99.70	0.0400
34.00	99.70	0.0400
34.20	99.70	0.0400
34.40	99.69	0.0400
34.60	99.69	0.0400
34.80	99.69	0.0400
35.00	99.69	0.0400
35.20	99.69	0.0400
35.40	99.69	0.0400
35.60	99.68	0.0400
35.80	99.68	0.0400
36.00	99.68	0.0400
36.20	99.68	0.0400
36.40	99.68	0.0400
36.60	99.67	0.0400
36.80	99.67	0.0400
37.00	99.67	0.0400
37.20	99.67	0.0400
37.40	99.67	0.0400
37.60	99.67	0.0400
37.80	99.66	0.0400
38.00	99.66	0.0400
38.20	99.66	0.0400
38.40	99.66	0.0400
38.60	99.66	0.0400
38.80	99.66	0.0400
39.00	99.65	0.0400
39.20	99.65	0.0400
39.40	99.65	0.0400
39.60	99.65	0.0400
39.80	99.65	0.0400
40.00	99.64	0.0400
40.20	99.64	0.0400
40.40	99.64	0.0400
40.60	99.64	0.0400
40.80	99.64	0.0400
41.00	99.64	0.0400
41.20	99.63	0.0400
41.40	99.63	0.0400
41.60	99.63	0.0400
41.80	99.63	0.0400
42.00	99.63	0.0400
42.20	99.62	0.0400
42.40	99.62	0.0400
42.60	99.62	0.0400
42.80	99.62	0.0400
43.00	99.62	0.0400
43.20	99.62	0.0400
43.40	99.61	0.0400
43.60	99.61	0.0400
43.80	99.61	0.0400
44.00	99.61	0.0400
44.20	99.61	0.0400

		0.0400
44.40	99.61	0.0400
44.60	99.60	0.0400
44.80	99.60	0.0400
45.00	99.60	0.0400
45.20	99.60	0.0400
45.40	99.60	0.0400
45.60	99.59	0.0400
45.80	99.59	0.0400
46.00	99.59	0.0400
46.20	99.59	0.0400
46.40	99.59	0.0400
46.60	99.58	0.0400
46.80	99.58	0.0400
47.00	99.58	0.0400
47.20	99.58	0.0400
47.40	99.58	0.0400
47.60	99.58	0.0400
47.80	99.58	0.0400
48.00	99.57	0.0400
48.20	99.57	0.0400
48.40	99.57	0.0400
48.60	99.57	0.0400
48.80	99.57	0.0400
49.00	99.56	0.0400
49.20	99.56	0.0400
49.40	99.56	0.0400
49.60	99.56	0.0400
49.80	99.56	0.0400
50.00	99.56	0.0400
50.20	99.55	0.0400
50.40		
	99.55	0.0400
50.60	99.55	0.0400
50.80	99.55	0.0400
51.00	99.55	0.0400
51.20	99.54	0.0400
51.40	99.54	0.0400
51.60	99.54	0.0400
51.80	99.54	0.0400
52.00	99.54	0.0400
52.20	99.53	0.0400
52.40	99.53	0.0400
52.60	99.53	0.0400
52.80	99.53	0.0400
53.00	99.53	0.0400
53.20	99.53	0.0400
53.40	99.53	0.0400
53.60	99.52	0.0400
53.80	99.52	0.0400
54.00	99.52	0.0400
54.20	99.52	0.0400
54.40	99.52	0.0400
54.60	99.51	0.0400
54.80	99.51	0.0400
55.00	99.51	0.0400
55.20	99.51	0.0400
55.40	99.51	0.0400
00.10		0.0400

55.80	99.50	0.0400
56.00	99.50	0.0400
56.20	99.50	0.0400
56.40	99.50	0.0400
56.60	99.50	0.0400
56.80	99.49	0.0400
57.00	99.49	0.0400
57.20	99.49	0.0400
57.40	99.49	0.0400
57.60	99.49	0.0400
57.80	99.49	0.0400
58.00	99.48	0.0400
58.20	99.48	0.0400
58.40	99.48	0.0400
58.60	99.48	0.0400
58.80	99.48	0.0400
59.00	99.47	0.0400
59.20	99.47	0.0400
59.40	99.47	0.0400
59.60	99.47	0.0400
59.80	99.47	0.0400
60.00	99.47	0.0400
60.20	99.47	0.0400
60.40	99.47	0.0400
60.60	99.47	0.0400
60.80	99.47	0.0400
61.00	99.48	0.0400
61.20	99.48	0.0400
61.40	99.48	0.0400
61.60	99.48	0.0400
61.80	99.49	0.0400
62.00	99.49	0.0400
62.20	99.49	0.0400
62.40	99.49	0.0400
62.60	99.50	0.0400
62.80	99.50	0.0400
63.00	99.50	0.0400
63.20	99.50	0.0400
63.40	99.50	0.0400
63.60	99.51	0.0400
63.80	99.51	0.0400
64.00	99.51	0.0400
64.20	99.51	0.0400
64.40	99.51	0.0400
64.60	99.52	0.0400
64.80	99.52	0.0400
65.00	99.52	0.0400
65.20	99.52	0.0400
65.40	99.53	0.0400
65.60	99.53	0.0400
65.80	99.53	0.0400
66.00	99.53	0.0400
66.20	99.53	0.0400
66.40	99.54	0.0400
66.60	99.54	0.0400
66.80	99.54	0.0400
67.00	99.54	0.0400

67.20	99.55	0.0400
67.40	99.55	0.0400
67.60	99.55	0.0400
67.80	99.55	0.0400
68.00	99.55	0.0400
68.20	99.56	0.0400
68.40	99.56	0.0400
68.60	99.56	0.0400
68.80	99.56	0.0400
69.00	99.56	0.0400
69.20	99.57	0.0400
69.40	99.57	0.0400
69.60	99.57	0.0400
69.80	99.57	0.0400
70.00	99.58	0.0400
70.20	99.58	0.0400
70.40	99.58	0.0400
70.60	99.58	0.0400
70.80	99.58	0.0400
71.00	99.59	0.0400
71.20	99.59	0.0400
71.40	99.59	0.0400
71.60	99.59	0.0400
71.80	99.60	0.0400
72.00	99.60	0.0400
72.20	99.60	0.0400
72.40	99.60	0.0400
72.60	99.61	0.0400
72.80	99.61	0.0400
73.00	99.61	0.0400
73.20	99.61	0.0400
73.40	99.61	0.0400
73.60	99.62	0.0400
73.80	99.62	0.0400
74.00	99.62	0.0400
74.20	99.62	0.0400
74.40	99.62	0.0400
74.60	99.63	0.0400
74.80	99.63	0.0400
75.00	99.63	0.0400
75.20	99.63	0.0400
75.40	99.64	0.0400
75.60	99.64	0.0400
75.80	99.64	0.0400
76.00	99.64	0.0400
76.20	99.64	0.0400
76.40	99.65	0.0400
76.60	99.65	0.0400
76.80	99.65	0.0400
77.00	99.65	0.0400
77.20	99.66	0.0400
77.40	99.66	0.0400
77.60	99.66	0.0400
77.80	99.66	0.0400
78.00	99.66	0.0400
78.20	99.67	0.0400
78.40	99.67	0.0400

78.60	99.67	0.0400
78.80	99.67	0.0400
79.00	99.67	0.0400
79.20	99.68	0.0400
79.40	99.68	0.0400
79.60	99.68	0.0400
79.80	99.68	0.0400
80.00	99.69	0.0400
80.20	99.69	0.0400
80.40	99.69	0.0400
80.60	99.69	0.0400
80.80	99.69	0.0400
81.00	99.70	0.0400
81.20	99.70	0.0400
81.40	99.70	0.0400
81.60	99.70	0.0400
81.80	99.71	0.0400
82.00	99.71	0.0400
82.20	99.71	0.0400
82.40	99.71	0.0400
82.60	99.72	0.0400
82.80	99.72	0.0400
83.00	99.72	0.0400
83.20	99.72	0.0400
83.40	99.72	0.0400
83.60	99.73	0.0400
83.80	99.73	0.0400
84.00	99.73	0.0400
84.20	99.73	0.0400
84.40	99.73	0.0400
84.60	99.74	0.0400
84.80	99.74	0.0400
85.00	99.74	0.0400
85.20	99.74	0.0400
85.40	99.75	0.0400
85.60	99.75	
85.80		0.0400
	99.75	0.0400
86.00	99.75	0.0400
86.20	99.75	0.0400
86.40	99.76	0.0400
86.60	99.76	0.0400
86.80	99.76	0.0400
87.00	99.76	0.0400
87.20	99.77	0.0400
87.40	99.77	0.0400
87.60	99.77	0.0400
87.80	99.77	0.0400
88.00	99.77	0.0400
88.20	99.78	0.0400
88.40	99.78	0.0400
88.60	99.78	0.0400
88.80	99.78	0.0400
89.00	99.78	0.0400
89.20	99.79	0.0400
89.40	99.79	0.0400
89.60	99.79	0.0400
89.80	99.79	0.0400

90.00	99.80	0.0400
90.20	99.80	0.0400
90.40	99.80	0.0400
90.60	99.80	0.0400
90.80	99.81	0.0400
91.00	99.81	0.0400
91.20	99.81	0.0400
91.40	99.81	0.0400
91.60	99.81	0.0400
91.80	99.82	0.0400
92.00	99.82	0.0400
92.20	99.82	0.0400
92.40	99.82	0.0400
92.60	99.83	0.0400
92.80	99.83	0.0400
93.00	99.83	0.0400
93.20	99.83	0.0400
93.40	99.83	0.0400
93.60	99.84	0.0400
93.80	99.84	0.0400
94.00	99.84	0.0400
94.20	99.84	0.0400
94.40	99.84	0.0400
94.60	99.85	0.0400
94.80	99.85	0.0400
95.00	99.85	0.0400
95.20	99.85	0.0400
95.40	99.86	0.0400
95.60	99.86	0.0400
95.80	99.86	0.0400
96.00	99.86	0.0400
96.20	99.86	0.0400
96.40	99.87	0.0400
96.60	99.87	0.0400
96.80	99.87	0.0400
97.00	99.87	0.0400
97.20	99.88	0.0400
97.40	99.88	0.0400
97.60	99.88	0.0400
97.80	99.88	0.0400
98.00	99.88	0.0400
98.20	99.89	0.0400
98.40	99.89	0.0400
98.60	99.89	0.0400
98.80	99.89	0.0400
99.00	99.89	0.0400
99.20	99.90	0.0400
99.40	99.90	0.0400
99.60	99.90	0.0400
99.80	99.90	0.0400
100.00	99.91	0.0400
100.20	99.91	0.0400
100.40	99.91	0.0400
100.60	99.91	0.0400
100.80	99.92	0.0400
101.00	99.92	0.0400
101.20	99.92	0.0400

101.40	99.92	0.0400
101.60	99.92	0.0400
101.80	99.93	0.0400
102.00	99.93	0.0400
102.20	99.93	0.0400
102.40	99.93	0.0400
102.60	99.94	0.0400
102.80	99.94	0.0400
103.00	99.94	0.0400
103.20	99.94	0.0400
103.40	99.94	0.0400
103.60	99.95	0.0400
103.80	99.95	0.0400
104.00	99.95	0.0400
104.20	99.95	0.0400
104.40	99.95	0.0400
104.60	99.96	0.0400
104.80	99.96	0.0400
105.00	99.96	0.0400
105.20	99.96	0.0400
105.40	99.97	0.0400
105.60	99.97	0.0400
105.80	99.97	0.0400
106.00	99.97	0.0400
106.20	99.97	0.0400
106.40	99.98	0.0400
106.60	99.98	0.0400
106.80	99.98	0.0400
107.00	99.98	0.0400
107.20	99.98	0.0400
107.40	99.99	0.0400
107.60	99.99	0.0400
107.80	99.99	0.0400
108.00	99.99	0.0400
108.20	100.00	0.0400
108.40	100.00	0.0400
108.60	100.00	0.0400
108.80	100.00	0.0400
109.00	100.01	0.0400
109.20	100.01	0.0400
109.40	100.01	0.0400
109.60	100.01	0.0400
109.80	100.01	0.0400
110.00	100.02	0.0400
110.00	100.02	0.0400
110.20	100.02	0.0400
110.40	100.02	0.0400
110.80	100.02	
	100.03	0.0400
<u>111.00</u> 111.20	100.03	0.0400
111.40	100.03	
		0.0400
111.60	100.03	0.0400
111.80	100.04	0.0400
112.00	100.04	0.0400
112.20	100.04	0.0400
112.40	100.04	0.0400
112.60	100.05	0.0400

112.80	100.05	0.0400
113.00	100.05	0.0400
113.20	100.05	0.0400
113.40	100.05	0.0400
113.60	100.06	0.0400
113.80	100.06	0.0400
114.00	100.06	0.0400
114.20	100.06	0.0400
114.40	100.06	0.0400
114.60	100.07	0.0400
114.80	100.07	0.0400
115.00	100.07	0.0400
115.20	100.07	0.0400
115.40	100.08	0.0400
115.60	100.08	0.0400
115.80	100.08	0.0400
116.00	100.08	0.0400
116.20	100.08	0.0400
116.40	100.09	0.0400
116.60	100.09	0.0400
116.80	100.09	0.0400
117.00	100.09	0.0400
117.20	100.10	0.0400
117.40	100.10	0.0400
117.60	100.10	0.0400
117.80	100.10	0.0400
118.00	100.10	0.0400
118.20	100.11	0.0400
118.40	100.11	0.0400
118.60	100.11	0.0400
118.80	100.11	0.0400
119.00	100.11	0.0400
119.20	100.12	0.0400
119.40	100.12	0.0400
119.60	100.12	0.0400
119.80	100.12	0.0400
120.00	100.13	

Longitudinal Slope: 0.0500 ft/ft

Flow: 12.8000 cfs

Result Parameters

Depth: 0.2473 ft

Area of Flow: 6.2134 ft^2

Wetted Perimeter: 50.3118 ft

Hydraulic Radius: 0.1235 ft

Average Velocity: 2.0601 ft/s

Top Width: 50.3092 ft

Froude Number: 1.0330

Critical Depth: 0.2504 ft

Critical Velocity: 2.0083 ft/s

Critical Slope: 0.0466 ft/ft

Critical Top Width: 50.88 ft

Calculated Max Shear Stress: 0.7714 lb/ft^2

Calculated Avg Shear Stress: 0.3853 lb/ft^2

Composite Manning's n Equation: Lotter method

Manning's n: 0.0400

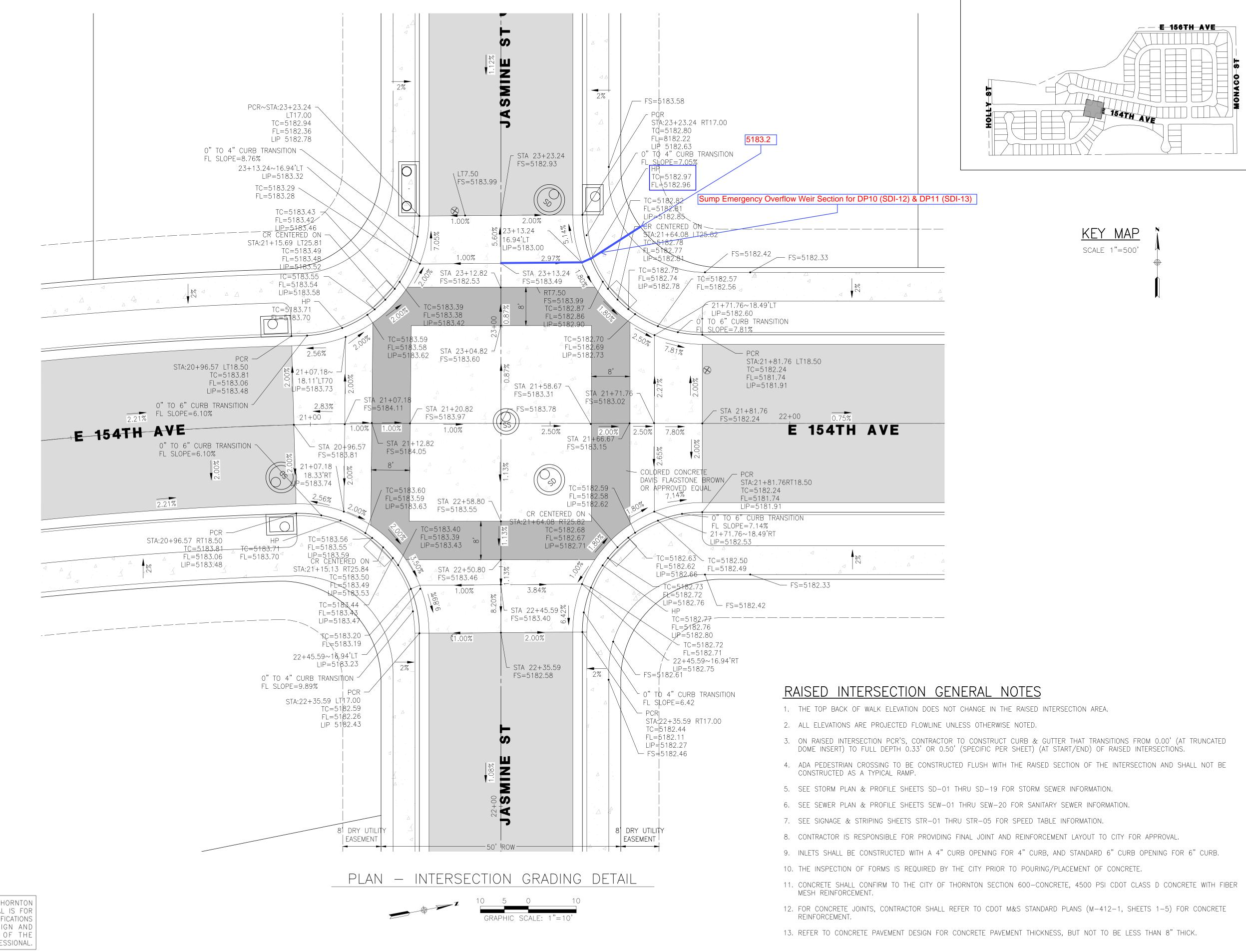
Flow from Basin 4 (SDI-48), Basin 7 (SDI-47) + Bypass flow from SDI-34 & SDI-35

Flow goes over sidewalk to tract F. Table 8-5, Chapter 8, USDCM Vol. 1 recommends 0.04 for turfgrass sod when assessing Water Depths

Hydraulic Analysis Report

Project Data

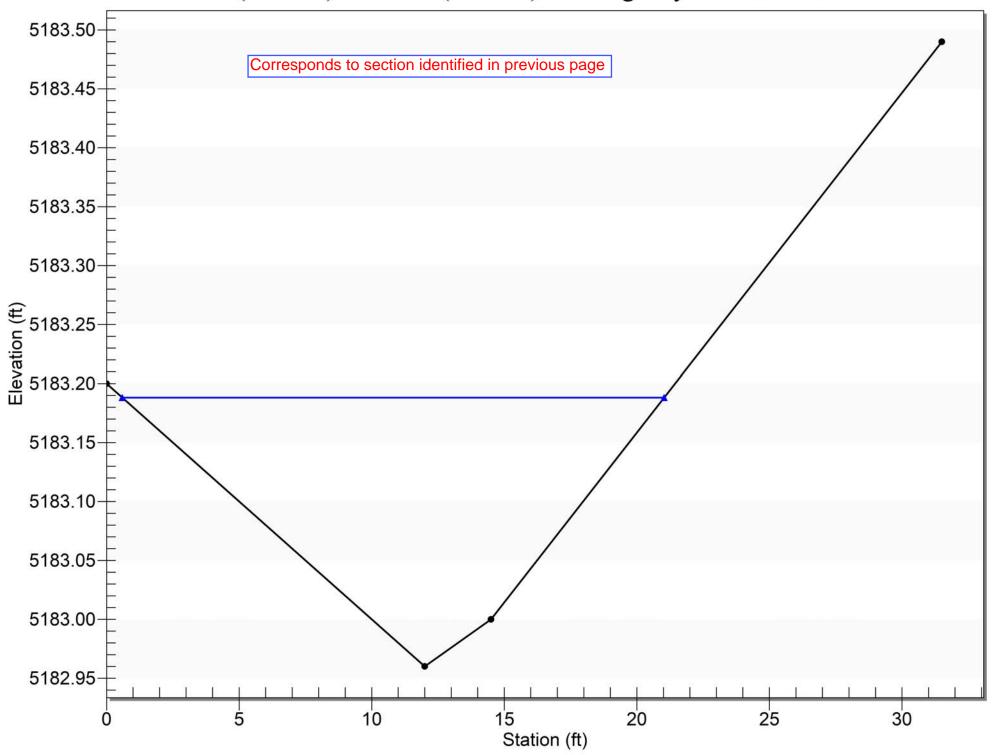
Project Title: JN:1104 Westwood - Emergency Overflow Sizing Designer: Project Date: Tuesday, August 25, 2020 Project Units: U.S. Customary Units Notes:


Channel Analysis: Sump Overflow Weir - DP10 (SDI-12) & DP11 (SDI-13)

Notes:

Input Parameters

Channel Type: Custom Cross Section


Flow from Basin 10 (SDI-12) & Basin 11 (SDI-13)

WORK SHALL BE CONSTRUCTED TO CITY OF THORNTON STANDARDS AND SPECIFICATIONS. THIS APPROVAL IS FOR CONFORMANCE TO THESE STANDARDS AND SPECIFICATIONS AND OTHER CITY REQUIREMENTS. THE DESIGN AND CONCEPT REMAINS THE RESPONSIBILITY OF THE PROFESSIONAL ENGINEER OR LANDSCAPE PROFESSIONAL.

FINAL CONSTRUCTION PLANS FOR	WESTWOOD SUBDIVISION, FILING 1	CITY OF THORNTON, COLORADO
ENGINEER 9801 EAST EAS CENTENNIAL, 1 303.537.8020 Tucson - San Die Sacramento - San PREL	STER AVE CO 80112 go - Rivers a Luis Obis	2 side - Orange
SCALE:	before y	you dig. N∕A
DATE: DRAWN BY: CHECKED BY: JOB NO:	FA TE DC)1104-A
		NG
DRAWING NO.	01104-A D-C 59 of1) 1

DP10 (SDI-12) & DP11 (SDI-13) - Emergency Overflow Weir

Elevation (ft) Station	Elevation (ft)	Manning's n
0.00	5183.20	0.0200
12.00	5182.96	0.0160
14.50	5183.00	0.0160
31.50	5183.49	

Corresponds to section identified in last two pages

0.016 for asphalt street with concrete gutter per Chapter 7, USDCM Vol.1, page 7-7 0.02 for behind curb, which is the highest recommended by UD-Inlet (Typical) Longitudinal Slope: 0.0180 ft/ft

Flow: 6.6000 cfs <

Result Parameters

Flow from Basin 10 (SDI-12) & Basin 11 (SDI-13)

Depth: 0.2282 ft Area of Flow: 2.4367 ft^2

Wetted Perimeter: 20.4445 ft

Hydraulic Radius: 0.1192 ft

Average Velocity: 2.7085 ft/s

Top Width: 20.4392 ft

Froude Number: 1.3824

Critical Depth: 0.2593 ft

Critical Velocity: 2.1263 ft/s

Critical Slope: 0.0090 ft/ft

Critical Top Width: 22.11 ft

Calculated Max Shear Stress: 0.2563 lb/ft^2

Calculated Avg Shear Stress: 0.1339 lb/ft^2

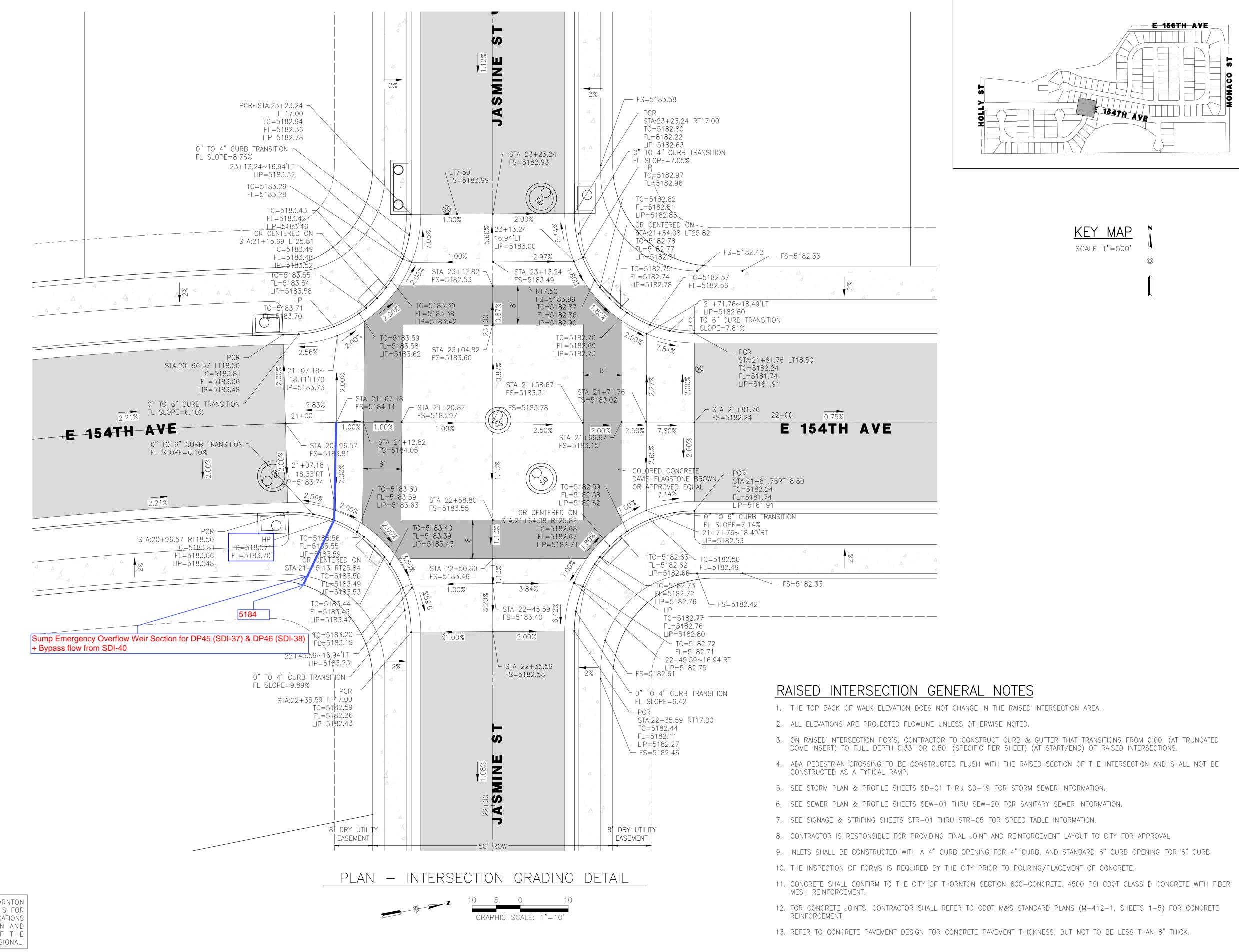
Composite Manning's n Equation: Lotter method

Manning's n: 0.0178

Hydraulic Analysis Report

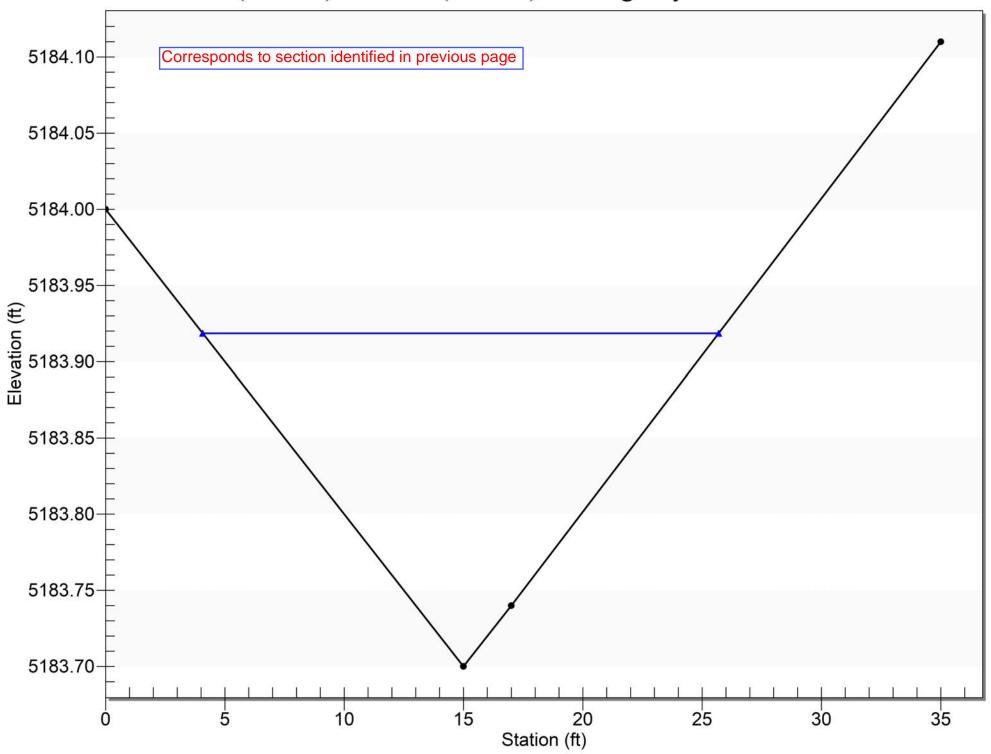
Project Data

Project Title: JN:1104 Westwood - Emergency Overflow Sizing Designer: Project Date: Tuesday, August 25, 2020 Project Units: U.S. Customary Units Notes:


Channel Analysis: Sump Overflow Weir - DP45 (SDI-37) & DP46 (SDI-38)

Notes:

Input Parameters


Channel Type: Custom Cross Section

Flow from Basin 45 (SDI-37) & Basin 46 (SDI-38) + Bypass flow from SDI-40

FINAL CONSTRUCTION PLANS FOR	WESTWOOD SUBDIVISION, FILING 1	CITY OF THORNTON, COLORADO
ENGINEER 9801 EAST EAS CENTENNIAL, 1 303.537.8020 Tucson - San Die Sacramento - San PREL	STER AVE CO 80112 go - Rivers a Luis Obis	2 side - Orange
SCALE:	before y	you dig. N∕A
DATE: DRAWN BY: CHECKED BY: JOB NO:	FA TE DC)1104-A
		NG
DRAWING NO.	01104-A D-C 59 of1) 1

DP45 (SDI-37) & DP46 (SDI-38) - Emergency Overflow Weir

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5184.00	0.0200
15.00	5183.70	0.0160
17.00	5183.74	0.0160
35.00	5184.11	

Corresponds to section identified in last two pages

Longitudinal Slope: 0.0200 ft/ft

Flow: 6.4000 cfs 🧲

Result Parameters

Depth: 0.2186 ft

Area of Flow: 2.3675 ft^2

Wetted Perimeter: 21.6221 ft

Hydraulic Radius: 0.1095 ft

Average Velocity: 2.7032 ft/s

Top Width: 21.6177 ft

Froude Number: 1.4395

Critical Depth: 0.2529 ft

Critical Velocity: 2.0201 ft/s

Critical Slope: 0.0092 ft/ft

Critical Top Width: 25.01 ft

Calculated Max Shear Stress: 0.2728 lb/ft^2

Calculated Avg Shear Stress: 0.1367 lb/ft^2

Composite Manning's n Equation: Lotter method

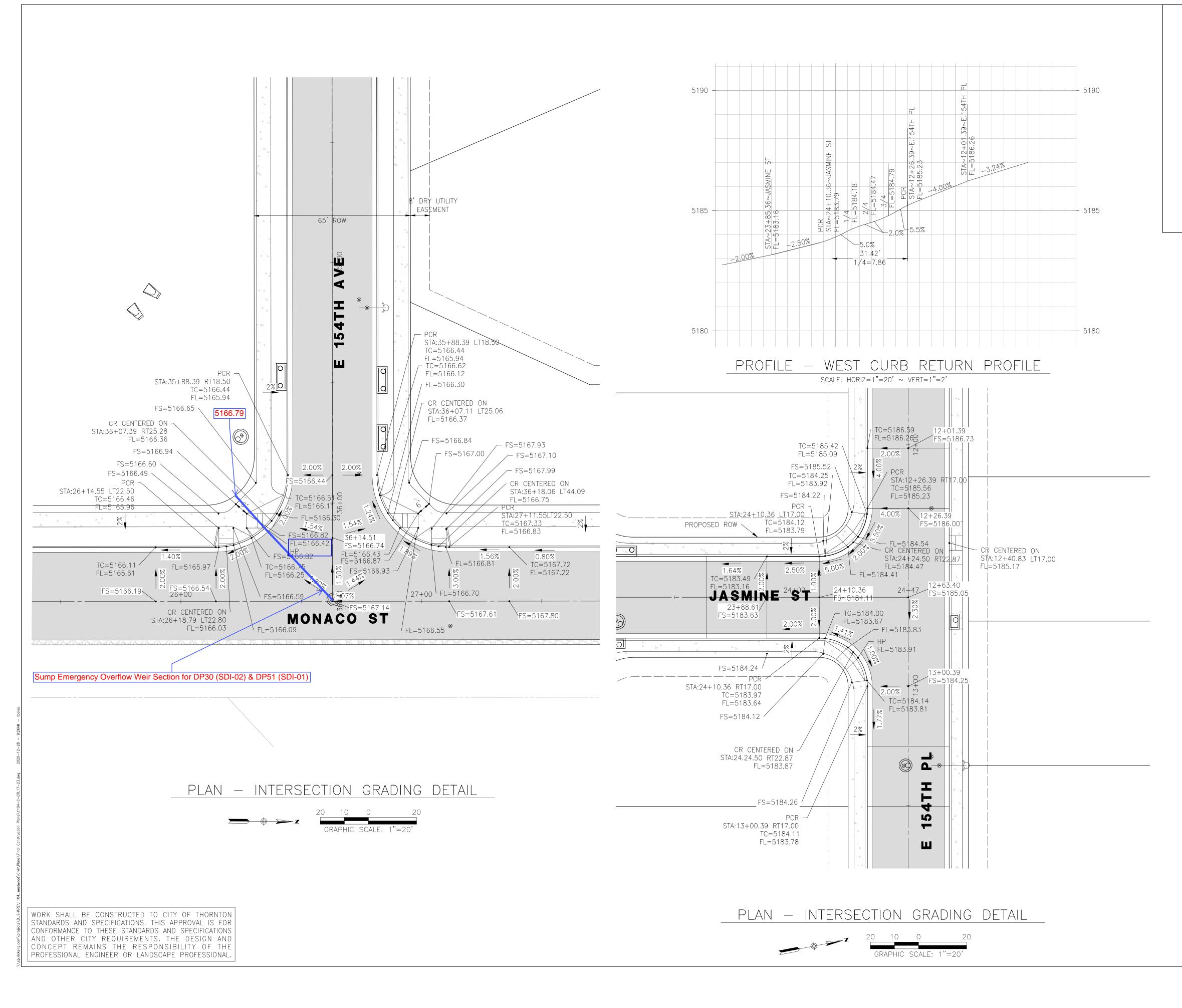
Manning's n: 0.0178

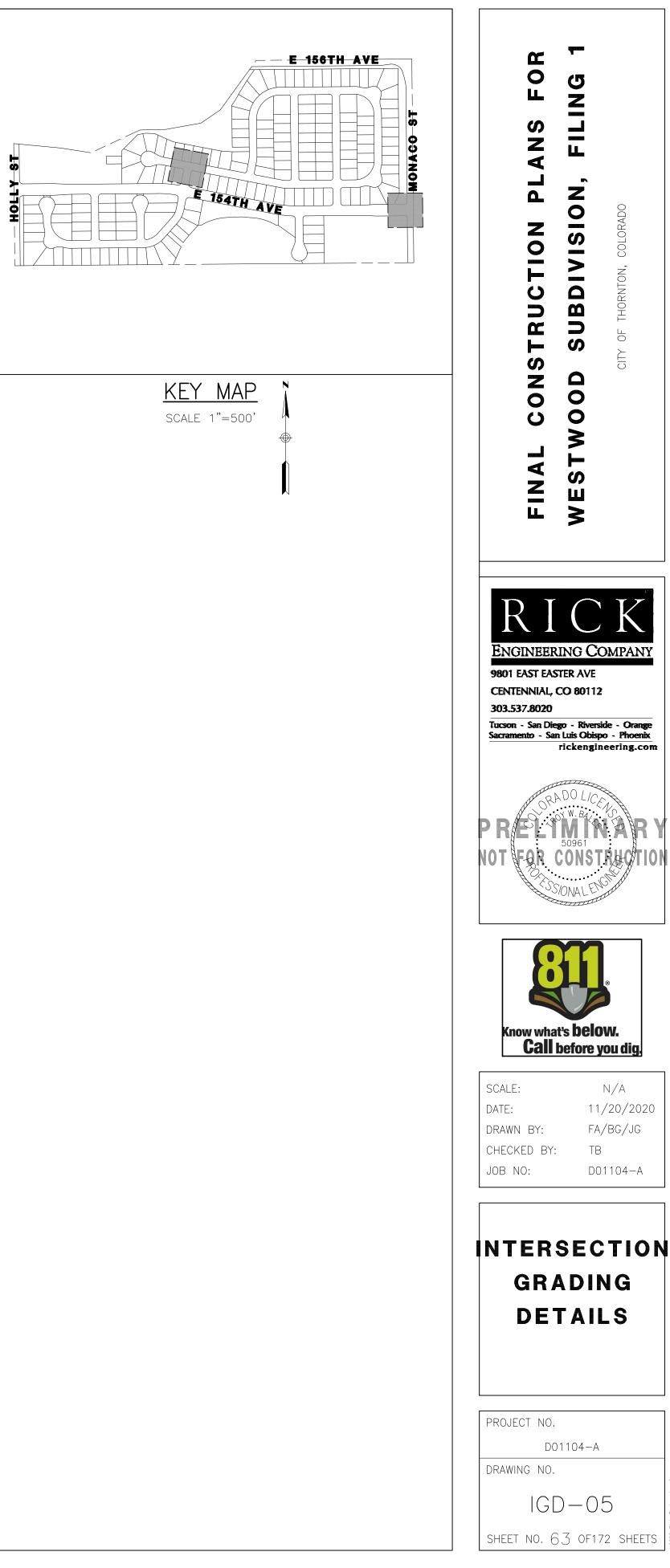
Flow from Basin 45 (SDI-37) & Basin 46 (SDI-38) + Bypass flow from SDI-40

Hydraulic Analysis Report

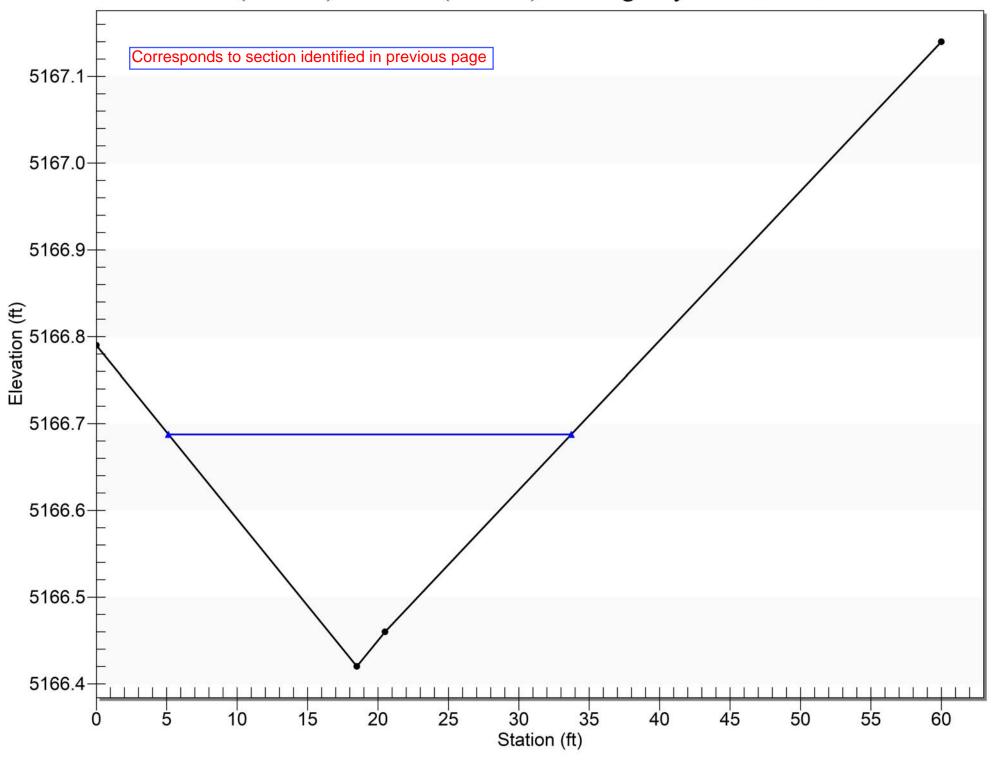
Project Data

Project Title: JN:1104 Westwood - Emergency Overflow Sizing Designer: Project Date: Tuesday, August 25, 2020 Project Units: U.S. Customary Units Notes:


Channel Analysis: Sump Overflow Weir - DP30 (SDI-02) & DP51 (SDI-01)


Notes:

Input Parameters


Channel Type: Custom Cross Section

Flow from Basin 30 (SDI-02) & Basin 51 (SDI-01) + bypass flow from SDI-20 & SDI-26

DP30 (SDI-02) & DP51 (SDI-01) - Emergency Overflow Weir

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5166.79	0.0200
18.50	5166.42	0.0160
20.50	5166.46	0.0160
60.00	5167.14	

Corresponds to section identified in last two pages

Longitudinal Slope: 0.0200 ft/ft

Flow: 11.7000 cfs <

Result Parameters

Flow from Basin 30 (SDI-02) & Basin 51 (SDI-01) + bypass flow from SDI-20 & SDI-26

Depth: 0.2675 ft Area of Flow: 3.7881 ft^2

Wetted Perimeter: 28.5989 ft

Hydraulic Radius: 0.1325 ft

Average Velocity: 3.0886 ft/s

Top Width: 28.5939 ft

Froude Number: 1.4954

Critical Depth: 0.3137 ft

Critical Velocity: 2.2396 ft/s

Critical Slope: 0.0085 ft/ft

Critical Top Width: 33.59 ft

Calculated Max Shear Stress: 0.3339 lb/ft^2

Calculated Avg Shear Stress: 0.1653 lb/ft^2

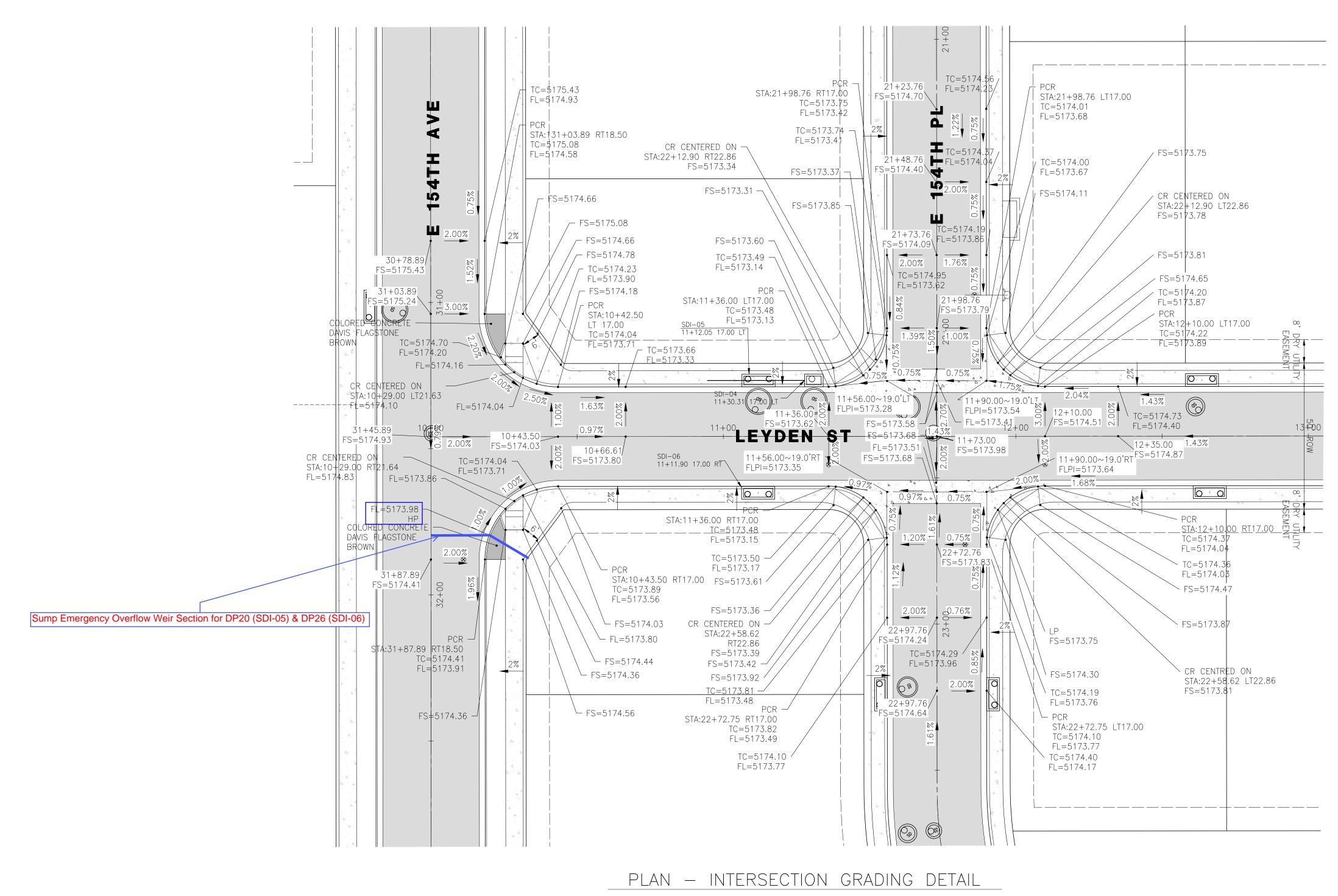
Composite Manning's n Equation: Lotter method

Manning's n: 0.0177

Hydraulic Analysis Report

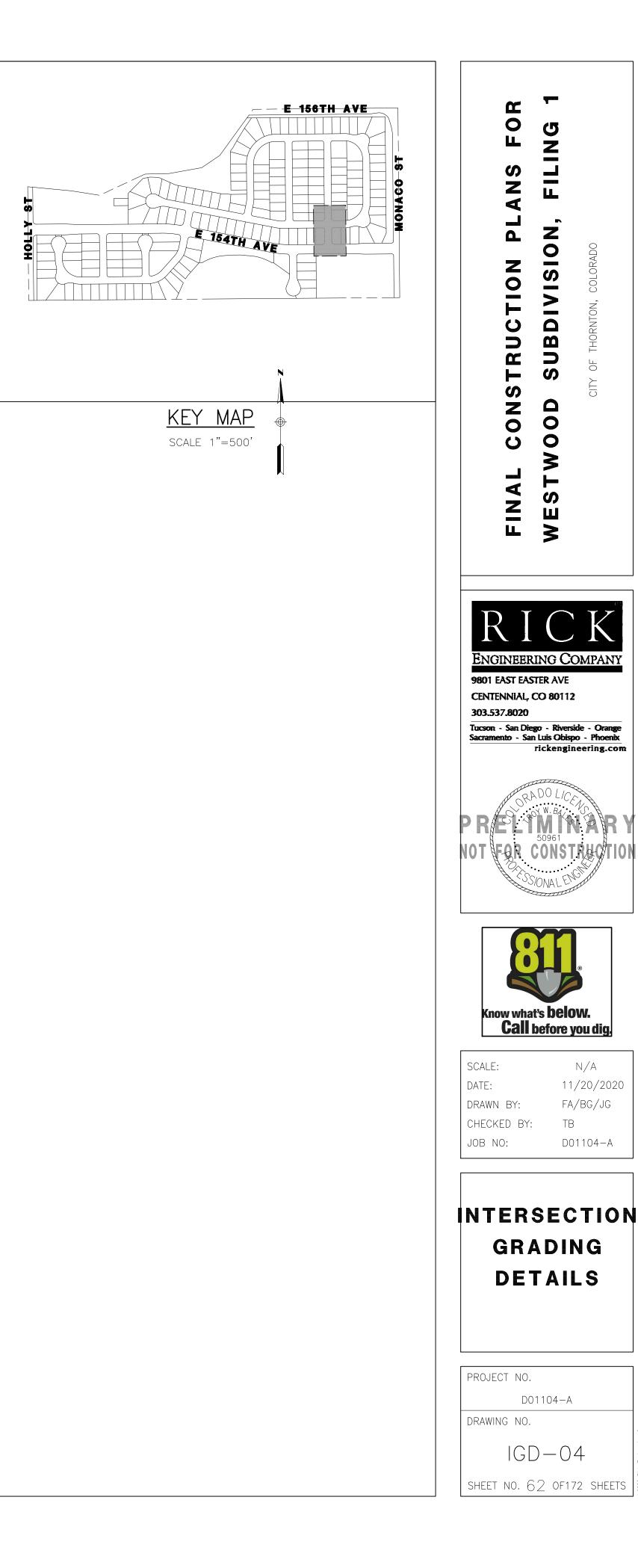
Project Data

Project Title: JN:1104 Westwood - Emergency Overflow Sizing Designer: Project Date: Tuesday, August 25, 2020 Project Units: U.S. Customary Units Notes:


Channel Analysis: Sump Overflow Weir - DP20 (SDI-05) & DP26 (SDI-06)

Notes:

Input Parameters


Channel Type: Custom Cross Section

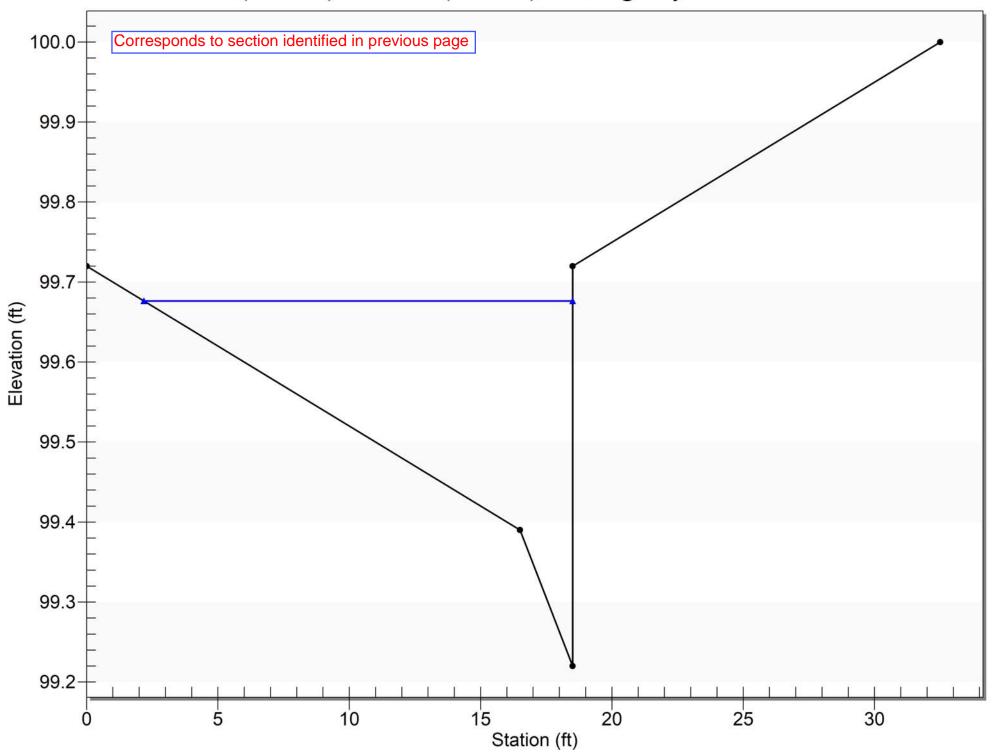
Flow from Sub-Basin 20B (SDI-05) & Basin 26 (SDI-06) + bypass flow from SDI-04, SDI-21, SDI-09 & SDI-19

WORK SHALL BE CONSTRUCTED TO CITY OF THORNTON STANDARDS AND SPECIFICATIONS. THIS APPROVAL IS FOR CONFORMANCE TO THESE STANDARDS AND SPECIFICATIONS AND OTHER CITY REQUIREMENTS. THE DESIGN AND CONCEPT REMAINS THE RESPONSIBILITY OF THE PROFESSIONAL ENGINEER OR LANDSCAPE PROFESSIONAL.

10 0 GRAPHIC SCALE: 1"=20'

Ö

N/A


11/20/2020

FA/BG/JG

D01104-A

ΤB

DP20 (SDI-05) & DP26 (SDI-06) - Emergency Overflow Weir

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
0.00	20.70	0.0100
0.00	99.72	0.0160
16.50	99.39	0.0160
18.50	99.22	0.0200
18.50	99.72	0.0200
32.50	100.00	

Corresponds to section identified in last two pages

Longitudinal Slope: 0.0196 ft/ft

Flow: 11.2000 cfs 📉

Result Parameters

Depth: 0.4565 ft

Area of Flow: 2.7948 ft^2

Wetted Perimeter: 16.7909 ft

Hydraulic Radius: 0.1664 ft

Average Velocity: 4.0074 ft/s

Top Width: 16.3243 ft

Froude Number: 1.7068

Critical Depth: 0.5385 ft

Critical Velocity: 2.6041 ft/s

Critical Slope: 0.0057 ft/ft

Critical Top Width: 20.42 ft

Calculated Max Shear Stress: 0.5583 lb/ft^2

Calculated Avg Shear Stress: 0.2036 lb/ft^2

Composite Manning's n Equation: Lotter method

Manning's n: 0.0157

Flow from Sub-Basin 20B (SDI-05) & Basin 26 (SDI-06) + bypass flow from SDI-04, SDI-21, SDI-09 & SDI-19

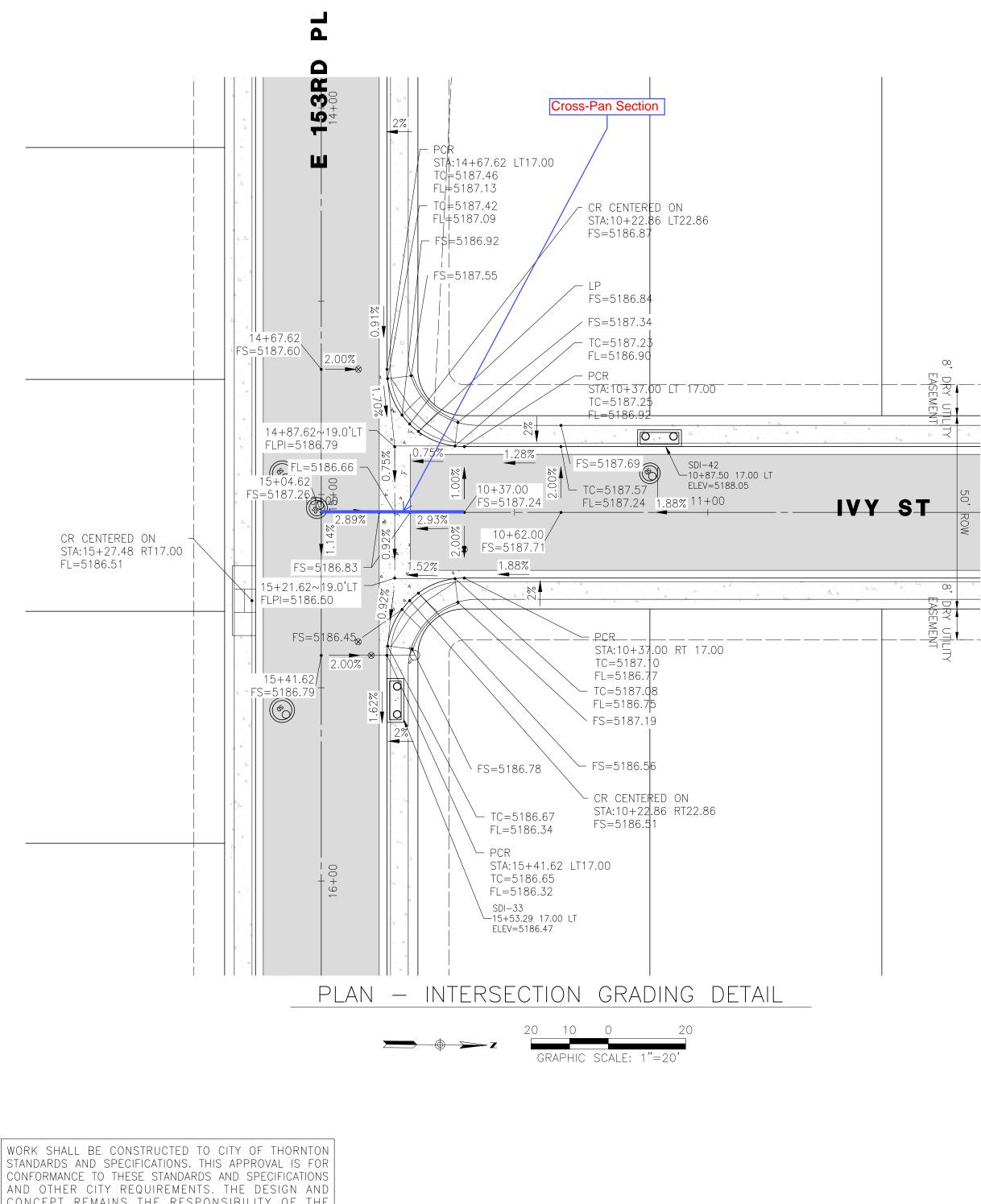
Appendix B – Hydraulic Computations Cross-Pan Capacity Check

All cross-pans have depth less than 3 inches during minor storm. Per Table 1-4, Chapter 1 of USDCM Vol.1 (page 1-19), 6 inches of depth allowed in local and collector streets.

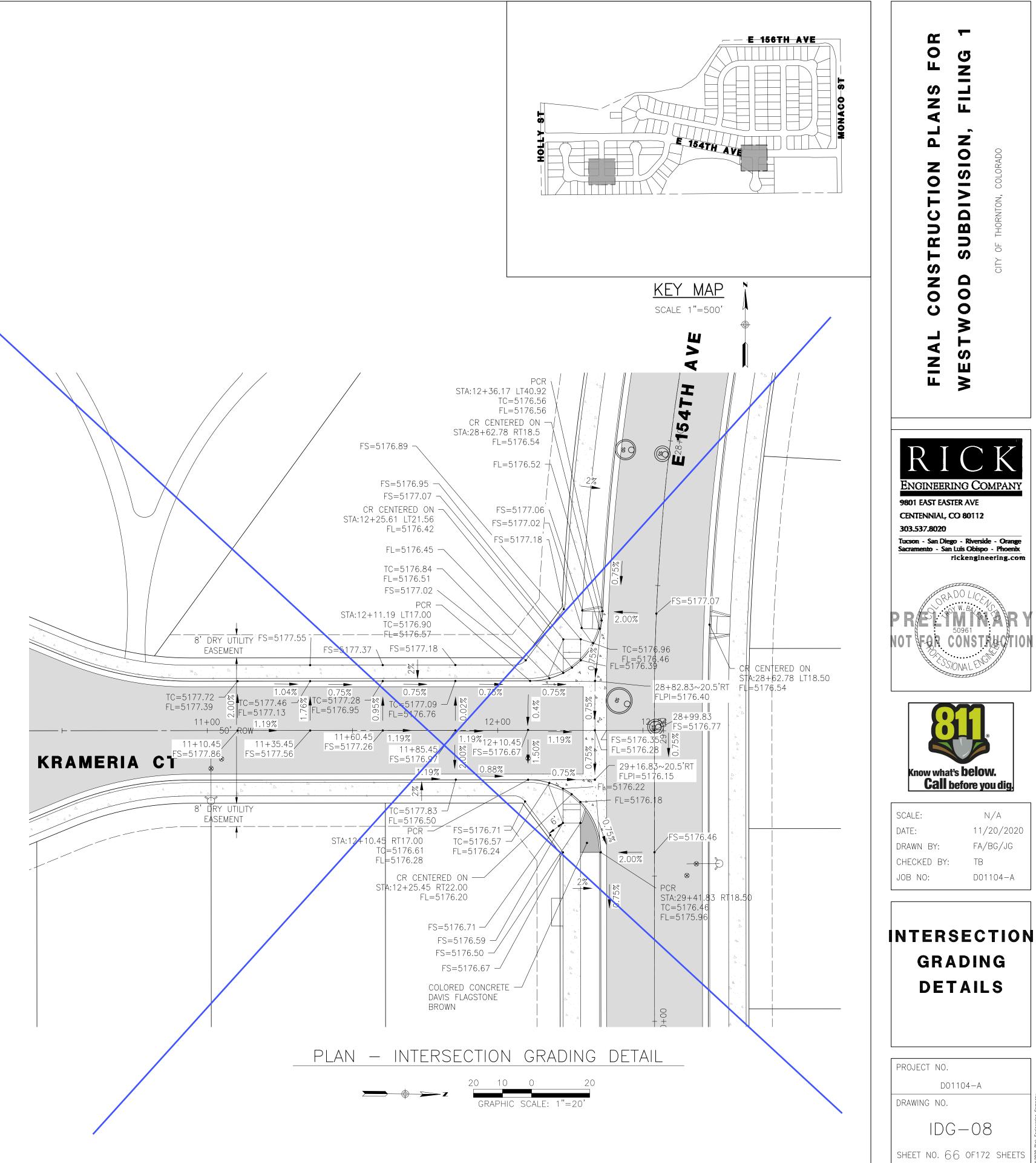
All cross-pans have depth less than 4.3 inches during major storm. Per Table 1-4, Chapter 1 of USDCM Vol.1 (page 1-19), 12 inches of depth allowed in local and collector streets.

Hydraulic Analysis Report

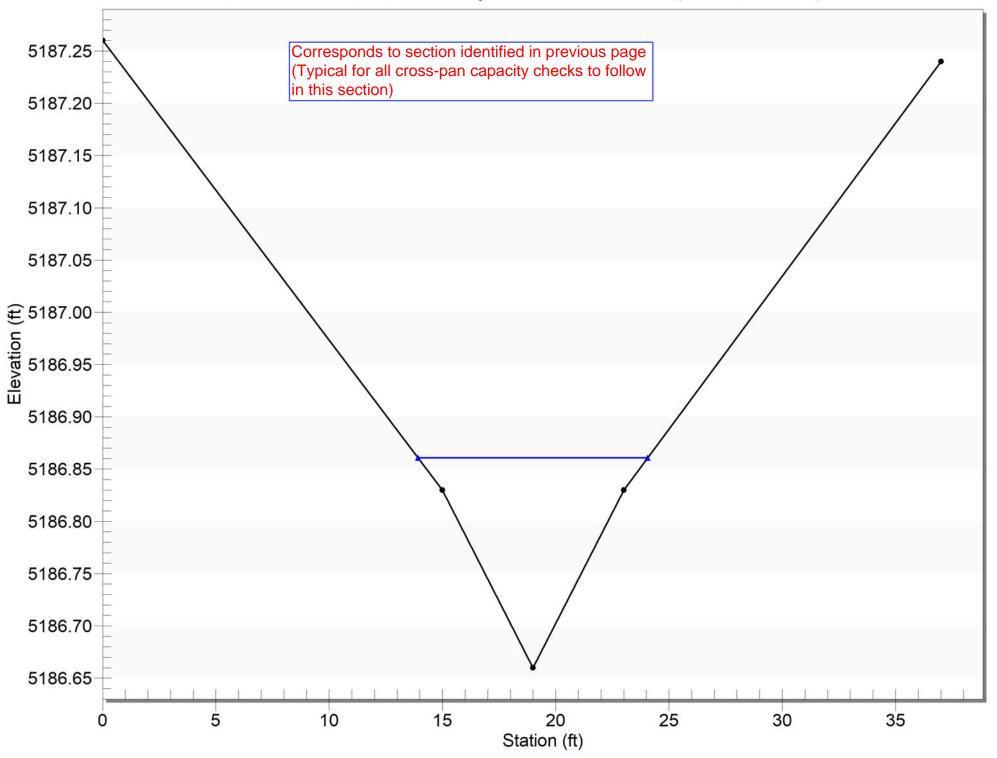
Project Data


Project Title: JN-1104: Westwood - Cross-Pan Capacity Check Designer: Project Date: Sunday, November 22, 2020 Project Units: U.S. Customary Units Notes:

Channel Analysis: Cross-Pan in Basin 43 - Ivy St & E 153rd PI (Minor Storm)


Notes:

Input Parameters


Channel Type: Custom Cross Section

CONCEPT REMAINS THE RESPONSIBILITY OF THE PROFESSIONAL ENGINEER OR LANDSCAPE PROFESSIONAL.

Cross-Pan in Basin 43 - Ivy St & E 153rd Pl (Minor Storm)

Corresponds to section identified in last two pages (Typical for all cross-pan capacity checks to follow in this section)

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
Station (Typical)		
0.00	5187.26	0,0160
15.00	5186.83	0.0130
19.00	5186.66	0.0130
23.00	5186.83	0.0160
37.00	5187.24	

0.016 for asphalt street per Chapter 7, USDCM Vol.1, page 7-7 0.013 for concrete street and gutter per Chapter 7, USDCM Vol.1, page 7-7 (Typical for all cross-pan sections to follow) Longitudinal Slope: 0.0075 ft/ft

7

Flow: 2.2000 cfs

Result Parameters

Depth: 0.2010 ft

Area of Flow: 0.9611 ft^2

Wetted Perimeter: 10.1474 ft

Hydraulic Radius: 0.0947 ft

Average Velocity: 2.2891 ft/s

Top Width: 10.1393 ft

Froude Number: 1.3103

Critical Depth: 0.2235 ft

Critical Velocity: 1.8230 ft/s

Critical Slope: 0.0040 ft/ft

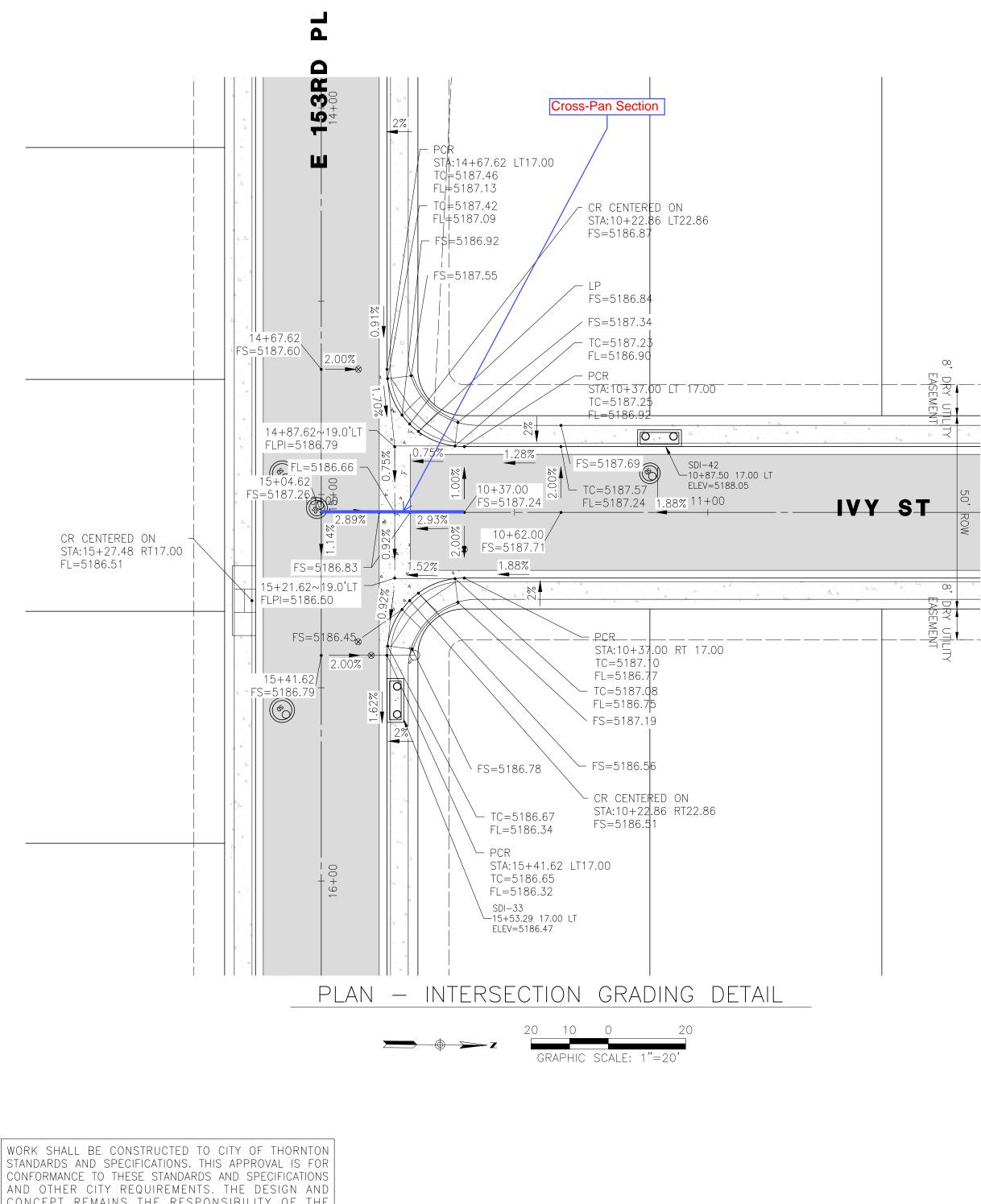
Critical Top Width: 11.69 ft

Calculated Max Shear Stress: 0.0941 lb/ft^2

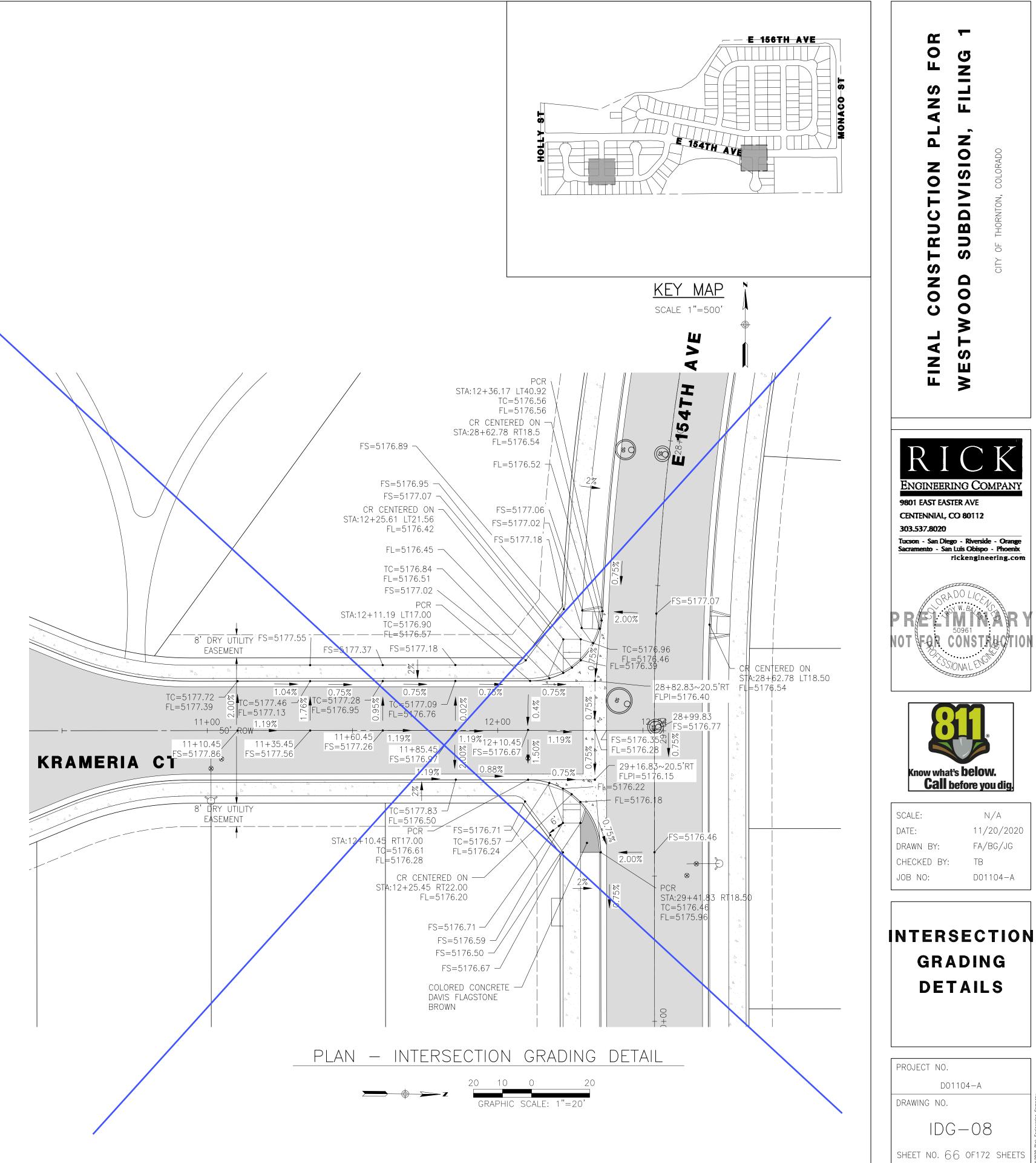
Calculated Avg Shear Stress: 0.0443 lb/ft^2

Composite Manning's n Equation: Lotter method

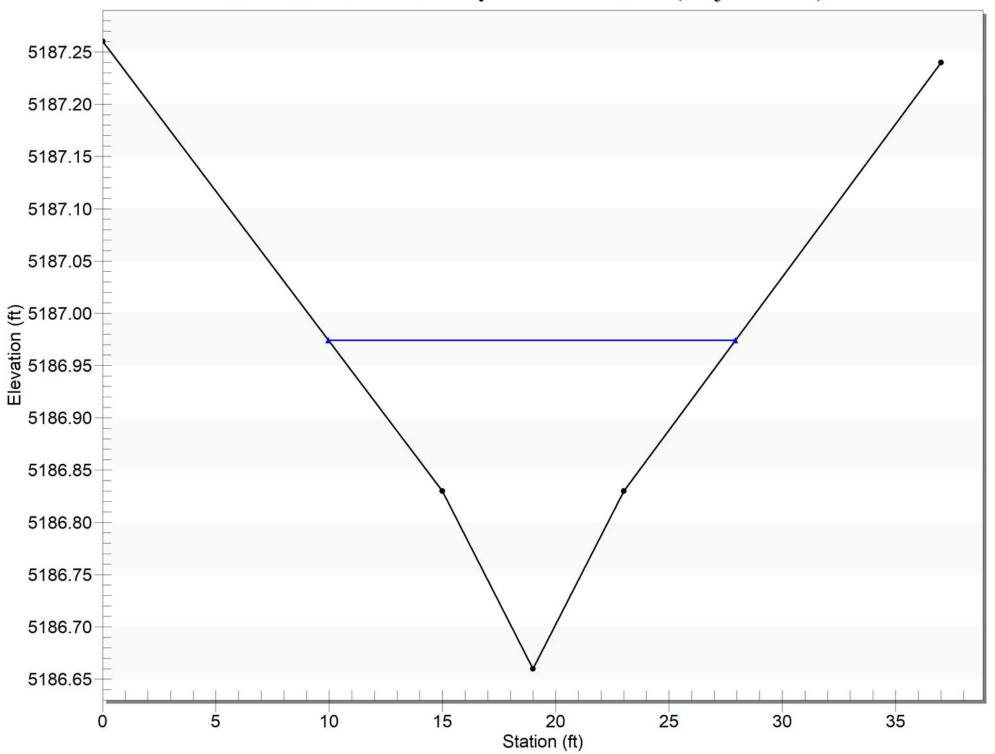
Manning's n: 0.0117


Minor storm flow from Basin 43 to SDI-33

Channel Analysis: Cross-Pan in Basin 43 - Ivy St & E 153rd PI (Major Storm)


Notes:

Input Parameters


Channel Type: Custom Cross Section

CONCEPT REMAINS THE RESPONSIBILITY OF THE PROFESSIONAL ENGINEER OR LANDSCAPE PROFESSIONAL.

Cross-Pan in Basin 43 - Ivy St & E 153rd Pl (Major Storm)

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5187.26	0.0160
15.00	5186.83	0.0130
19.00	5186.66	0.0130
23.00	5186.83	0.0160
37.00	5187.24	

Longitudinal Slope: 0.0075 ft/ft

Flow: 7.8000 cfs

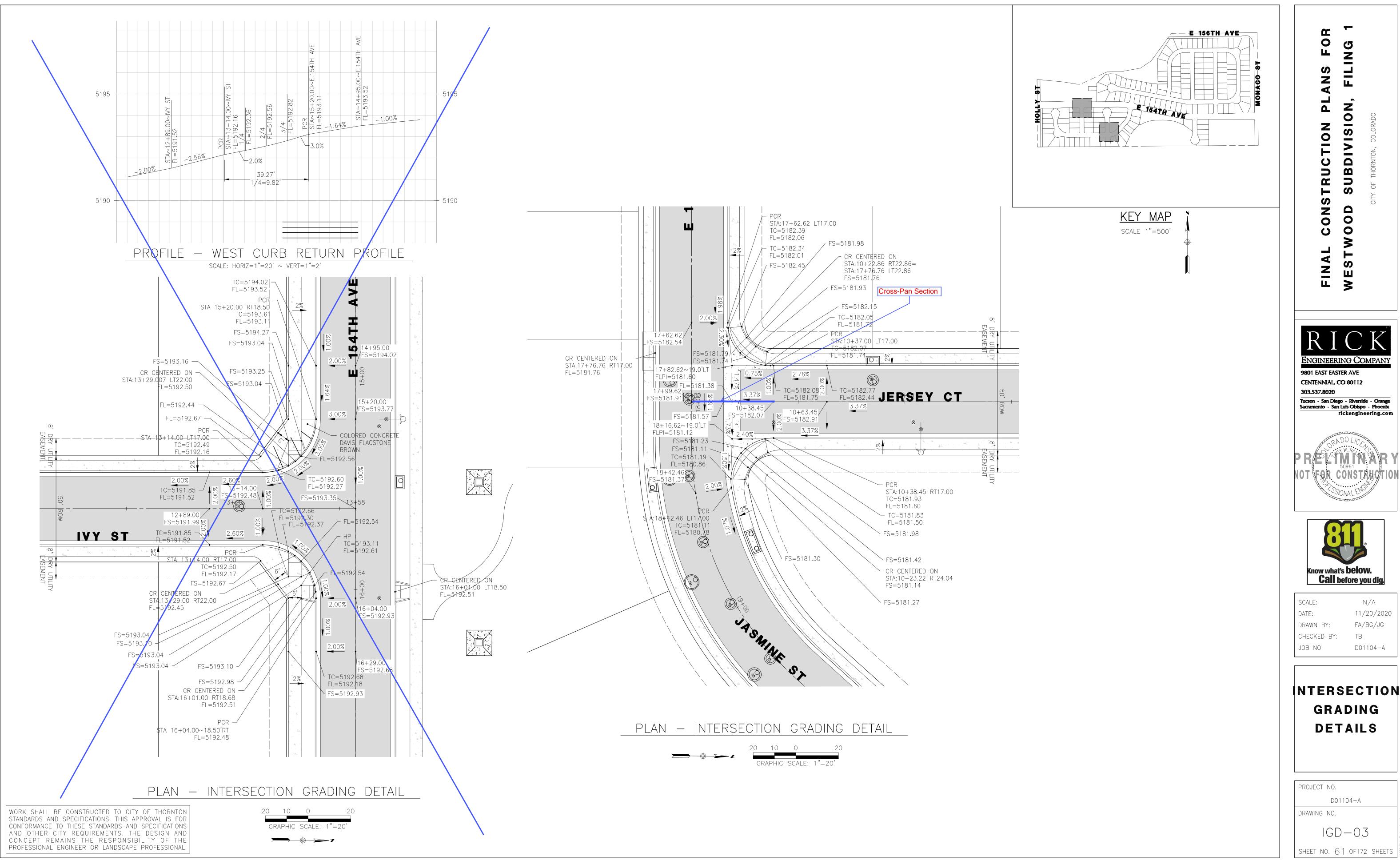
Result Parameters

Depth: 0.3143 ft Area of Flow: 2.5530 ft² Wetted Perimeter: 17.9719 ft Hydraulic Radius: 0.1421 ft Average Velocity: 3.0553 ft/s Top Width: 17.9605 ft Froude Number: 1.4281 Critical Depth: 0.3583 ft Critical Depth: 0.3583 ft Critical Slope: 0.0037 ft/ft Critical Slope: 0.0037 ft/ft Calculated Max Shear Stress: 0.1471 lb/ft² Calculated Avg Shear Stress: 0.0665 lb/ft² Composite Manning's n Equation: Lotter method Manning's n: 0.0115

Major storm flow from Basin 43 (SDI-33) + bypass flow from SDI-31 & SDI-42

Hydraulic Analysis Report

Project Data


Project Title: JN-1104: Westwood - Cross-Pan Capacity Check Designer: Project Date: Sunday, November 22, 2020 Project Units: U.S. Customary Units Notes:

Channel Analysis: Cross-Pan in Basin 44 - Jersey Ct & E 153rd PI (Minor Storm)

Notes:


Input Parameters

Channel Type: Custom Cross Section

rickeng.com/projects/D_SHARE/1104_Westwood/Givii/Plans/Final Construction Plans/1104-C-DTL17-23.dwg 2020-12-28 - 9:25AM - tt

Cross-Pan in Basin 44 - Jersey Ct & E 153rd Pl (Minor Storm)

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5181.91	0.0160
15.00	5181.57	0.0130
19.00	5181.38	0.0130
23.00	5181.57	0.0160
38.45	5182.07	

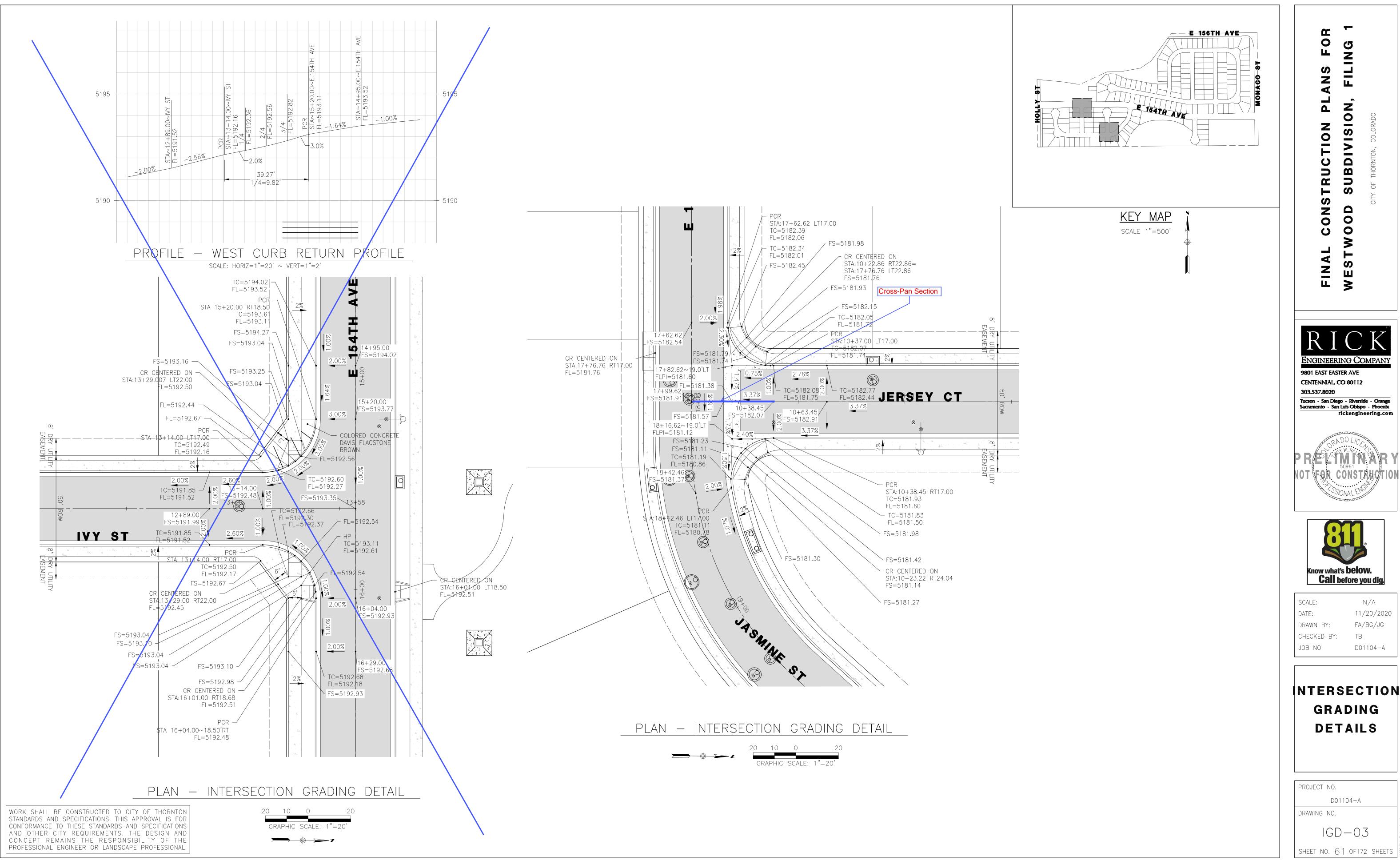
Longitudinal Slope: 0.0147 ft/ft

Flow: 2.1000 cfs

Manning's n: 0.0130

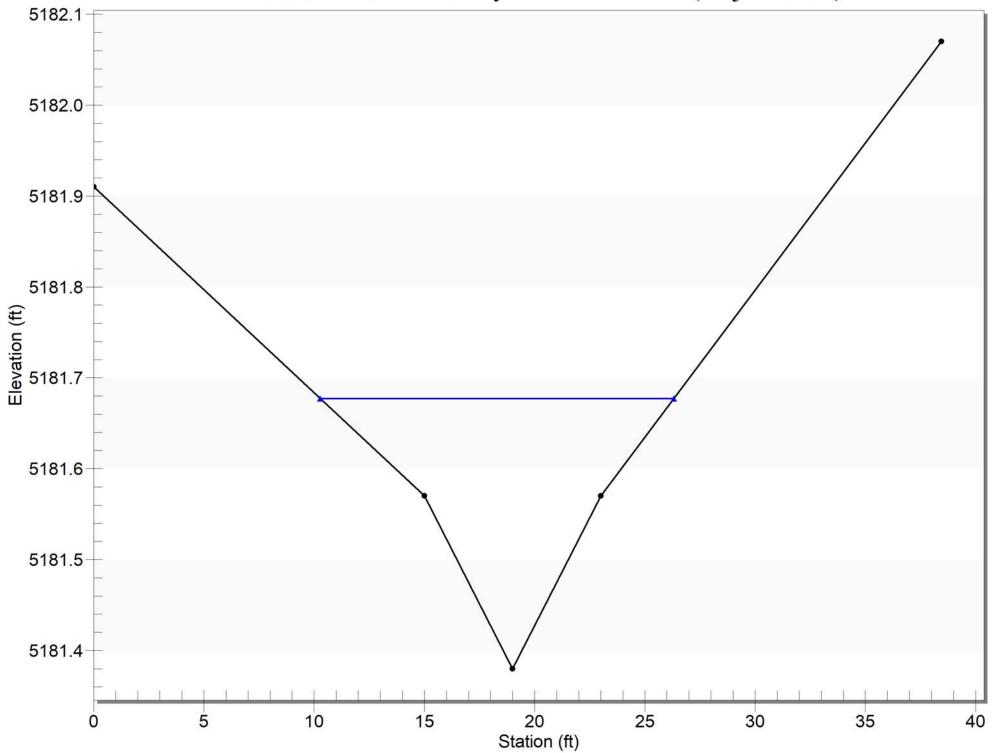
Result Parameters

Depth: 0.1870 ft Area of Flow: 0.7361 ft² Wetted Perimeter: 7.8822 ft Hydraulic Radius: 0.0934 ft Average Velocity: 2.8528 ft/s Top Width: 7.8733 ft Froude Number: 1.6442 Critical Depth: 0.2308 ft Critical Depth: 0.2308 ft Critical Slope: 0.0040 ft/ft Critical Slope: 0.0040 ft/ft Critical Top Width: 11.06 ft Calculated Max Shear Stress: 0.1715 lb/ft² Calculated Avg Shear Stress: 0.0857 lb/ft²


Minor storm flow from Basin 44 to SDI-35

Channel Analysis: Cross-Pan in Basin 44 - Jersey Ct & E 153rd PI (Major Storm)

Notes:


Input Parameters

Channel Type: Custom Cross Section

rickeng.com/projects/D_SHARE/1104_Westwood/Givii/Plans/Final Construction Plans/1104-C-DTL17-23.dwg 2020-12-28 - 9:25AM - tt

Cross-Pan in Basin 44 - Jersey Ct & E 153rd Pl (Major Storm)

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5181.91	0.0160
15.00	5181.57	0.0130
19.00	5181.38	0.0130
23.00	5181.57	0.0160
38.45	5182.07	

Longitudinal Slope: 0.0147 ft/ft

Flow: 8.4000 cfs <u> </u>

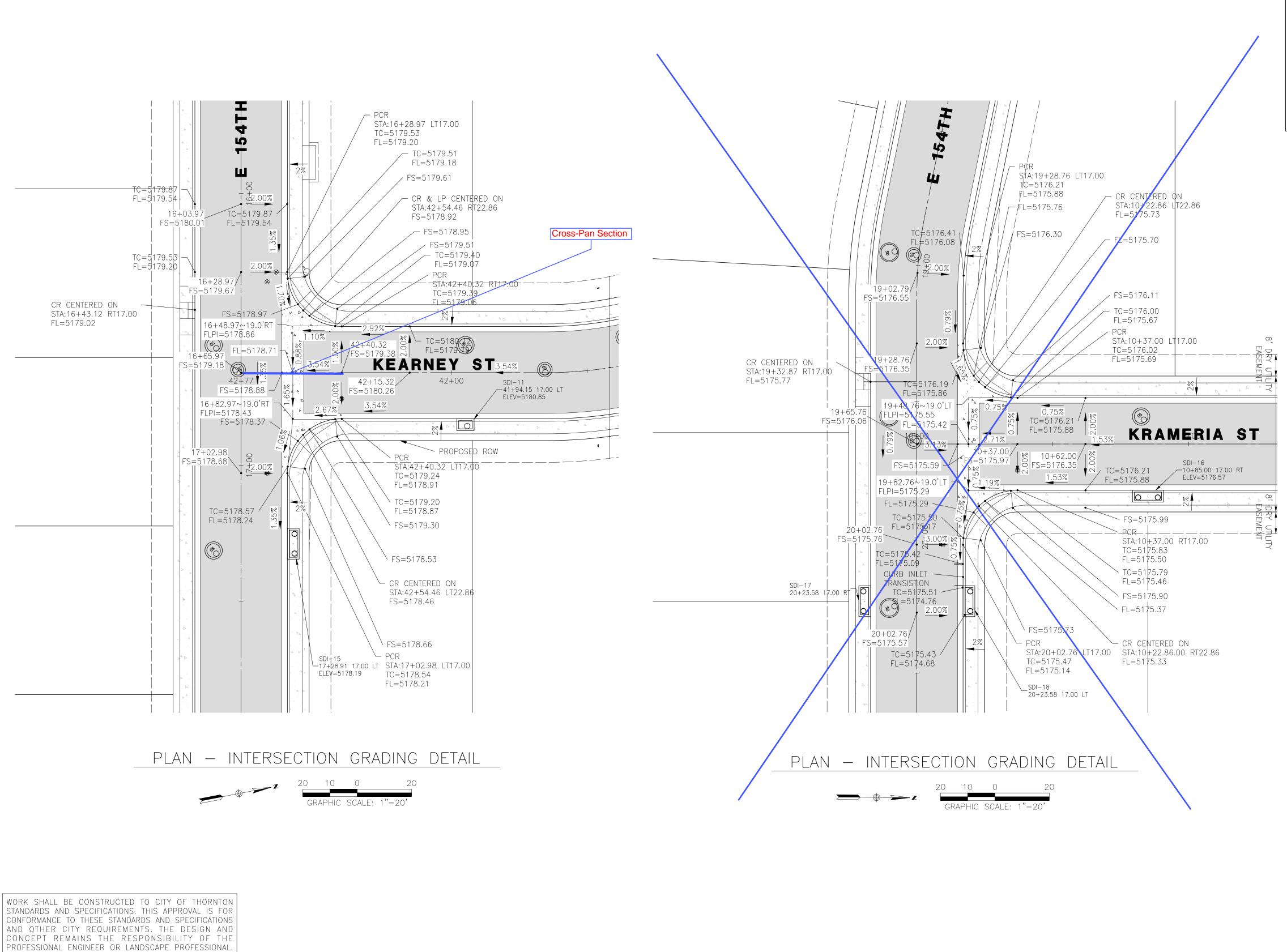
Result Parameters

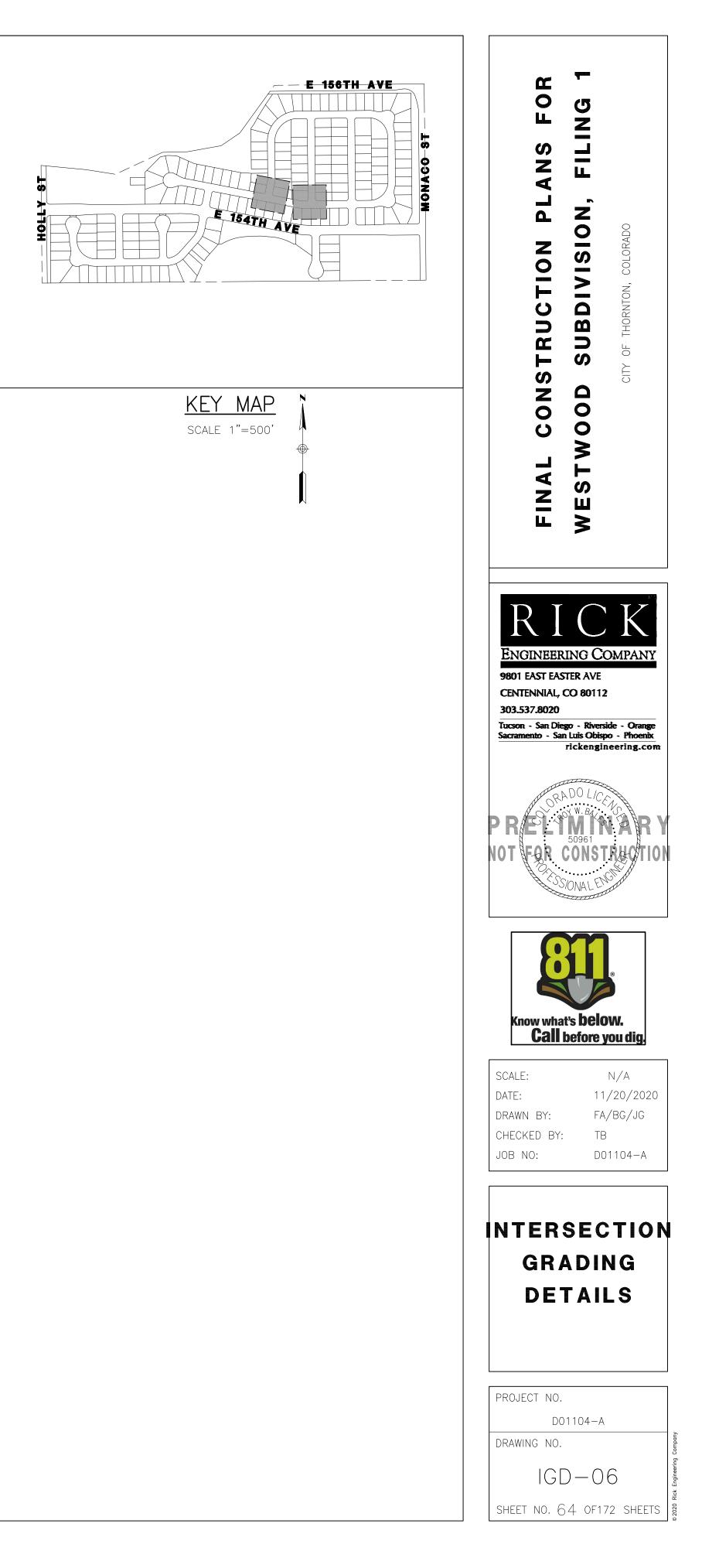
Depth: 0.2971 ft Area of Flow: 2.0472 ft² Wetted Perimeter: 16.0472 ft Hydraulic Radius: 0.1276 ft Average Velocity: 4.1031 ft/s Top Width: 16.0352 ft Froude Number: 2.0237 Critical Depth: 0.3811 ft Critical Velocity: 2.2965 ft/s Critical Slope: 0.0036 ft/ft Critical Top Width: 22.33 ft Calculated Max Shear Stress: 0.2725 lb/ft² Calculated Avg Shear Stress: 0.1170 lb/ft² Composite Manning's n Equation: Lotter method Manning's n: 0.0111

Major storm flow from Basin 44 (SDI-35) + bypass flow from SDI-39 & SDI-33

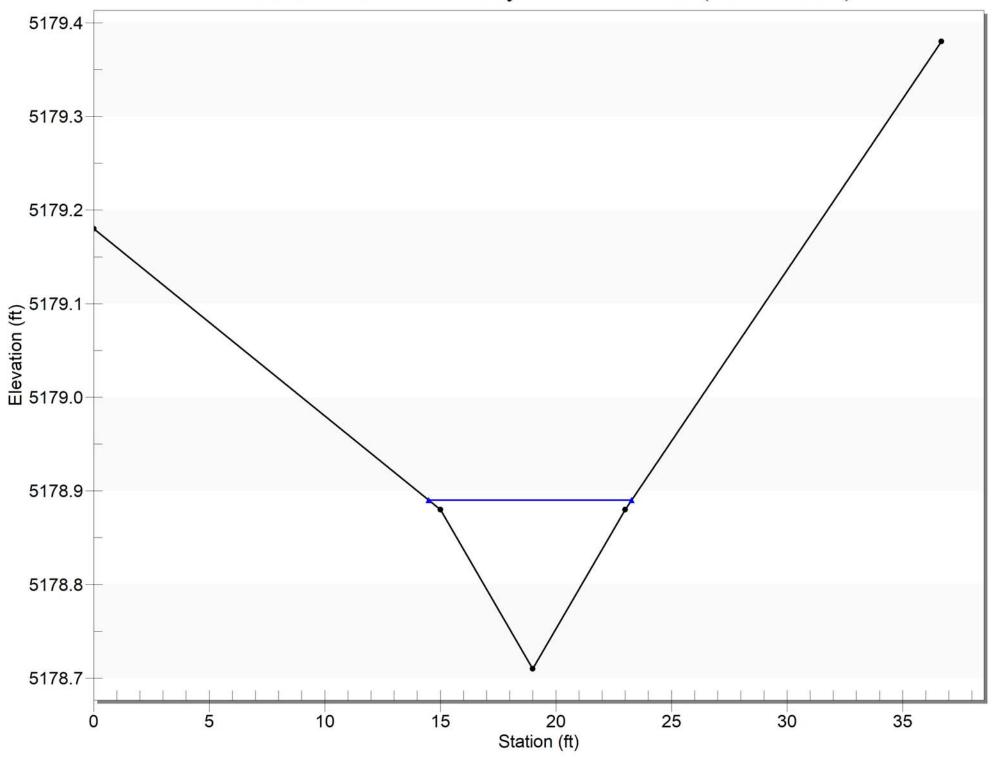
Hydraulic Analysis Report

Project Data


Project Title: JN-1104: Westwood - Cross-Pan Capacity Check Designer: Project Date: Sunday, November 22, 2020 Project Units: U.S. Customary Units Notes:


Channel Analysis: Cross-Pan in Basin 48 - Kearney St & E 154th PI (Minor Storm)

Notes:


Input Parameters

Channel Type: Custom Cross Section

Cross-Pan in Basin 48 - Kearney St & E 154th Pl (Minor Storm)

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5179.18	0.0160
15.00	5178.88	0.0130
19.00	5178.71	0.0130
23.00	5178.88	0.0160
36.68	5179.38	

Longitudinal Slope: 0.0088 ft/ft

Flow: 1.7000 cfs

Result Parameters

Depth: 0.1801 ft Area of Flow: 0.7648 ft^2

Wetted Perimeter: 8.7896 ft

Hydraulic Radius: 0.0870 ft

Average Velocity: 2.2227 ft/s

Top Width: 8.7821 ft

Froude Number: 1.3273

Critical Depth: 0.2025 ft

Critical Velocity: 1.7332 ft/s

Critical Slope: 0.0043 ft/ft

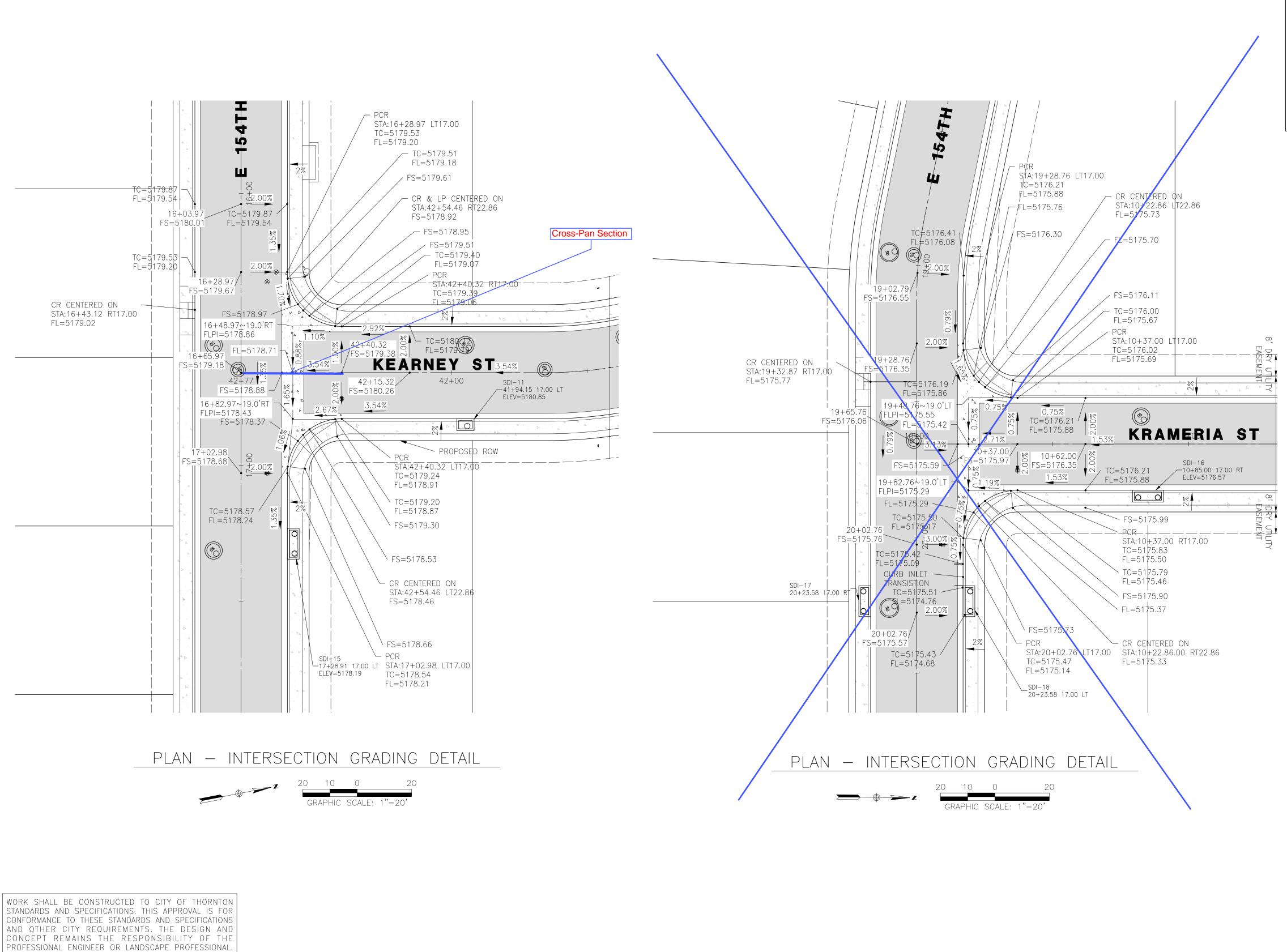
Critical Top Width: 10.51 ft

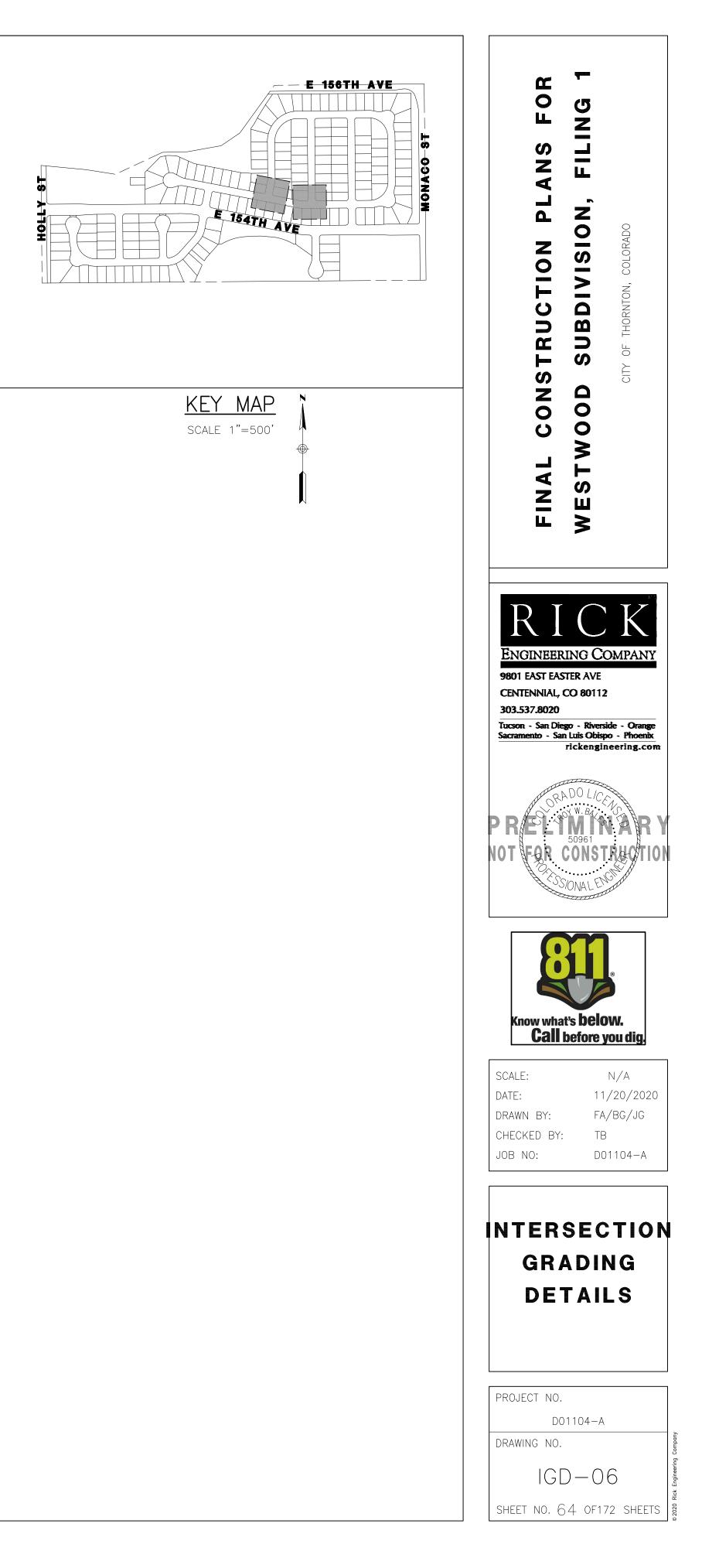
Calculated Max Shear Stress: 0.0989 lb/ft^2

Calculated Avg Shear Stress: 0.0478 lb/ft^2

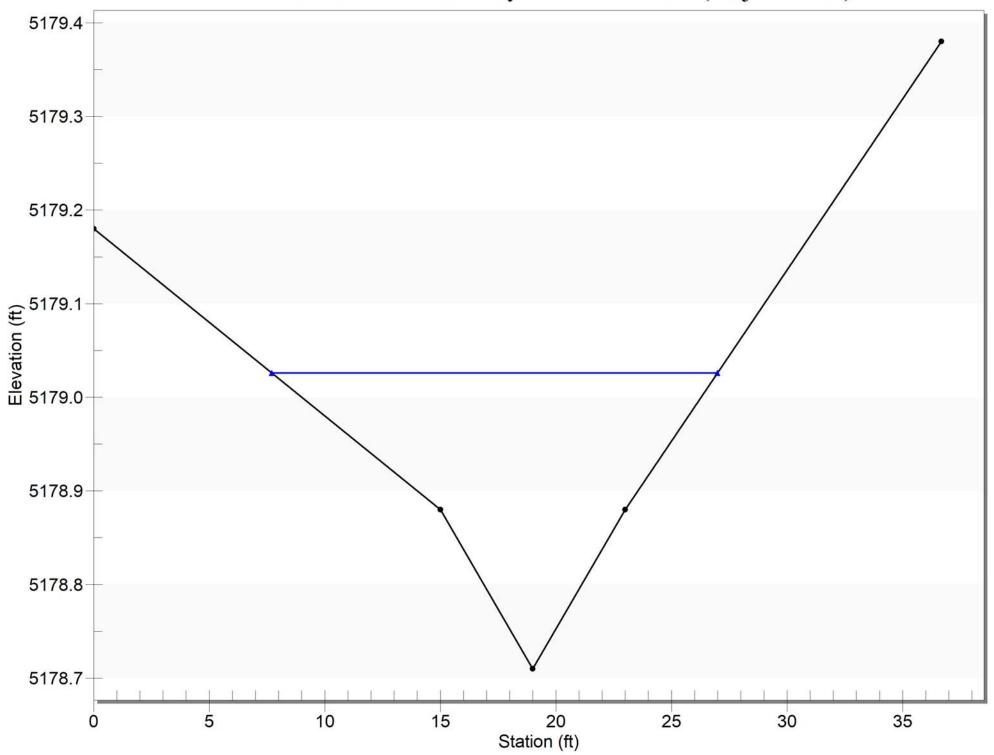
Composite Manning's n Equation: Lotter method

Manning's n: 0.0123


Minor storm flow from Basin 48 to SDI-15


Channel Analysis: Cross-Pan in Basin 48 - Kearney St & E 154th PI (Major Storm)

Notes:


Input Parameters

Channel Type: Custom Cross Section

Cross-Pan in Basin 43 - Kearney St & E 154th Pl (Major Storm)

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5179.18	0.0160
15.00	5178.88	0.0130
19.00	5178.71	0.0130
23.00	5178.88	0.0160
36.68	5179.38	

Longitudinal Slope: 0.0088 ft/ft

Flow: 8.7000 cfs

Result Parameters

Depth: 0.3159 ft Area of Flow: 2.6699 ft^2 Wetted Perimeter: 19.2955 ft Hydraulic Radius: 0.1384 ft Average Velocity: 3.2585 ft/s Top Width: 19.2842 ft Froude Number: 1.5433 Critical Depth: 0.3688 ft Critical Velocity: 2.2896 ft/s Critical Slope: 0.0037 ft/ft Critical Top Width: 23.38 ft Calculated Max Shear Stress: 0.1734 lb/ft^2

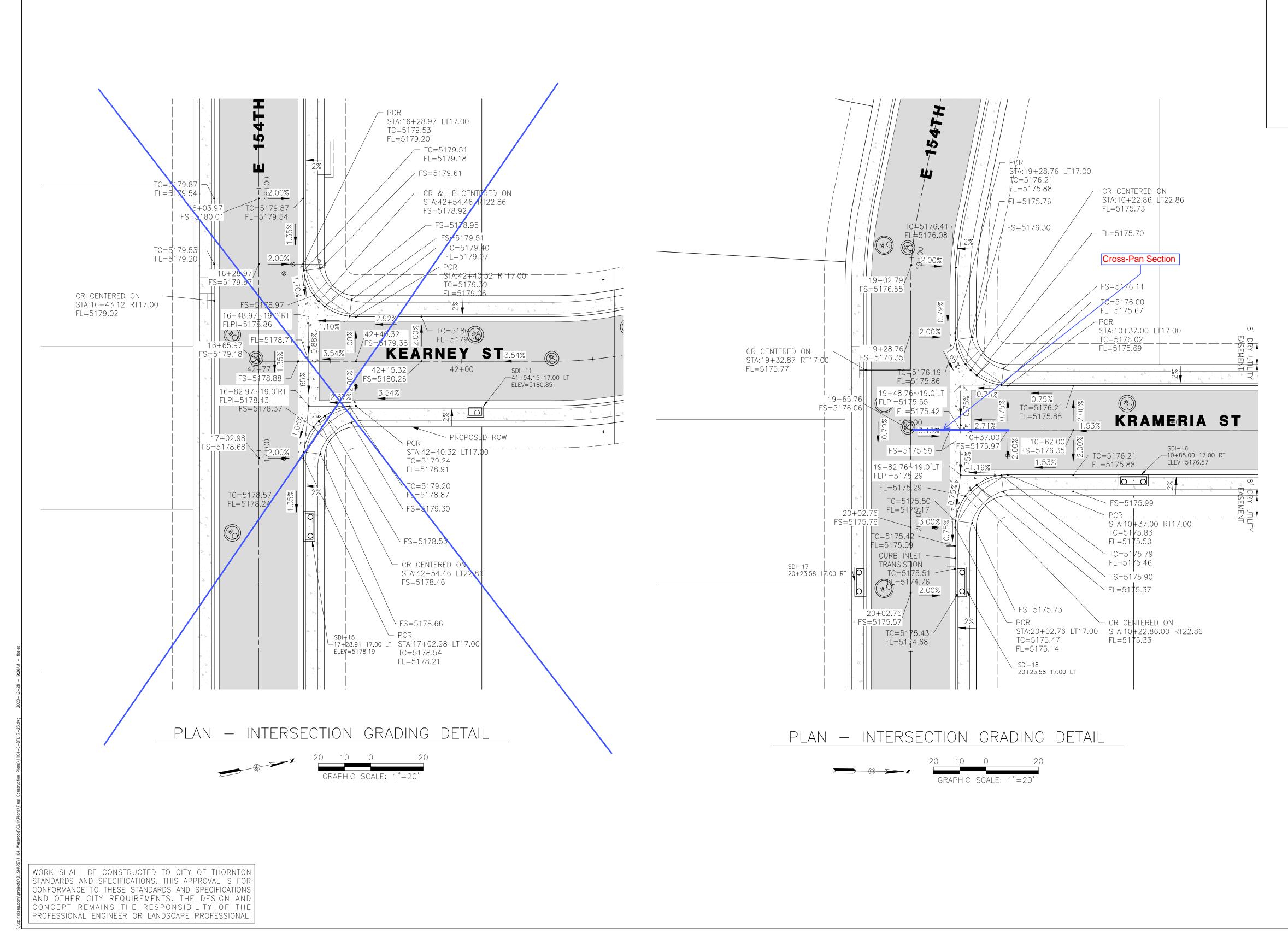
Calculated Avg Shear Stress: 0.0760 lb/ft^2

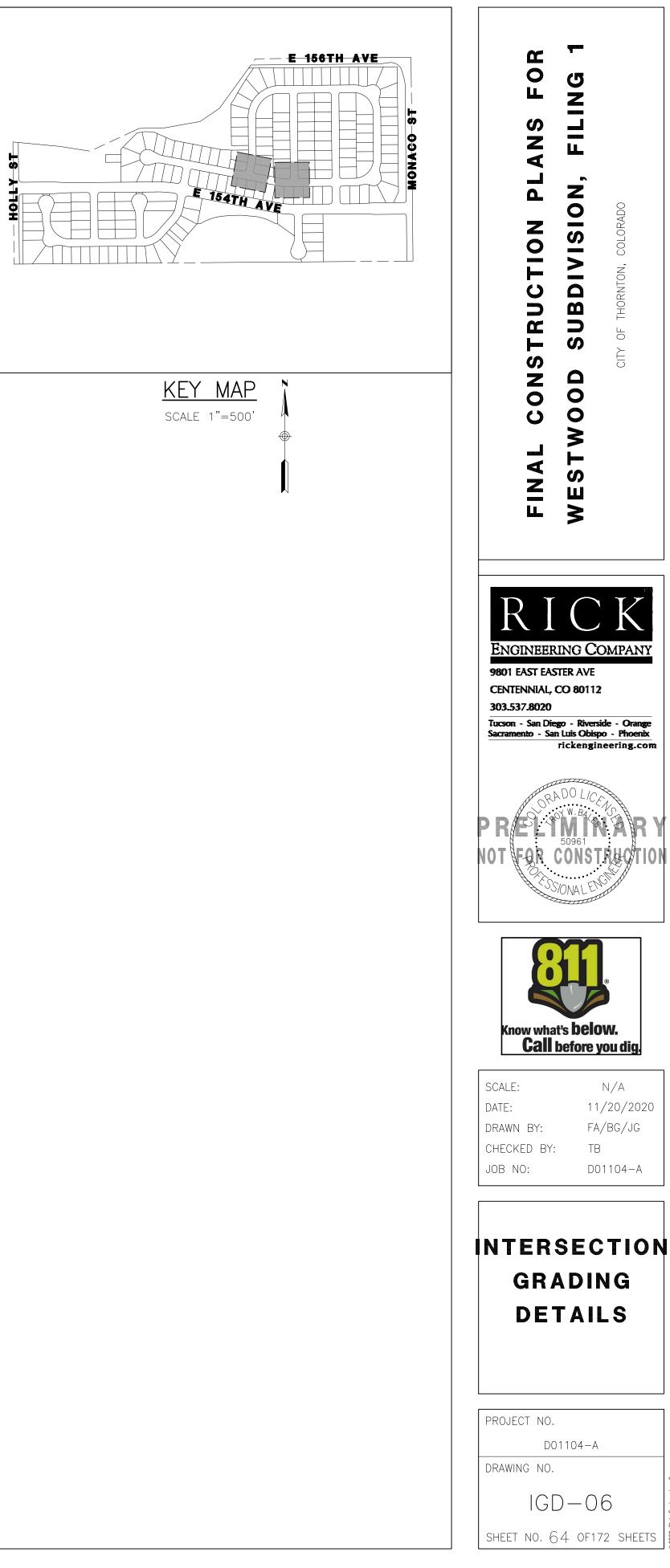
Manning's n: 0.0114

Composite Manning's n Equation: Lotter method

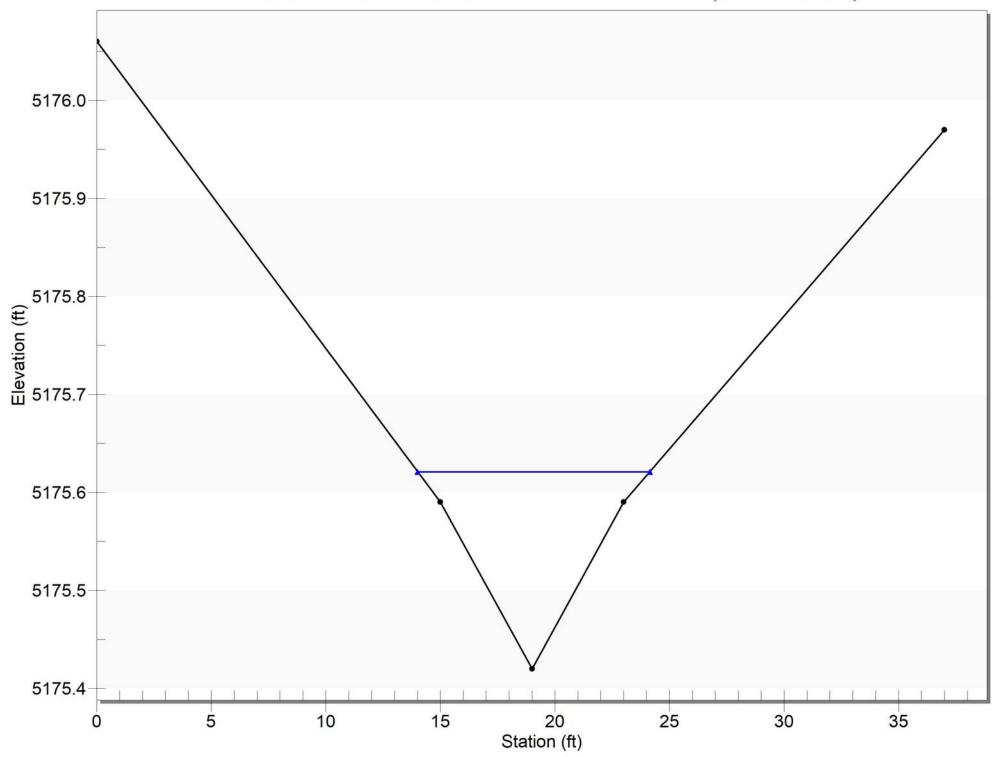
Major storm flow from Basin 48 (SDI-15) + bypass flow from SDI-24, SDI-11 & SDI-14

Hydraulic Analysis Report


Project Data


Project Title: JN-1104: Westwood - Cross-Pan Capacity Check Designer: Project Date: Sunday, November 22, 2020 Project Units: U.S. Customary Units Notes:

Channel Analysis: Cross-Pan in Basin 49 - Krameria St & E 154th PI (Minor Storm)


Notes:

Input Parameters

Cross-Pan in Basin 49 - Krameria St & E 154th Pl (Minor Storm)

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5176.06	0.0160
15.00	5175.59	0.0130
19.00	5175.42	0.0130
23.00	5175.59	0.0160
37.00	5175.97	

Longitudinal Slope: 0.0075 ft/ft

Flow: 2.2000 cfs

Result Parameters

Depth: 0.2010 ft

Area of Flow: 0.9610 ft^2

Wetted Perimeter: 10.1391 ft

Hydraulic Radius: 0.0948 ft

Average Velocity: 2.2894 ft/s

Top Width: 10.1310 ft

Froude Number: 1.3100

Critical Depth: 0.2235 ft

Critical Velocity: 1.8238 ft/s

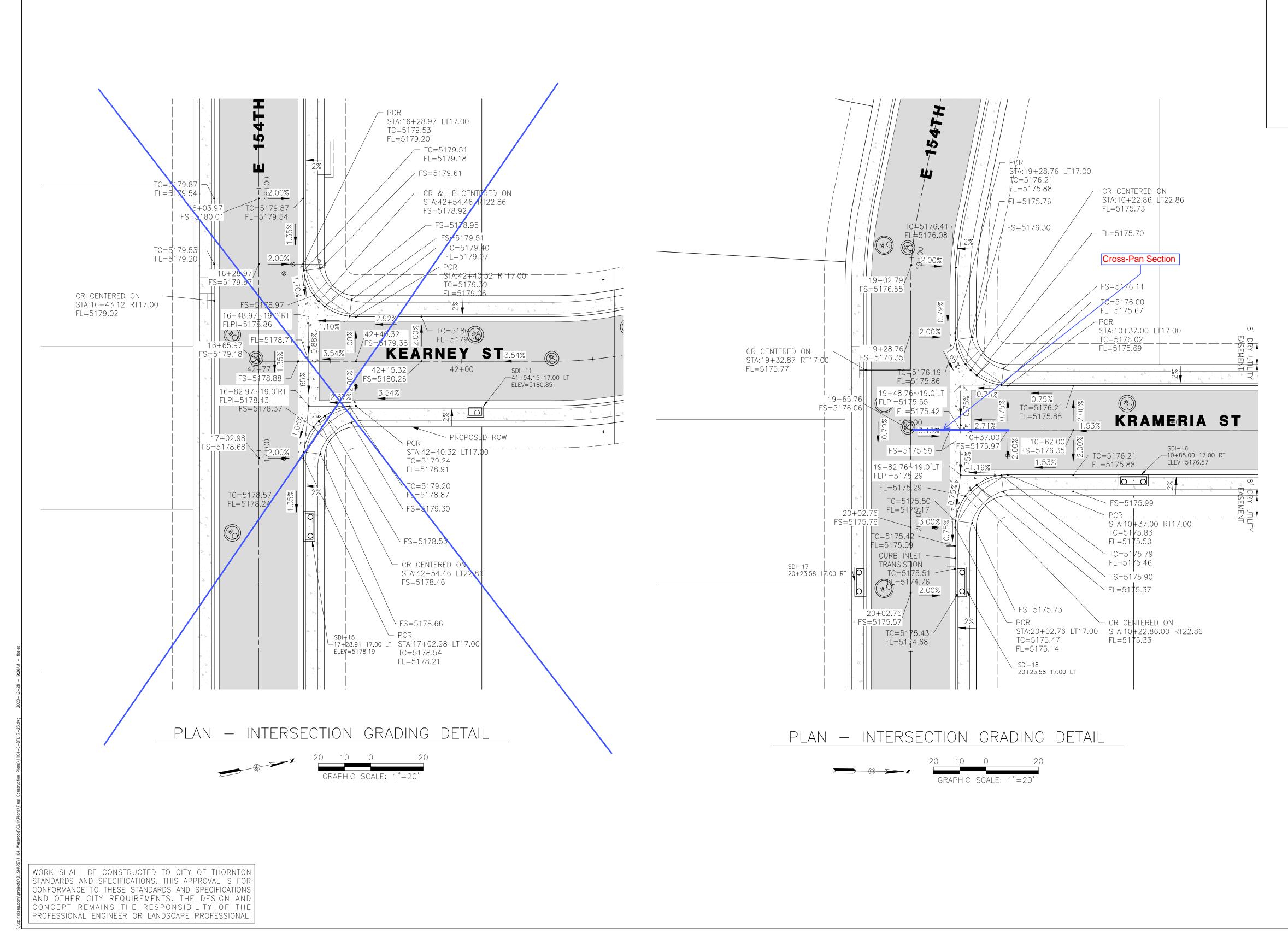
Critical Slope: 0.0040 ft/ft

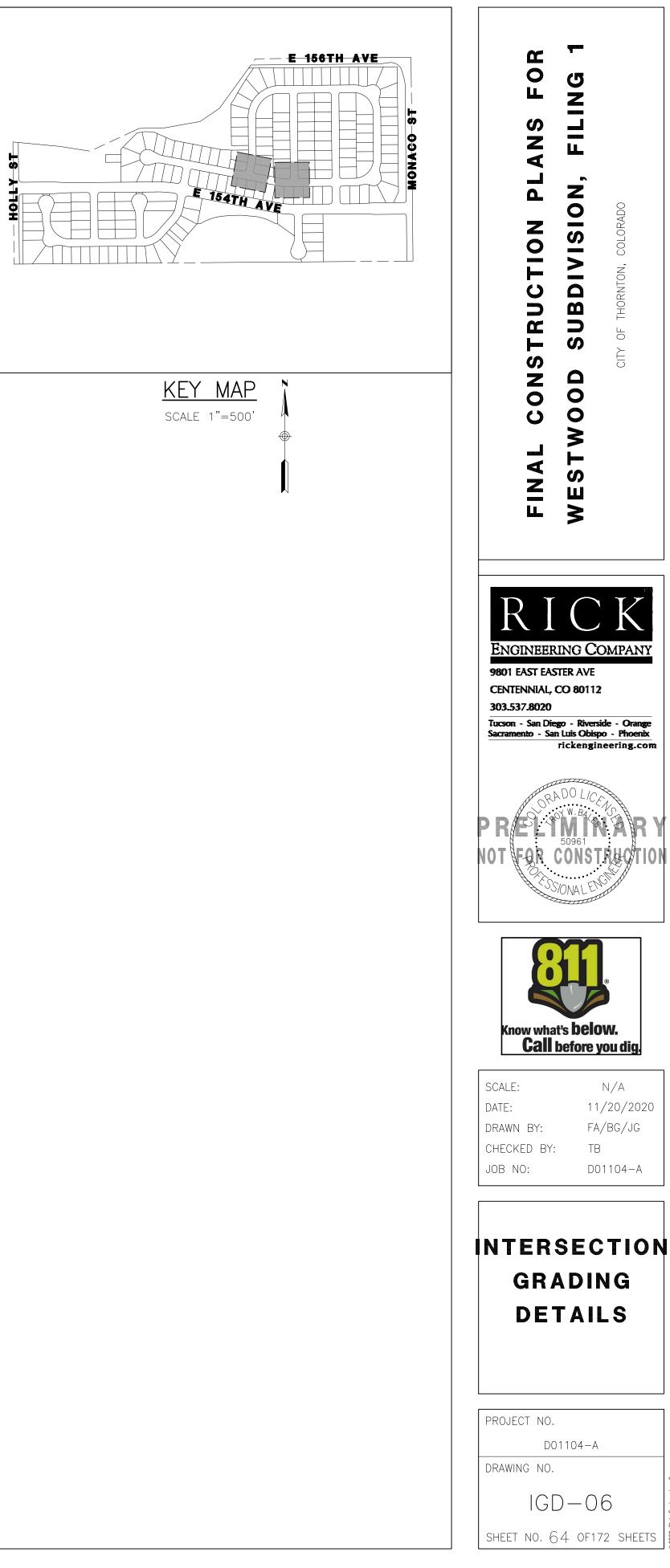
Critical Top Width: 11.68 ft

Calculated Max Shear Stress: 0.0941 lb/ft^2

Calculated Avg Shear Stress: 0.0444 lb/ft^2

Composite Manning's n Equation: Lotter method


Manning's n: 0.0117


Minor storm flow from Basin 49 to SDI-18

Channel Analysis: Cross-Pan in Basin 49 - Krameria St & E 154th PI (Major Storm)


Notes:

Input Parameters

Cross-Pan in Basin 49 - Krameria St & E 154th Pl (Major Storm)

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5176.06	0.0160
15.00	5175.59	0.0130
19.00	5175.42	0.0130
23.00	5175.59	0.0160
37.00	5175.97	

Longitudinal Slope: 0.0075 ft/ft Flow: 8.3000 cfs

Result Parameters

Depth: 0.3216 ft Area of Flow: 2.6825 ft^2 Wetted Perimeter: 18.4338 ft Hydraulic Radius: 0.1455 ft Average Velocity: 3.0941 ft/s

Top Width: 18.4222 ft

Froude Number: 1.4289

Critical Depth: 0.3667 ft

Critical Velocity: 2.3155 ft/s

Critical Slope: 0.0037 ft/ft

Critical Top Width: 21.53 ft

Calculated Max Shear Stress: 0.1505 lb/ft^2

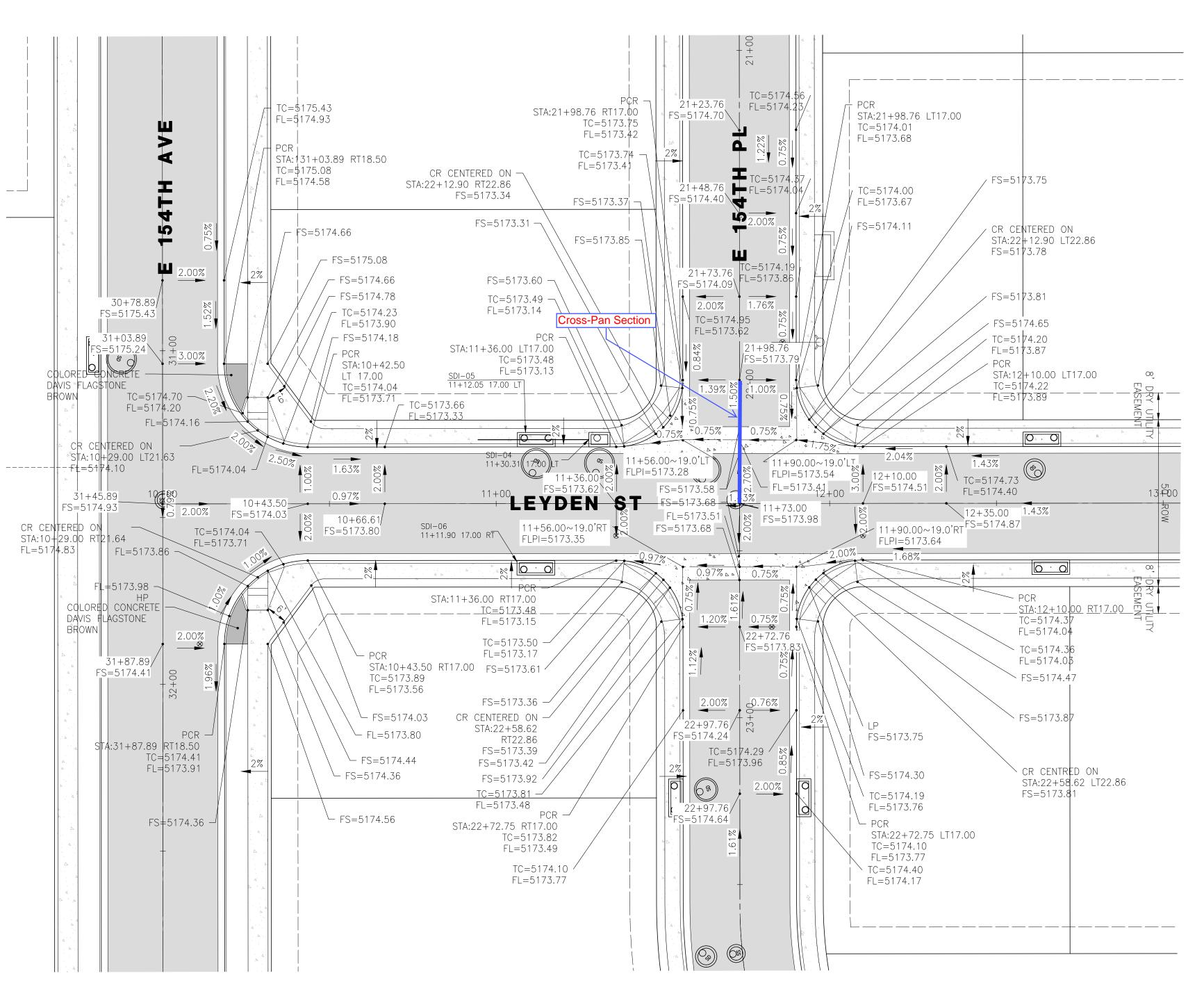
Calculated Avg Shear Stress: 0.0681 lb/ft^2

Composite Manning's n Equation: Lotter method

Manning's n: 0.0115

Major storm flow from Basin 49 to SDI-18 + bypass flow from SDI-27, SDI-16 & SDI-15

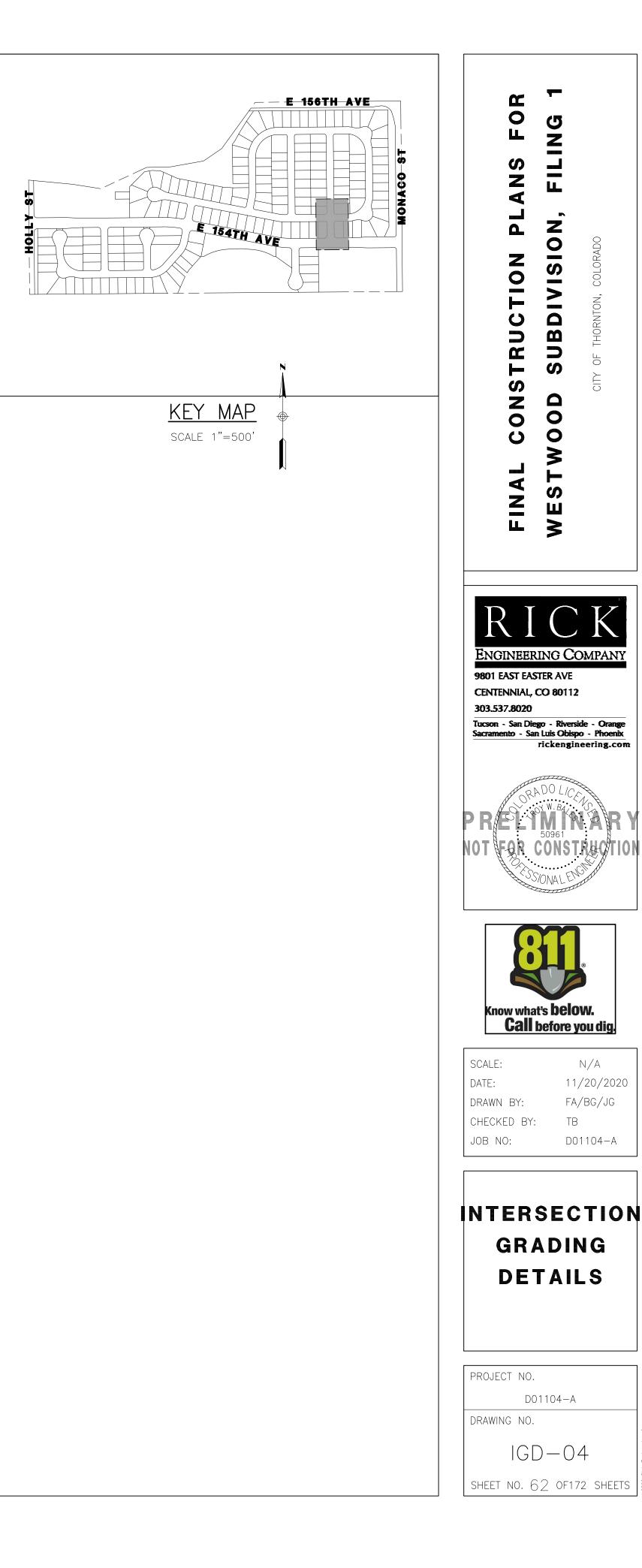
Hydraulic Analysis Report


Project Data

Project Title: JN-1104: Westwood - Cross-Pan Capacity Check Designer: Project Date: Sunday, November 22, 2020 Project Units: U.S. Customary Units Notes:

Channel Analysis: Cross-Pan in Sub-Basin 20A - Leyden St & E 154th PI (Minor Storm)

Notes:

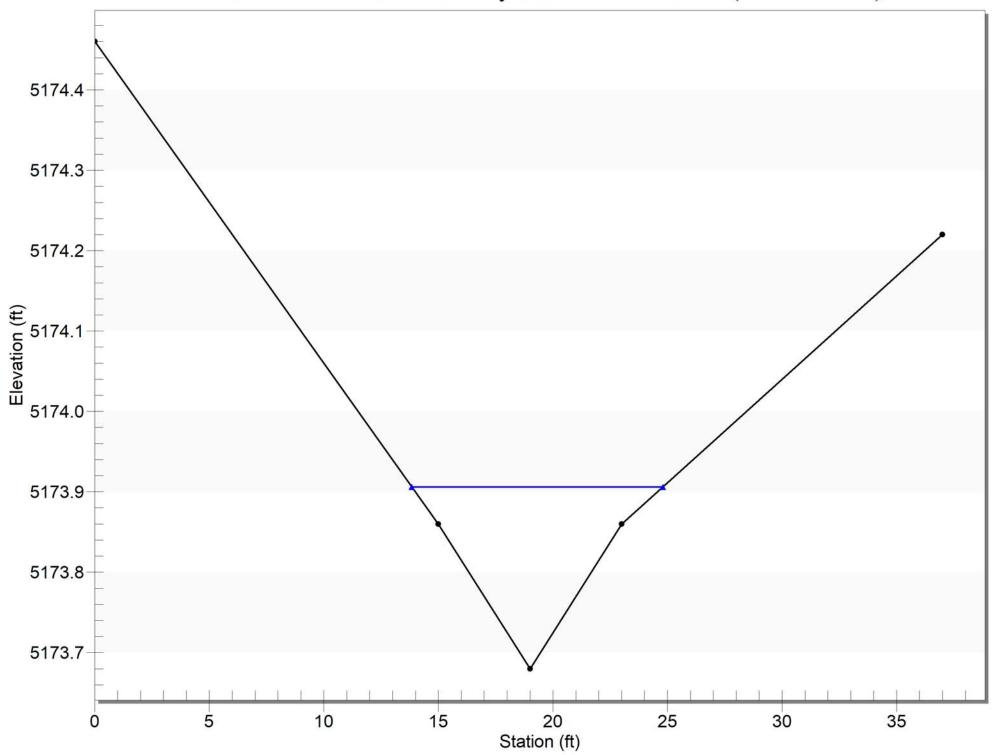

Input Parameters

10 0 20

GRAPHIC SCALE: 1"=20'

Ö

N/A


11/20/2020

FA/BG/JG

D01104-A

ΤB

Cross-Pan in Sub-Basin 20A - Leyden St & E 154th Pl (Minor Storm)

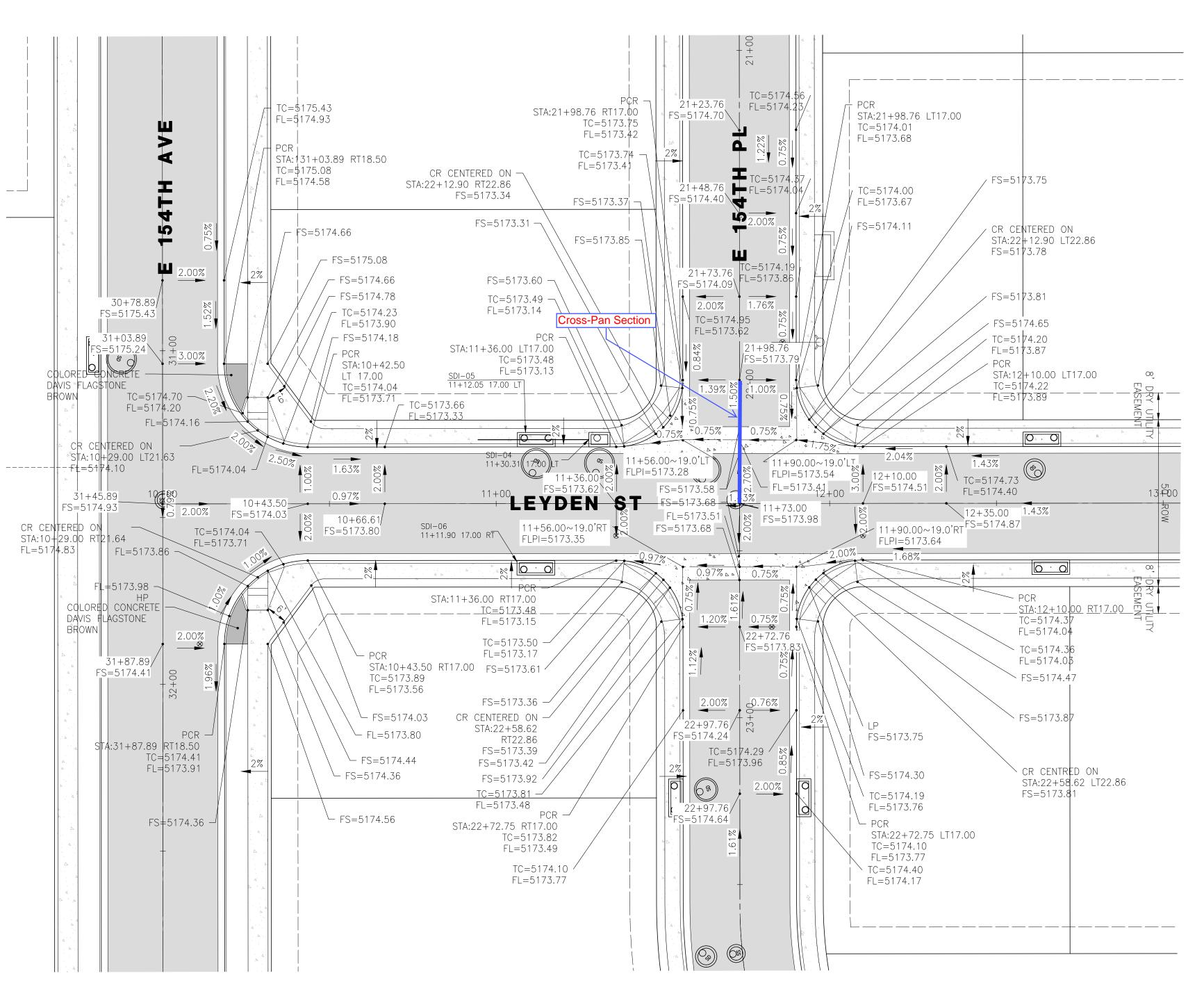
Elevation (ft)	Elevation (ft)	Manning's n
0.00	5174.46	0.0160
15.00	5173.86	0.0130
19.00	5173.68	0.0130
23.00	5173.86	0.0160
37.00	5174.22	

Longitudinal Slope: 0.0075 ft/ft

R

Flow: 2.9000 cfs

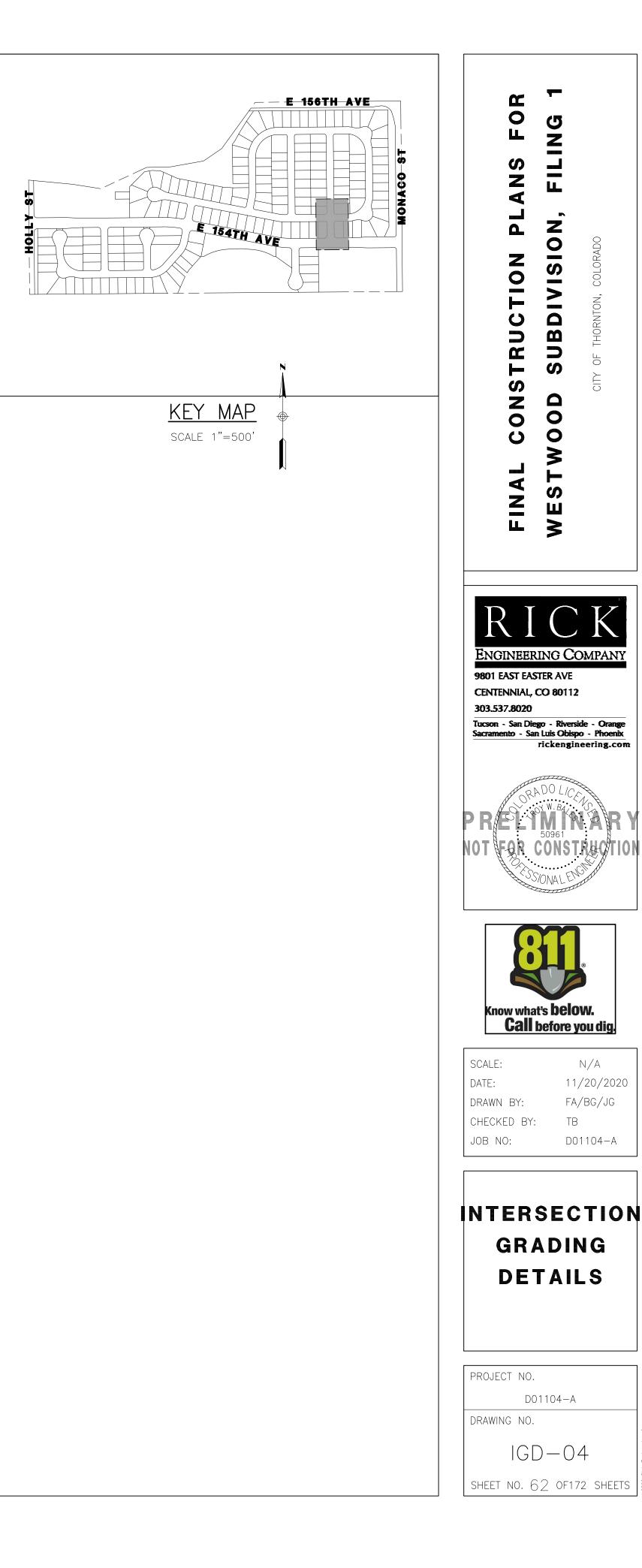
Result Parameters


Depth: 0.2263 ft Area of Flow: 1.1584 ft² Wetted Perimeter: 10.9649 ft Hydraulic Radius: 0.1056 ft Average Velocity: 2.5034 ft/s Top Width: 10.9553 ft Froude Number: 1.3567 Critical Depth: 0.2545 ft Critical Velocity: 1.9414 ft/s Critical Slope: 0.0038 ft/ft Critical Slope: 0.0038 ft/ft Critical Top Width: 12.76 ft Calculated Max Shear Stress: 0.1059 lb/ft² Calculated Avg Shear Stress: 0.0494 lb/ft² Composite Manning's n Equation: Lotter method Manning's n: 0.0115

Minor storm flow from Basin 20 to SDI-04

Channel Analysis: Cross-Pan in Sub-Basin 20A - Leyden St & E 154th PI (Major Storm)

Notes:

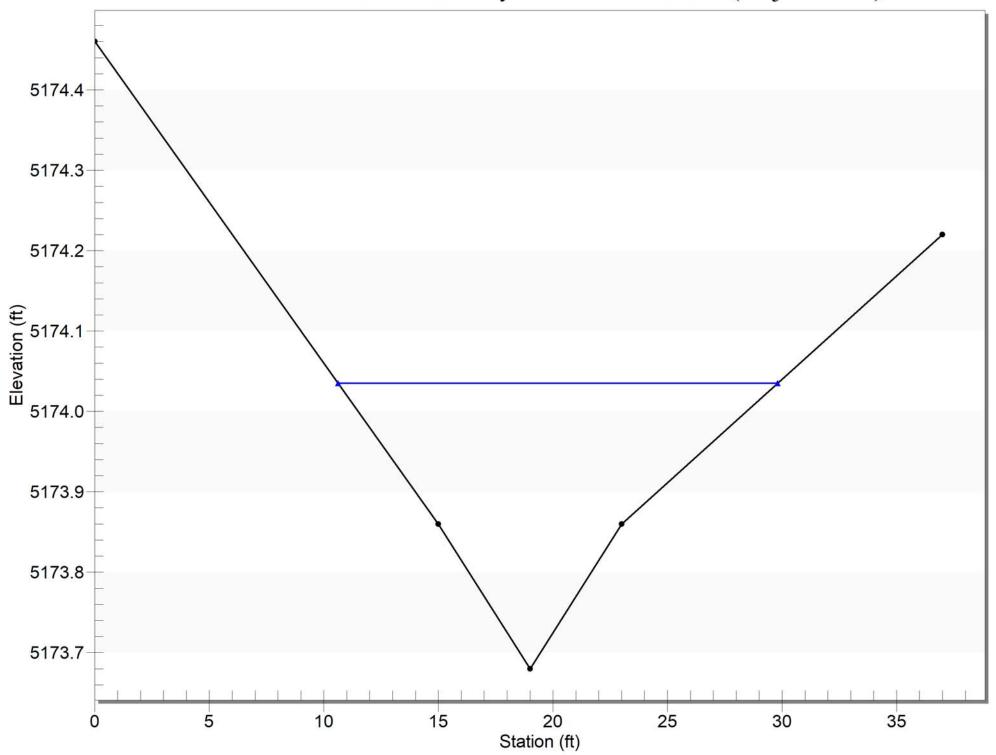

Input Parameters

10 0 20

GRAPHIC SCALE: 1"=20'

Ö

N/A


11/20/2020

FA/BG/JG

D01104-A

ΤB

Cross-Pan in Sub-Basin 20A - Leyden St & E 154th Pl (Major Storm)

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5174.46	0.0160
15.00	5173.86	0.0130
19.00	5173.68	0.0130
23.00	5173.86	0.0160
37.00	5174.22	

Longitudinal Slope: 0.0075 ft/ft

Flow: 10.2000 cfs

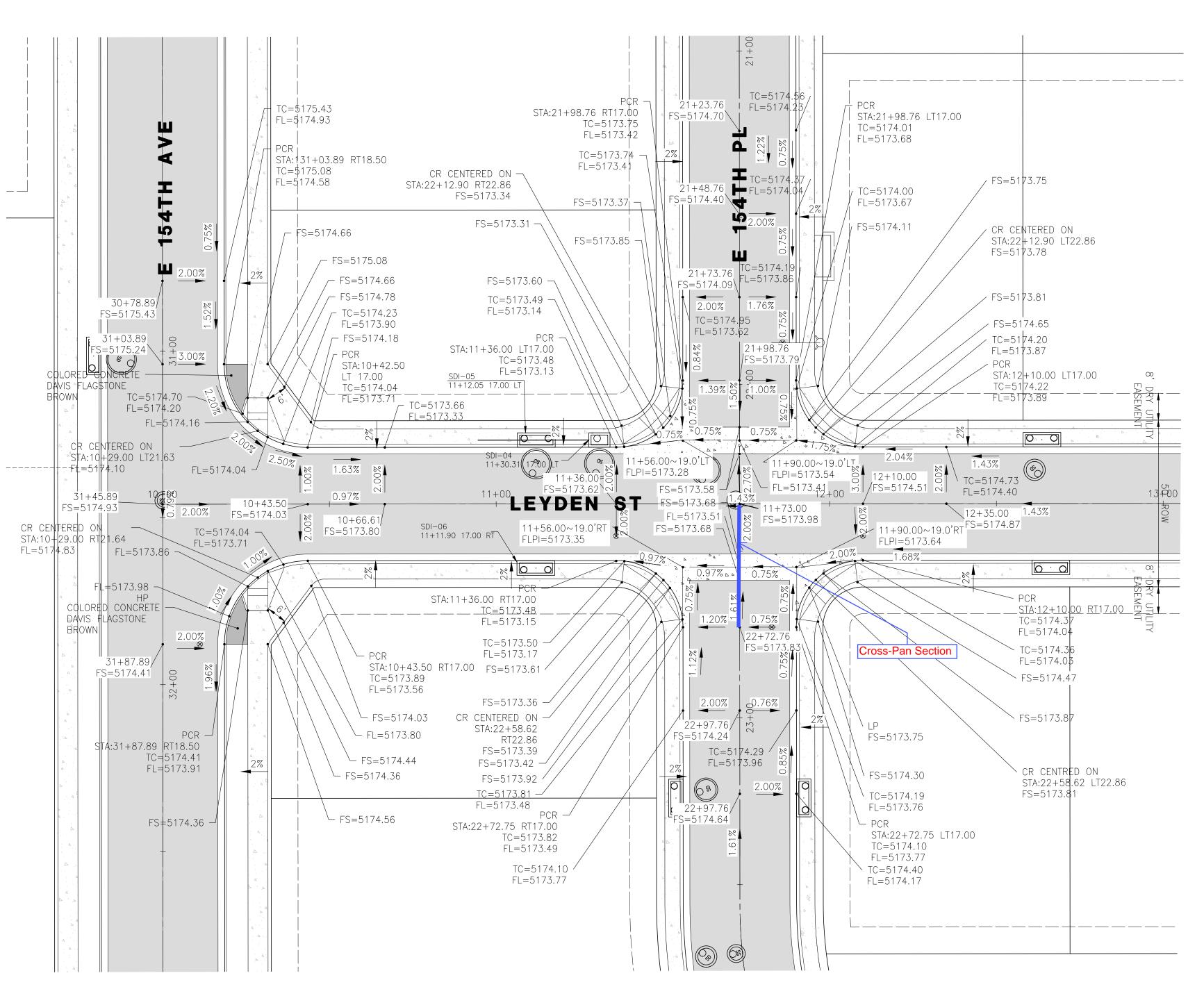
Result Parameters

Depth: 0.3550 ft Area of Flow: 3.0976 ft² Wetted Perimeter: 19.1920 ft Hydraulic Radius: 0.1614 ft Average Velocity: 3.2929 ft/s Top Width: 19.1782 ft Froude Number: 1.4439 Critical Depth: 0.4066 ft Critical Velocity: 2.4449 ft/s Critical Slope: 0.0036 ft/ft Critical Top Width: 22.47 ft Calculated Max Shear Stress: 0.1661 lb/ft² Calculated Avg Shear Stress: 0.0755 lb/ft²

Manning's n: 0.0116

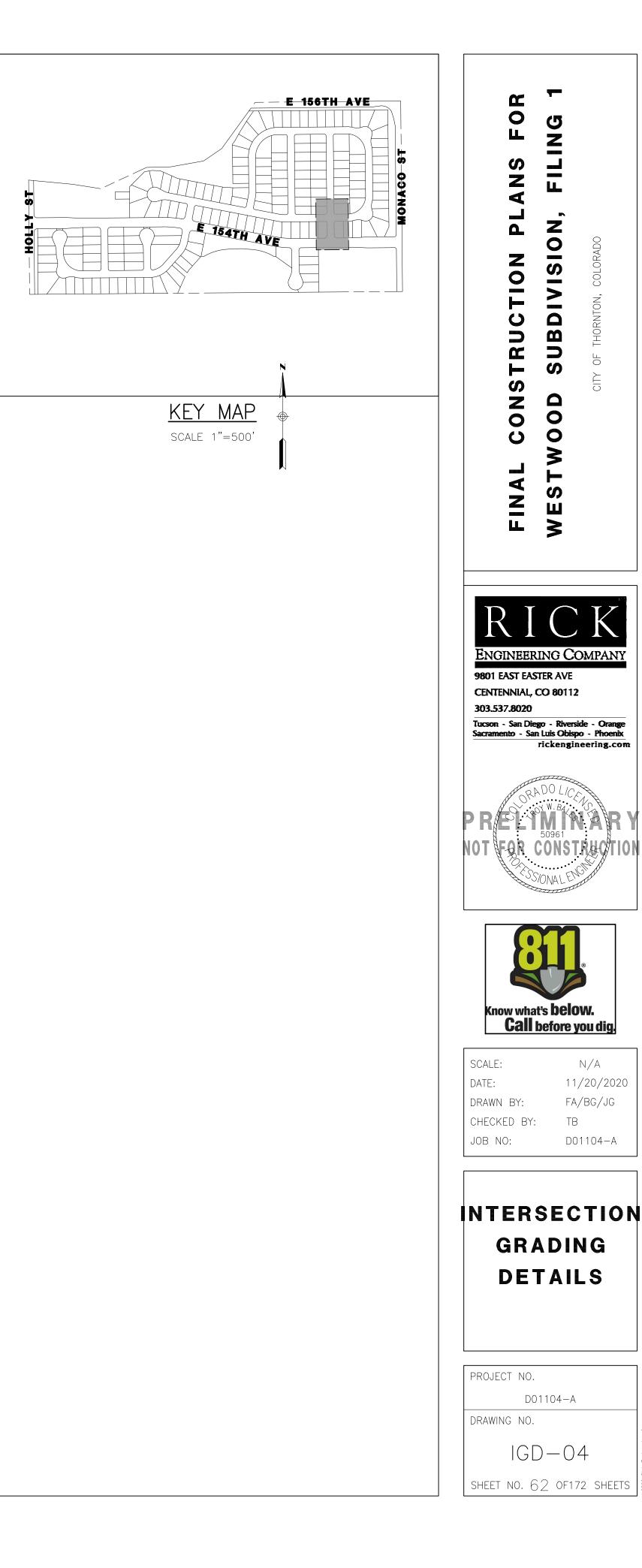
Major storm flow from Basin 20 to SDI-04 + bypass flow from SDI-08, SDI-17 & SDI-18

Hydraulic Analysis Report


Project Data

Project Title: JN-1104: Westwood - Cross-Pan Capacity Check Designer: Project Date: Sunday, November 22, 2020 Project Units: U.S. Customary Units Notes:

Channel Analysis: Cross-Pan in Basin 26 - Leyden St & E 154th PI (Minor Storm)

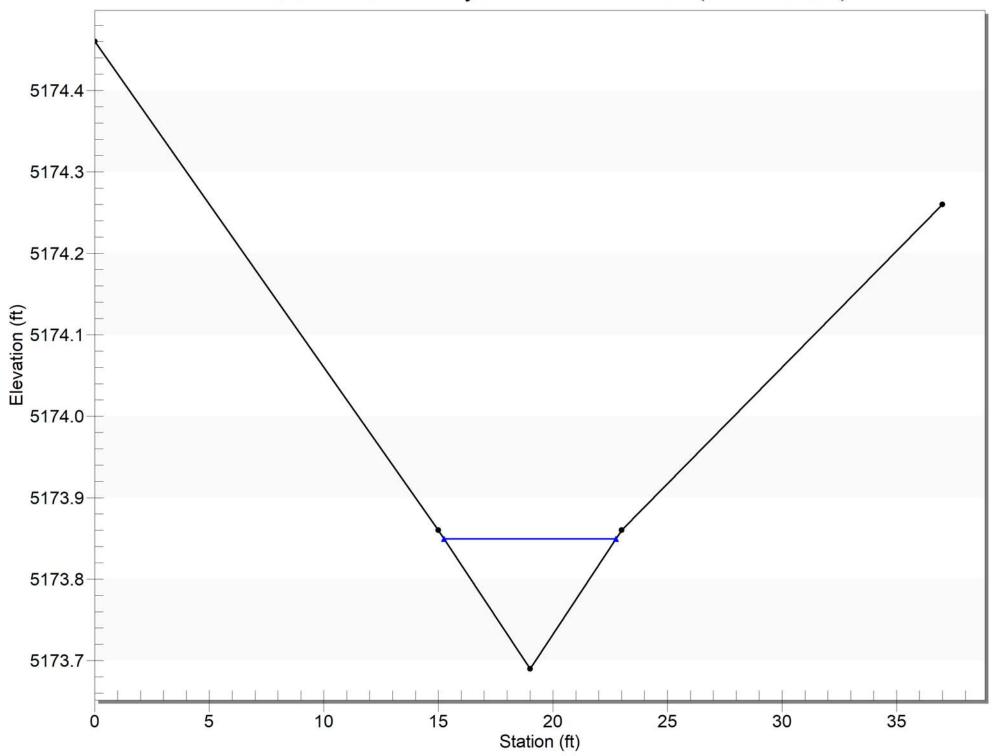

Notes:

Input Parameters

10 0 20 GRAPHIC SCALE: 1"=20'

Ö

N/A


11/20/2020

FA/BG/JG

D01104-A

ΤB

Cross-Pan in Basin 26 - Leyden St & E 154th Pl (Minor Storm)

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5174.46	0.0160
15.00	5173.86	0.0130
19.00	5173.69	0.0130
23.00	5173.86	0.0160
37.00	5174.26	

Longitudinal Slope: 0.0075 ft/ft

Flow: 1.1000 cfs

Result Parameters

Depth: 0.1597 ft Area of Flow: 0.5997 ft^2

Minor storm flow from Basin 26 to SDI-06

Wetted Perimeter: 7.5198 ft Hydraulic Radius: 0.0798 ft

Average Velocity: 1.8342 ft/s

Top Width: 7.5130 ft

Froude Number: 1.1440

Critical Depth: 0.1685 ft

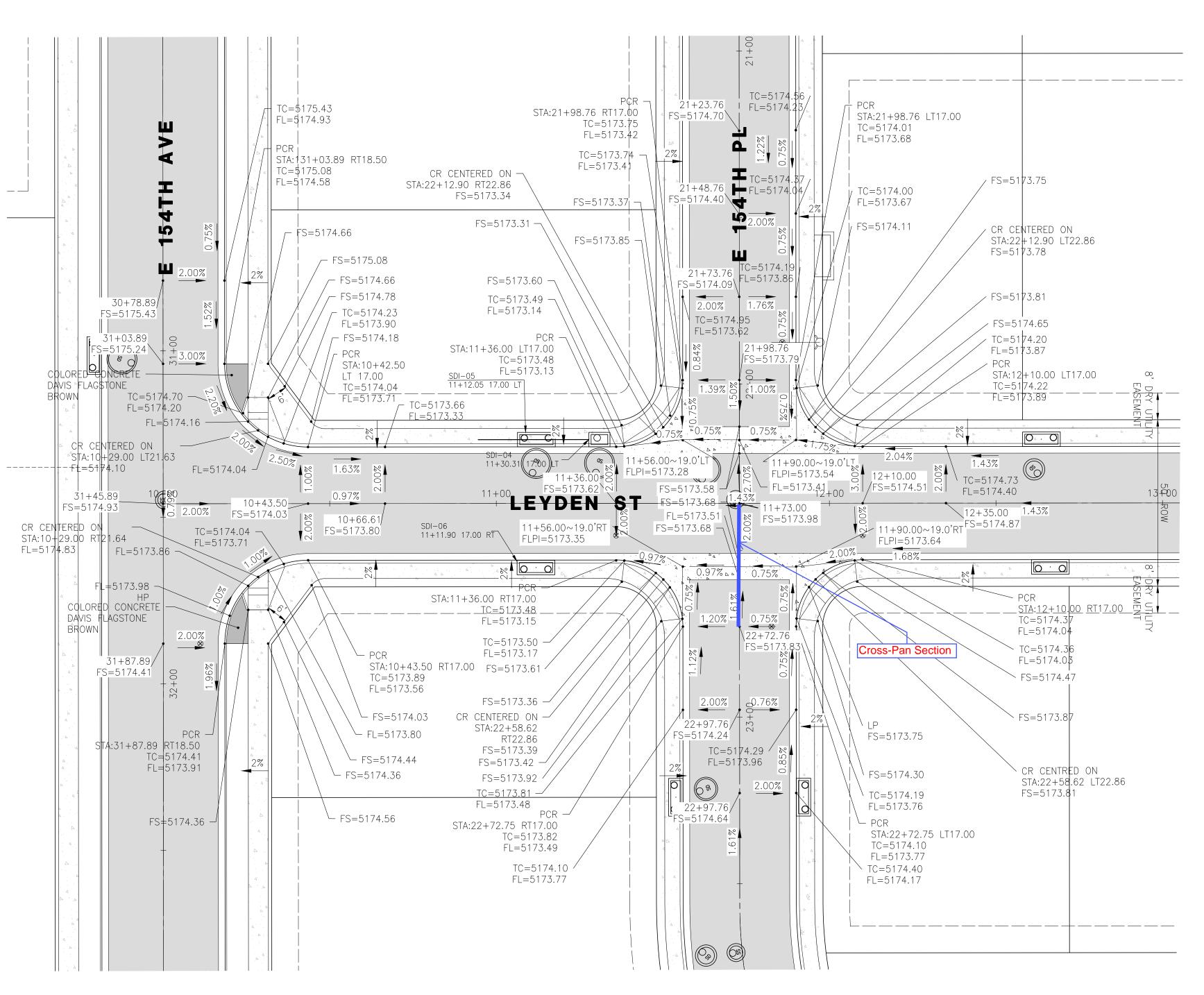
Critical Velocity: 1.6470 ft/s

Critical Slope: 0.0056 ft/ft

Critical Top Width: 7.93 ft

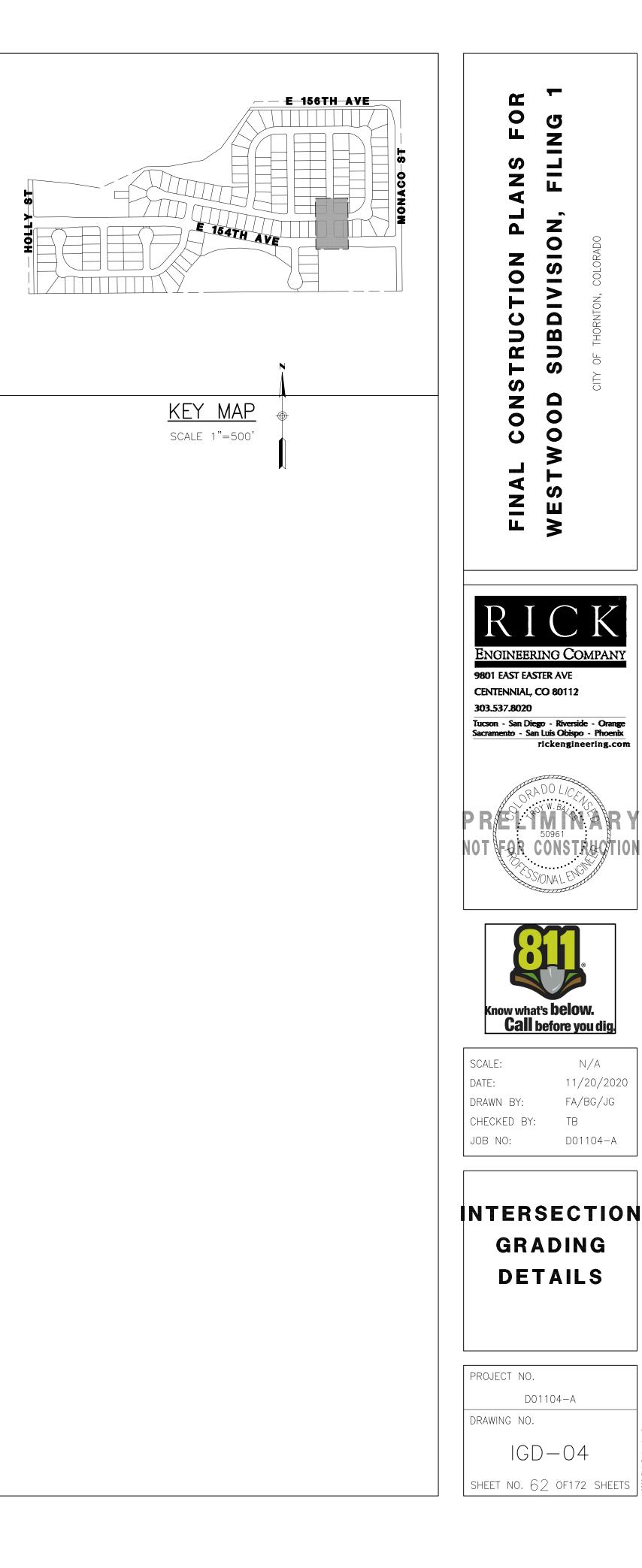
Calculated Max Shear Stress: 0.0747 lb/ft^2

Calculated Avg Shear Stress: 0.0373 lb/ft^2


Composite Manning's n Equation: Lotter method

Manning's n: 0.0130

Channel Analysis: Cross-Pan in Basin 26 - Leyden St & E 154th PI (Major Storm)

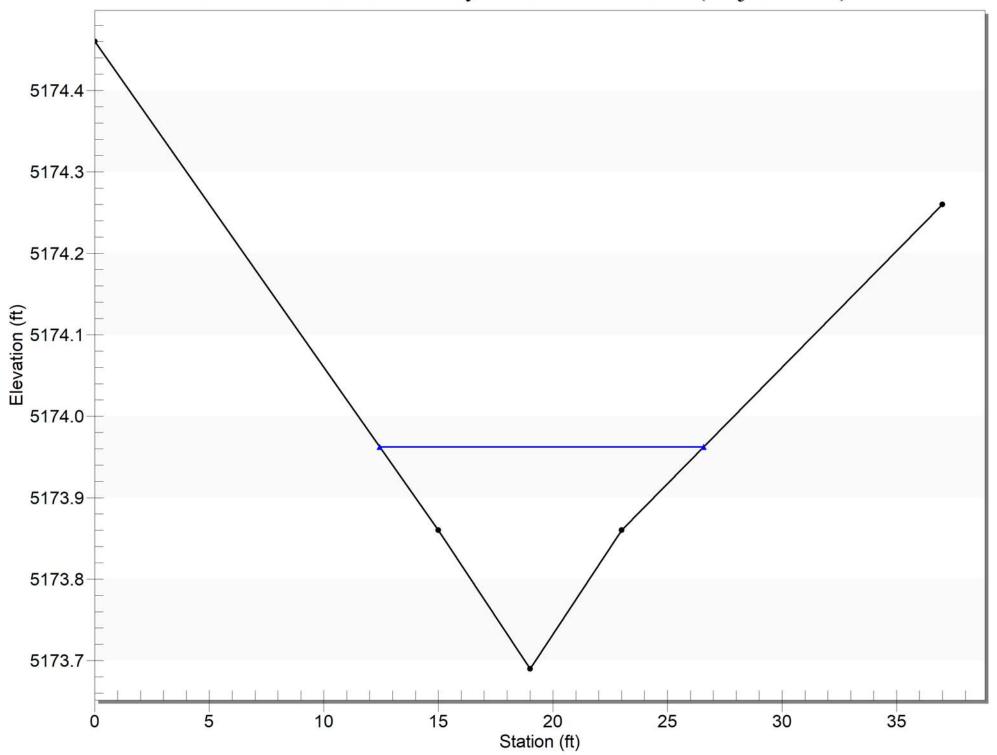

Notes:

Input Parameters

10 0 20 GRAPHIC SCALE: 1"=20'

Ö

N/A


11/20/2020

FA/BG/JG

D01104-A

ΤB

Cross-Pan in Basin 26 - Leyden St & E 154th Pl (Major Storm)

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5174.46	0.0160
15.00	5173.86	0.0130
19.00	5173.69	0.0130
23.00	5173.86	0.0160
37.00	5174.26	

Longitudinal Slope: 0.0075 ft/ft

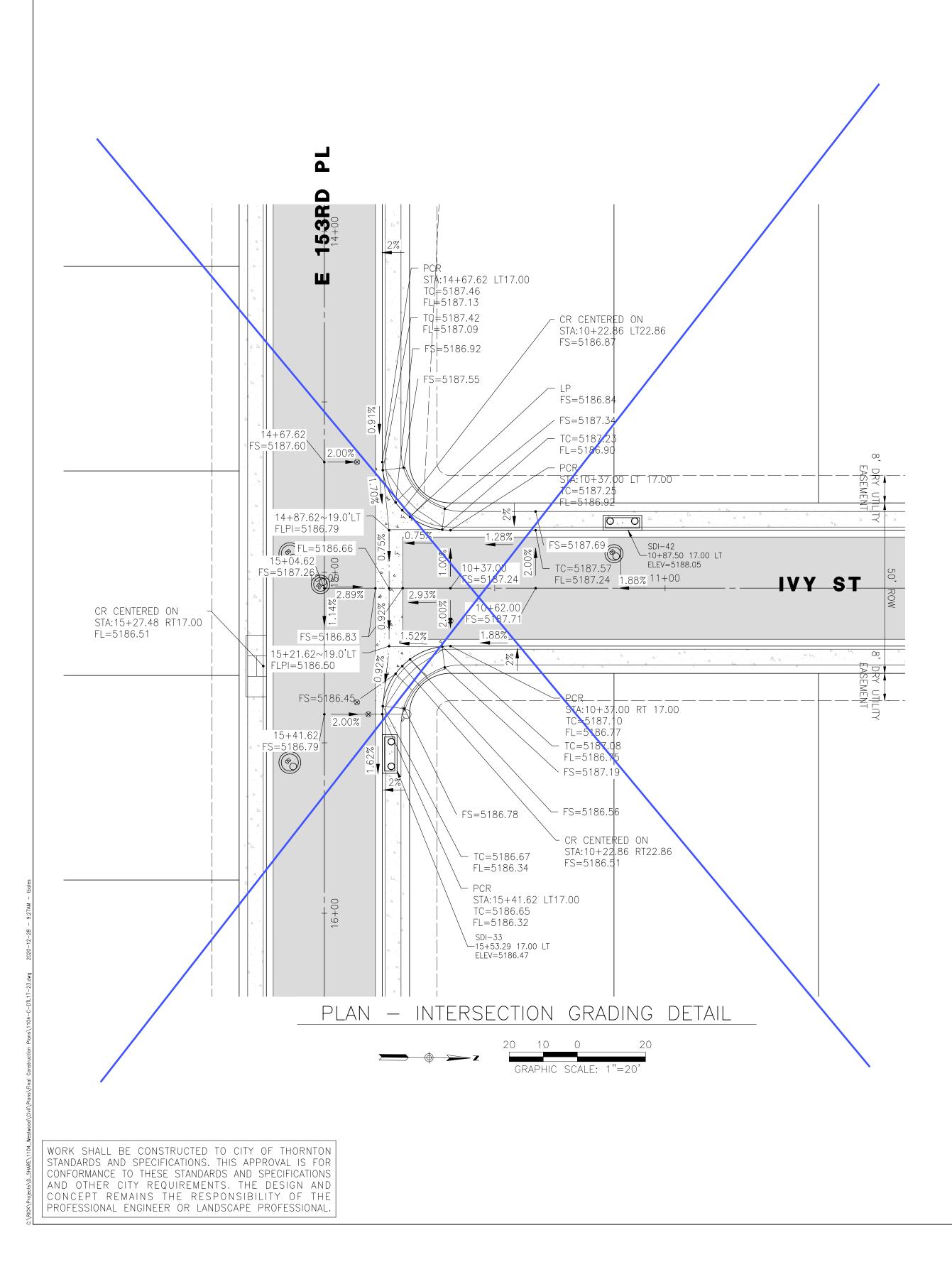
Flow: 5.2000 cfs

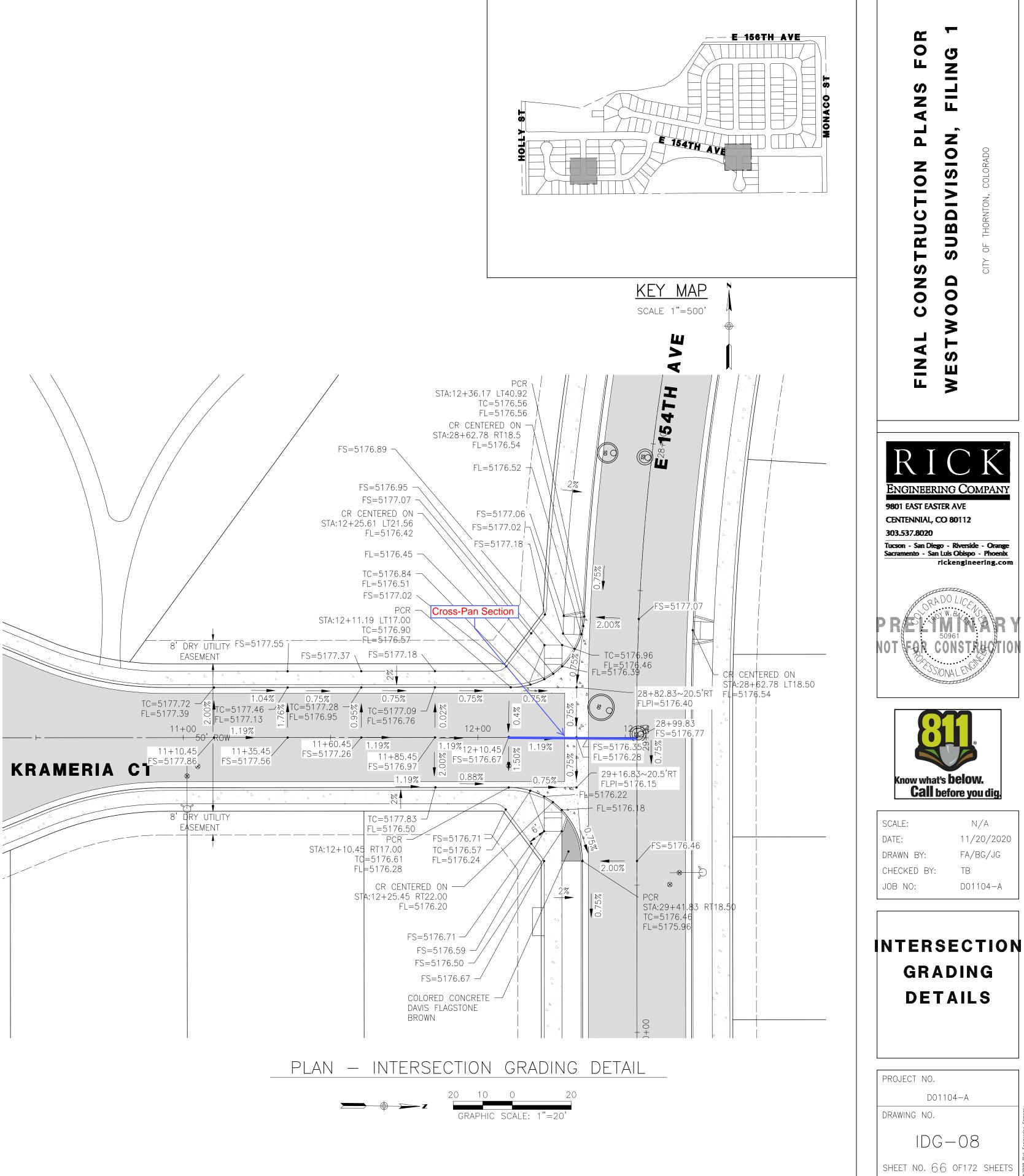
Result Parameters

Depth: 0.2723 ft Area of Flow: 1.8122 ft^2 Wetted Perimeter: 14.1479 ft Hydraulic Radius: 0.1281 ft Average Velocity: 2.8695 ft/s Top Width: 14.1372 ft Froude Number: 1.4124 Critical Depth: 0.3107 ft Critical Velocity: 2.1677 ft/s Critical Slope: 0.0037 ft/ft Critical Top Width: 16.44 ft Calculated Max Shear Stress: 0.1274 lb/ft^2 Calculated Avg Shear Stress: 0.0599 lb/ft^2 Composite Manning's n Equation: Lotter method Manning's n: 0.0114

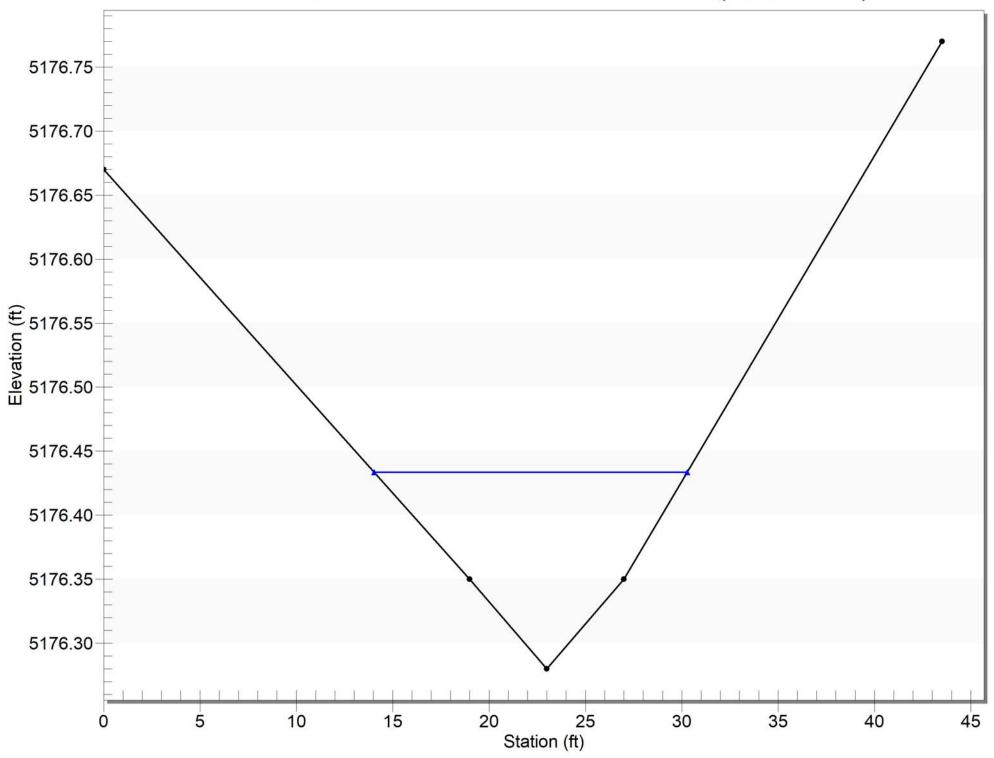
Major storm flow from Basin 26 to SDI-06 + bypass flow from SDI-21, SDI-09 & SDI-19

Hydraulic Analysis Report


Project Data


Project Title: JN-1104: Westwood - Cross-Pan Capacity Check Designer: Project Date: Sunday, November 22, 2020 Project Units: U.S. Customary Units Notes:

Channel Analysis: Cross-Pan in Basin 31 - Krameria Ct & E 154th Ave (Minor Storm)


Notes:

Input Parameters

Cross-Pan in Basin 31 - Krameria Ct & E 154th Ave (Minor Storm)

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5176.67	0.0160
19.00	5176.35	0.0130
23.00	5176.28	0.0130
27.00	5176.35	0.0160
43.50	5176.77	

Longitudinal Slope: 0.0075 ft/ft

K

Flow: 2.6000 cfs

Result Parameters

Depth: 0.1536 ft

Area of Flow: 1.2932 ft^2

Wetted Perimeter: 16.2487 ft Hydraulic Radius: 0.0796 ft

Average Velocity: 2.0105 ft/s

Top Width: 16.2457 ft

Froude Number: 1.2558

Critical Depth: 0.1687 ft

Critical Velocity: 1.6775 ft/s

Critical Slope: 0.0047 ft/ft

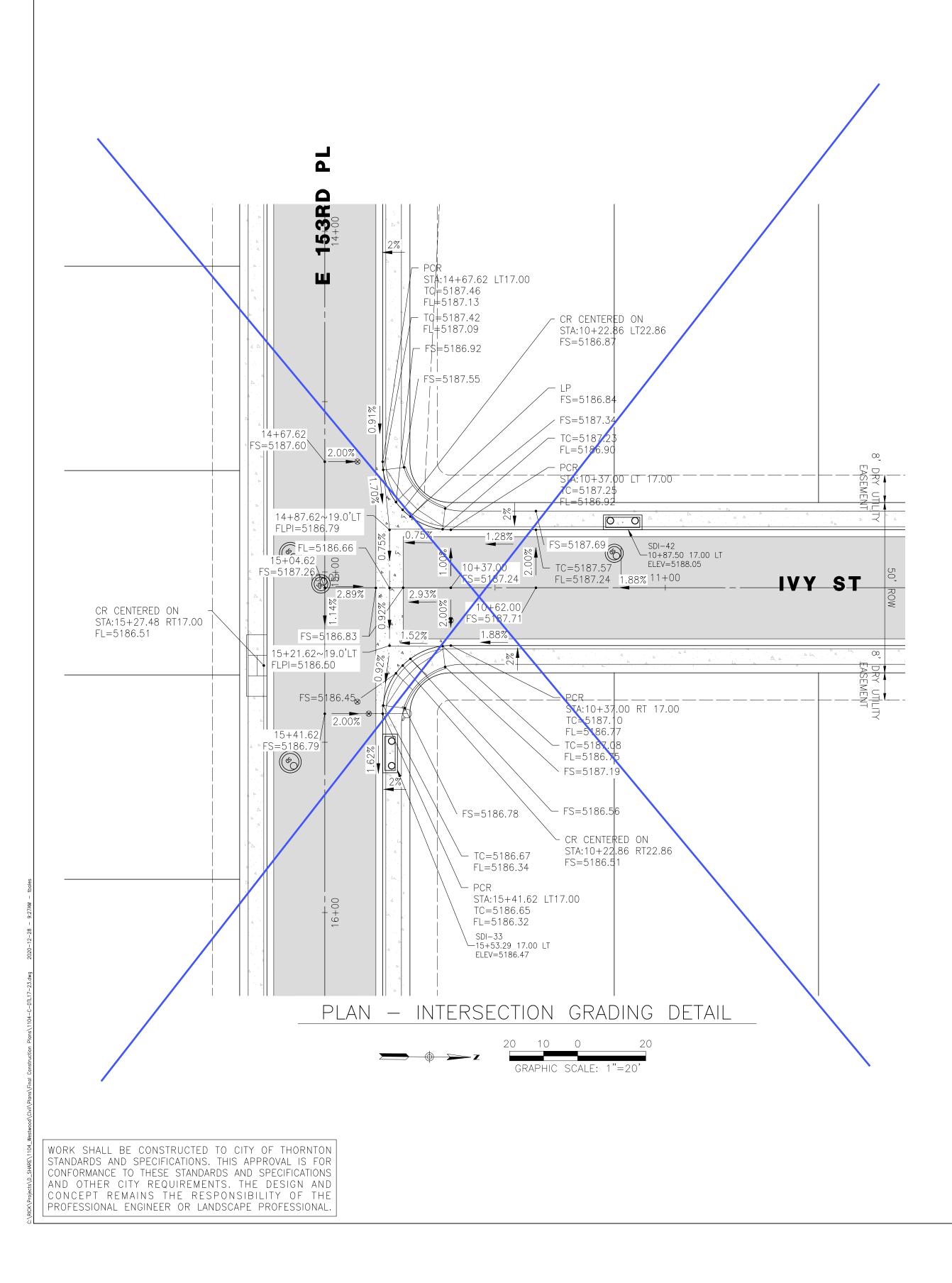
Critical Top Width: 17.74 ft

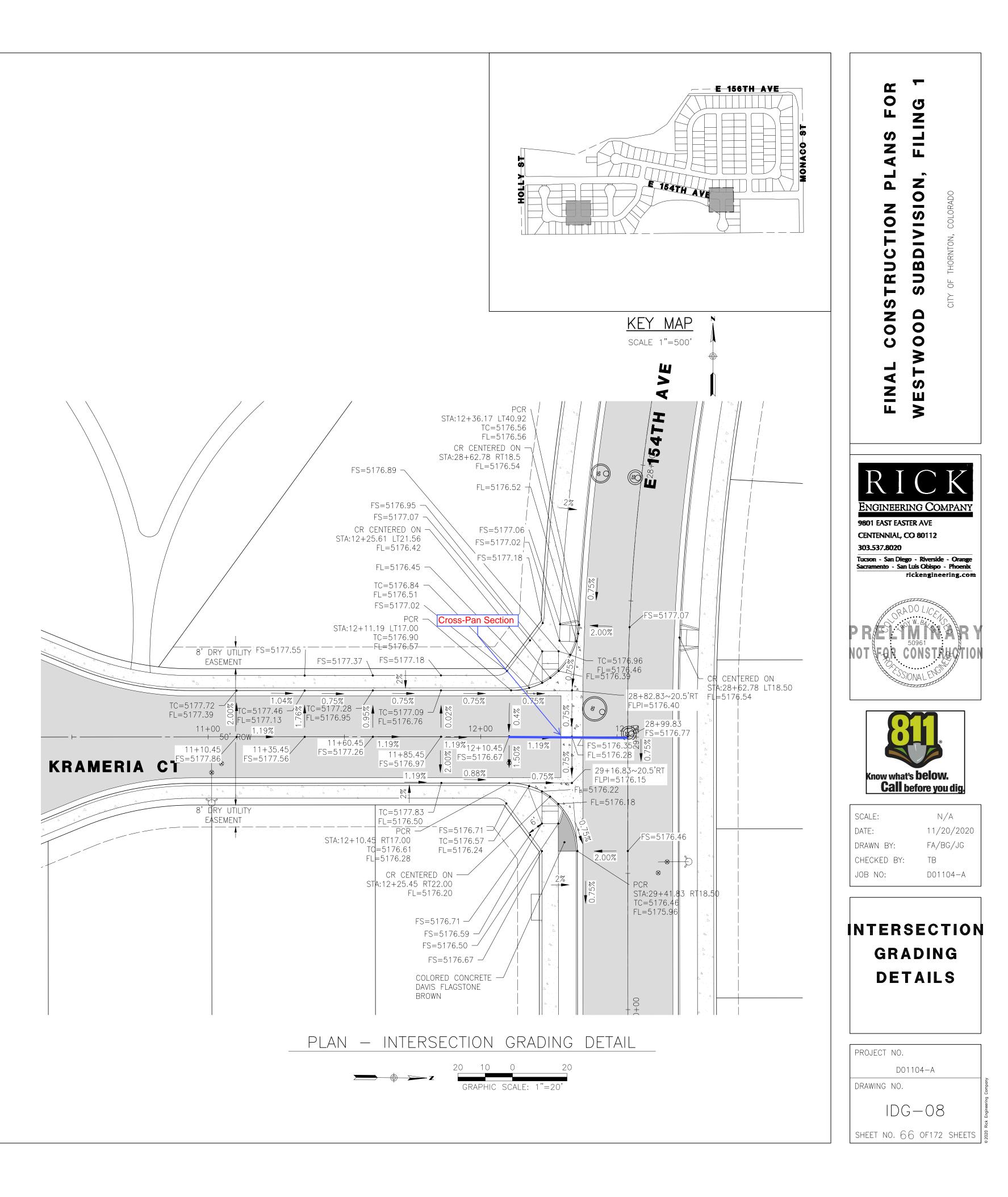
Calculated Max Shear Stress: 0.0719 lb/ft^2

Calculated Avg Shear Stress: 0.0372 lb/ft^2

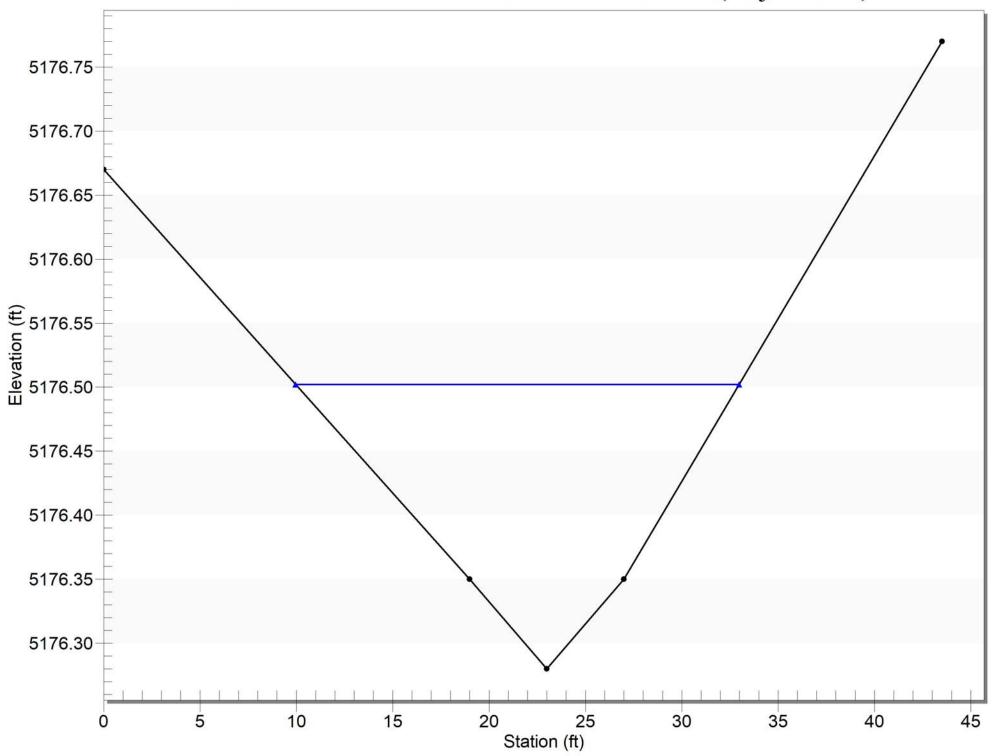
Composite Manning's n Equation: Lotter method

Manning's n: 0.0118


Minor storm flow from Basin 31 to SDI-26


Channel Analysis: Cross-Pan in Basin 31 - Krameria Ct & E 154th Ave (Major Storm)

Notes:


Input Parameters

Channel Type: Custom Cross Section

Cross-Pan in Basin 31 - Krameria Ct & E 154th Ave (Major Storm)

Cross Section Data

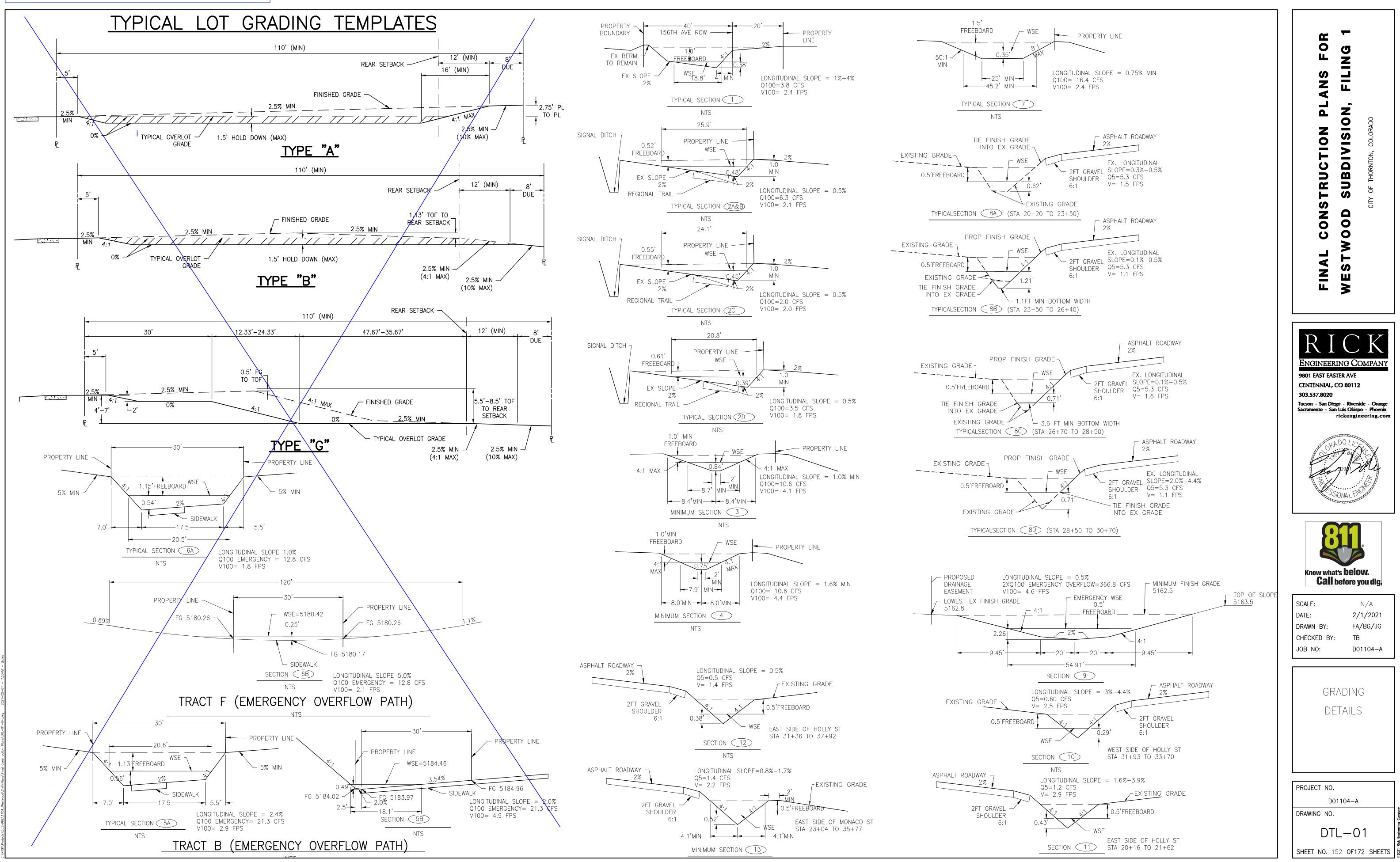
Elevation (ft)	Elevation (ft)	Manning's n
0.00	5176.67	0.0160
19.00	5176.35	0.0130
23.00	5176.28	0.0130
27.00	5176.35	0.0160
43.50	5176.77	

Longitudinal Slope: 0.0075 ft/ft Flow: 6.5000 cfs

Result Parameters

Depth: 0.2222 ft Area of Flow: 2.6399 ft² Wetted Perimeter: 23.0188 ft Hydraulic Radius: 0.1147 ft Average Velocity: 2.4622 ft/s Top Width: 23.0144 ft Froude Number: 1.2811 Critical Depth: 0.2460 ft Critical Depth: 0.2460 ft Critical Slope: 0.0045 ft/ft Critical Slope: 0.0045 ft/ft Critical Top Width: 25.37 ft Calculated Max Shear Stress: 0.1040 lb/ft² Calculated Avg Shear Stress: 0.0537 lb/ft² Composite Manning's n Equation: Lotter method Manning's n: 0.0123

Major storm flow from Basin 31 to SDI-26


Appendix B – Hydraulic Computations Swale & Roadside Ditch Design

Please note that stability charts provided in Section 6.0 of Chapter 8, USDCM Vol.1 are only applicable for swales with side slopes between 5:1 and 10:1. However, the proposed swales have been designed to maintain velocities less than 7 FPS and maximum shear stress less than 1.2 lb/sf per Table 8-3 in Section 5.8 of the USDCM, Vol.1 (page 8-50) to preserve bank stability.

All roadside ditches are designed to meet the criteria per Section 402.6 of the City of Thornton Standard and Specifications. They are designed to adequately carry the minor storm with 6-inches of freeboard. Maximum side slope of 4:1 has been maintained and maximum velocity for all roadside ditches is less than 5 FPS. Please note that stability charts provided in Section 6.0 of Chapter 8, USDCM Vol.1 are only applicable for swales with side slopes between 5:1 and 10:1. However, the roadside ditches have been designed to maintain velocities less than 5 FPS (during minor storm) and maximum shear stress less than 1.2 lb/sf per Table 8-3 in Section 5.8 of the USDCM, Vol.1 (page 8-50) to preserve bank stability.

The ditch/swale south of the property is only carrying its incidental runoff. There is no area tributary to this ditch except the swale itself. Hence, swale analysis is not warranted. Please refer to the drainage map for delineation.

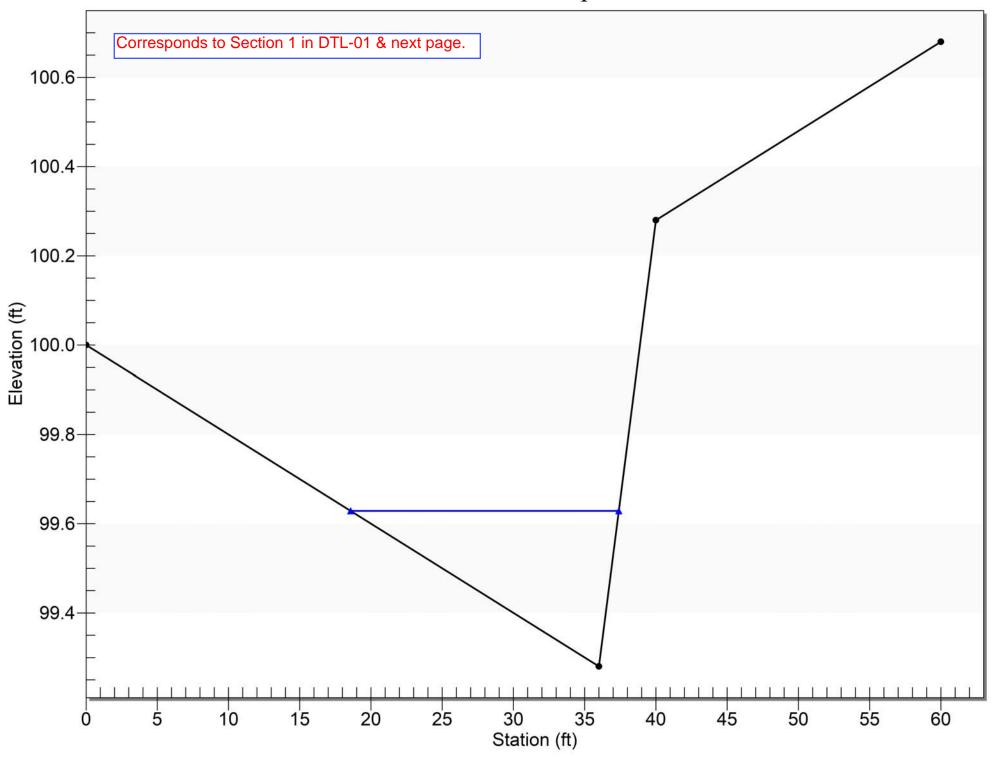
Crossed out portions are not applicable to this section of the report.

Hydraulic Analysis Report

Project Data

Project Title: JN-1104: Westwood - Swale Sizing Designer: Project Date: Tuesday, August 25, 2020 Project Units: U.S. Customary Units Notes: Swale Sizing

Channel Analysis: Swale 1 - Flow Depth Run (Min. Slope = 1%, n = 0.04)


Notes:

Input Parameters

Channel Type: Custom Cross Section

Corresponds to Section 1 in DTL-01

Section 1 - Flow Depth Run

Corresponds to Section 1 in DTL-01 & the previous page output.

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
0.00	100.00	0.0400
36.00	99.28	70.0400
40.00	100.28	0.0400
60.00	100.68	

Table 8-5, Chapter 8, USDCM Vol. 1 recommends 0.04 for turfgrass sod when assessing Water Depths (Typical for all swale flow depth runs) Longitudinal Slope: 0.0100 ft/ft

Flow: 4.8000 cfs <<

Result Parameters

Depth: 0.3806 ft

Flow from Sub-Basin 30A

Area of Flow: 3.9116 ft^2

Wetted Perimeter: 20.6043 ft

Hydraulic Radius: 0.1898 ft

Average Velocity: 1.2271 ft/s

Top Width: 20.5536 ft

Froude Number: 0.4957

Critical Depth: 0.2875 ft

Critical Velocity: 2.1513 ft/s

Critical Slope: 0.0447 ft/ft

Critical Top Width: 15.52 ft

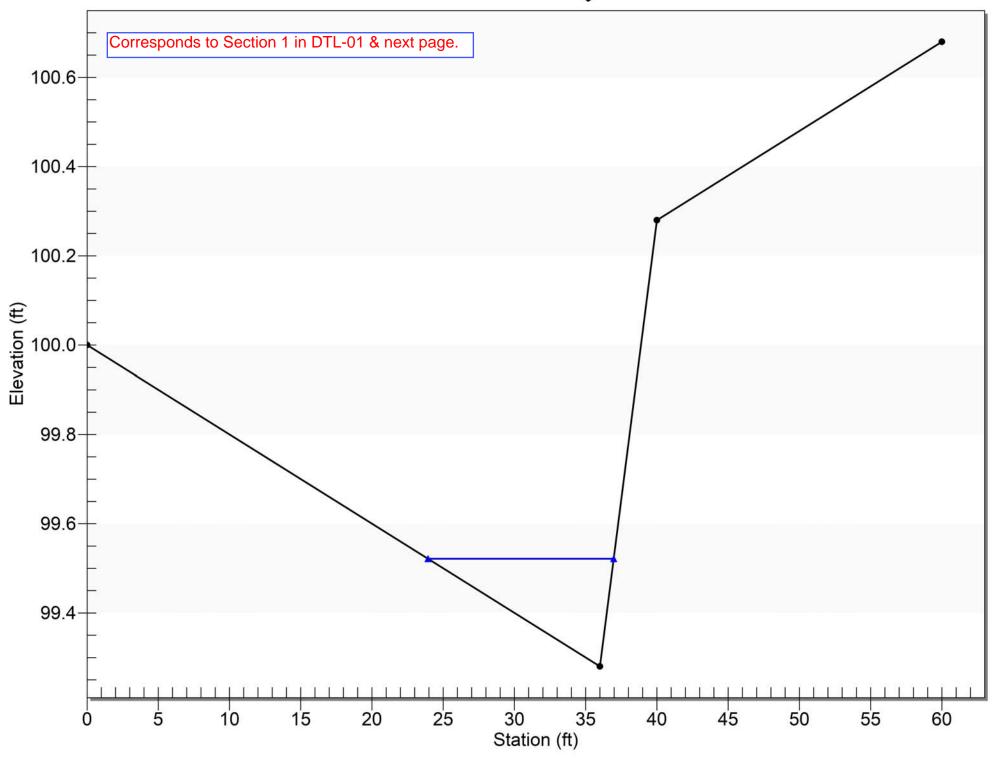
Calculated Max Shear Stress: 0.2375 lb/ft^2

Calculated Avg Shear Stress: 0.1185 lb/ft^2

Composite Manning's n Equation: Lotter method

Manning's n: 0.0400

Corresponds to Section 1 in DTL-01


Channel Analysis: Swale 1 - Velocity Run (Max. Slope = 4%, n = 0.03)

Notes:

Input Parameters

Channel Type: Custom Cross Section

Section 1 - Velocity Run

Corresponds to Section 1 in DTL-01 & the previous page output.

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
0.00	100.00	0.0300
36.00	99.28	70.0300
40.00	100.28	0.0300
60.00	100.68	

Table 8-5, Chapter 8, USDCM Vol. 1 recommends 0.03 for turfgrass sod when assessing velocity and shear stress (Typical for all swale velocity runs)

Longitudinal Slope: 0.0400 ft/ft

Flow: 4.8000 cfs <

Result Parameters

Flow from Sub-Basin 30A

Depth: 0.2635 ft Area of Flow: 1.8745 ft^2

Wetted Perimeter: 14.2633 ft

Hydraulic Radius: 0.1314 ft

Average Velocity: 2.5607 ft/s

Top Width: 14.2282 ft

Froude Number: 1.2433

Critical Depth: 0.2875 ft

Critical Velocity: 2.1513 ft/s

Critical Slope: 0.0251 ft/ft

Critical Top Width: 15.52 ft

Calculated Max Shear Stress: 0.6577 lb/ft^2

Calculated Avg Shear Stress: 0.3280 lb/ft^2

Composite Manning's n Equation: Lotter method

Manning's n: 0.0300

Corresponds to Section 2A & 2B in DTL-01 & the following page output.

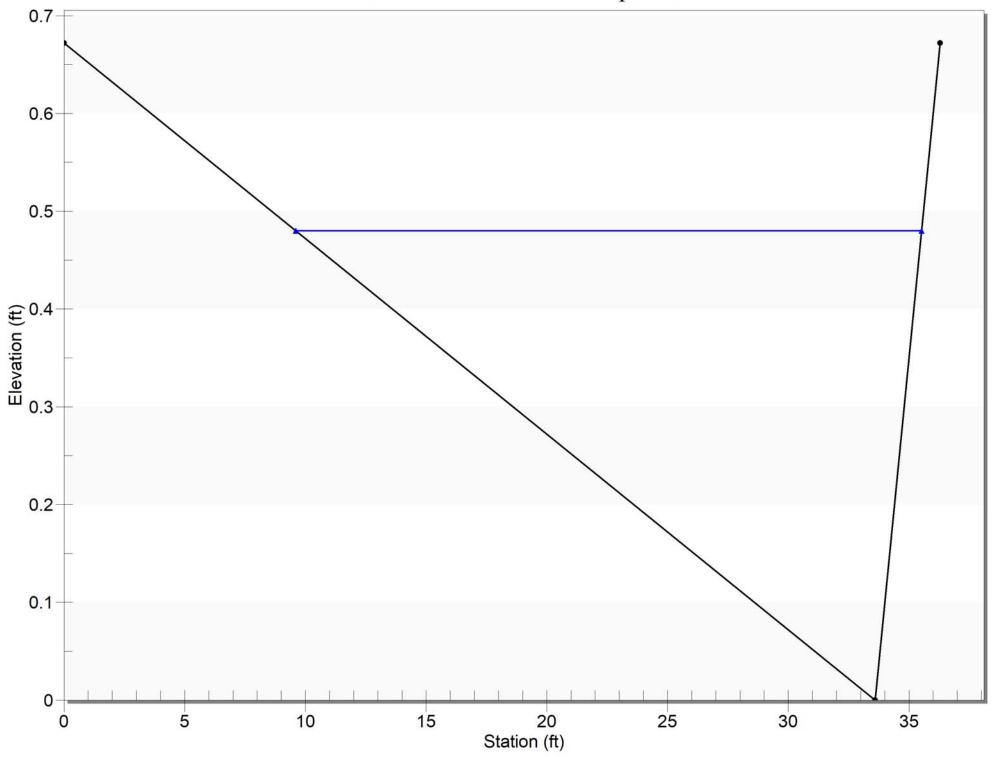
Hydraulic Analysis Report

Project Data

Project Title: JN-1104: Westwood - Swale Sizing Designer: Project Date: Tuesday, August 25, 2020 Project Units: U.S. Customary Units Notes: Swale Sizing

Channel Analysis: Swale 2A & 2B - Flow Depth Run (Min. Slope = 0.5%, n = 0.04)

Notes:


Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 50.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0050 ft/ft Manning's n: 0.0400 Flow: 6.3000 cfs

Result Parameters

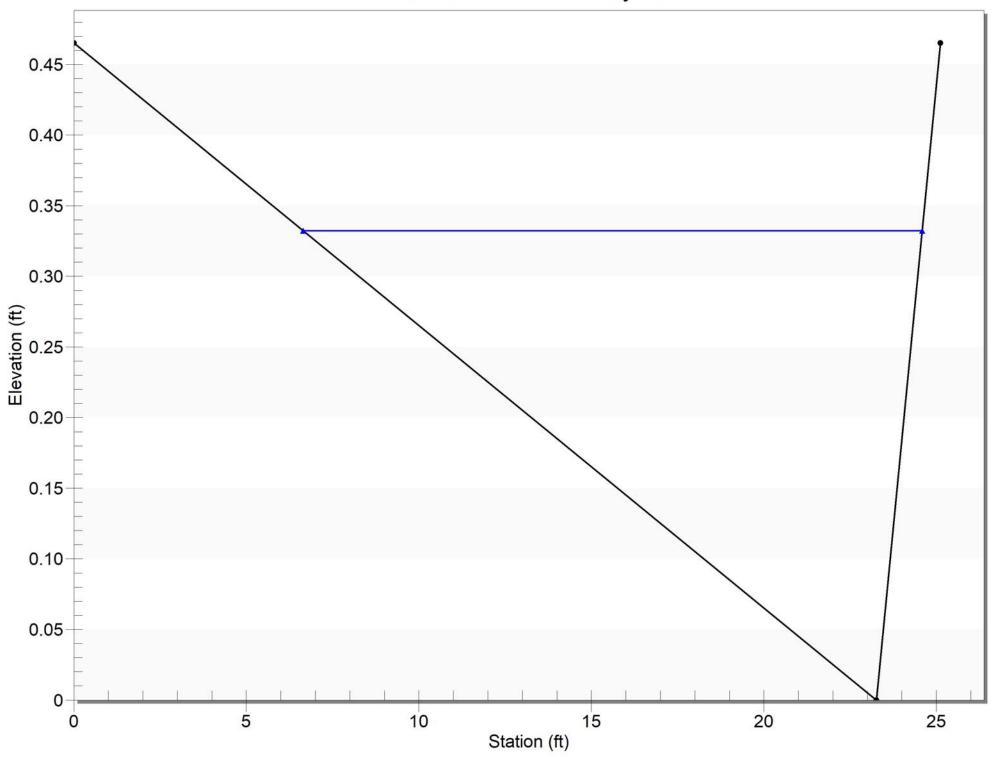
Q100 from off-site basin O2

Depth: 0.4800 ft Area of Flow: 6.2203 ft^2 Wetted Perimeter: 25.9829 ft Hydraulic Radius: 0.2394 ft Average Velocity: 1.0128 ft/s Top Width: 25.9190 ft Froude Number: 0.3643 Critical Depth: 0.4151 ft Critical Velocity: 1.3541 ft/s Critical Slope: 0.0108 ft/ft Critical Slope: 0.0108 ft/ft Critical Top Width: 81.71 ft Calculated Max Shear Stress: 0.1498 lb/ft^2 Calculated Avg Shear Stress: 0.0747 lb/ft^2 Section 2A & 2B - Flow Depth Run

Corresponds to Section 2A & 2B in DTL-01 & the following page output.

Channel Analysis: Swale 2A & 2B - Velocity Run (Max. Slope = 2.0%, n = 0.03)

Notes:


Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 50.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0200 ft/ft Manning's n: 0.0300 Flow: 6.3000 cfs

Result Parameters

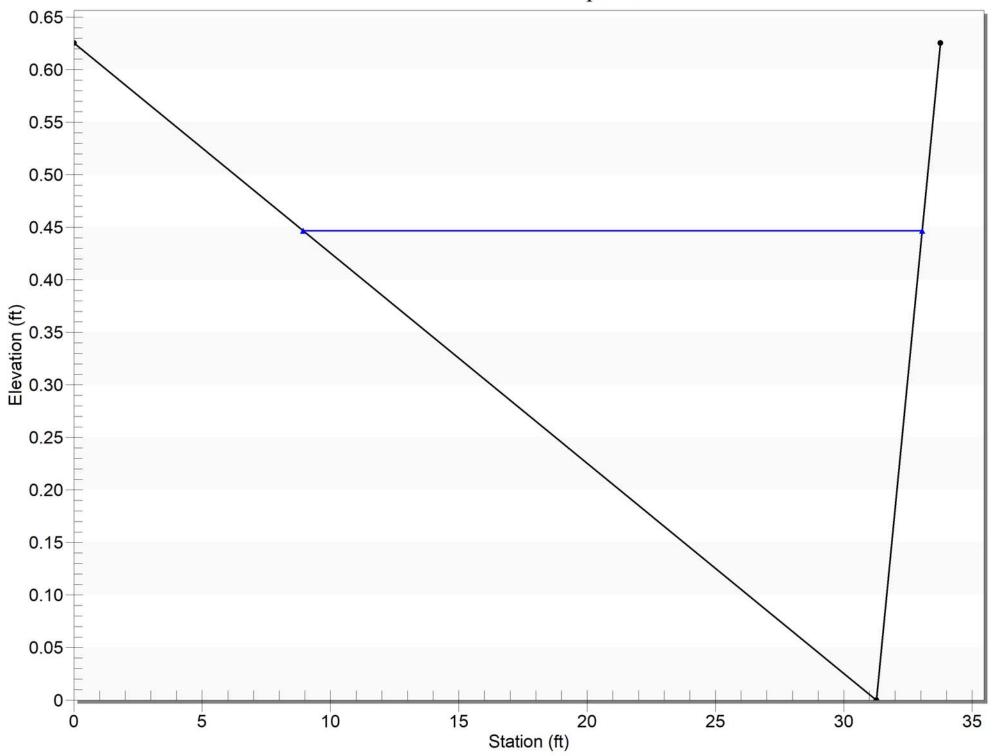
Q100 from off-site basin O2

Depth: 0.3323 ft Area of Flow: 2.9808 ft^2 Wetted Perimeter: 17.9866 ft Hydraulic Radius: 0.1657 ft Average Velocity: 2.1135 ft/s Top Width: 17.9424 ft Froude Number: 0.9138 Critical Depth: 0.4151 ft Critical Velocity: 1.3541 ft/s Critical Slope: 0.0061 ft/ft Critical Top Width: 81.71 ft Calculated Max Shear Stress: 0.4147 lb/ft^2 Calculated Avg Shear Stress: 0.2068 lb/ft^2 Section 2A & 2B - Velocity Run

Channel Analysis: Swale 2C - Flow Depth Run (Min. Slope = 0.5%, n = 0.04)

Notes:

Input Parameters


Channel Type: Triangular Side Slope 1 (Z1): 50.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0050 ft/ft Manning's n: 0.0400 Flow: 5.2000 cfs

Result Parameters

Depth: 0.4467 ft Area of Flow: 5.3865 ft² Wetted Perimeter: 24.1789 ft Hydraulic Radius: 0.2228 ft Average Velocity: 0.9654 ft/s Top Width: 24.1194 ft Froude Number: 0.3600 Critical Depth: 0.3844 ft Critical Velocity: 1.3031 ft/s Critical Slope: 0.0111 ft/ft Critical Slope: 0.0111 ft/ft Critical Top Width: 75.67 ft Calculated Max Shear Stress: 0.1394 lb/ft² Calculated Avg Shear Stress: 0.0695 lb/ft²

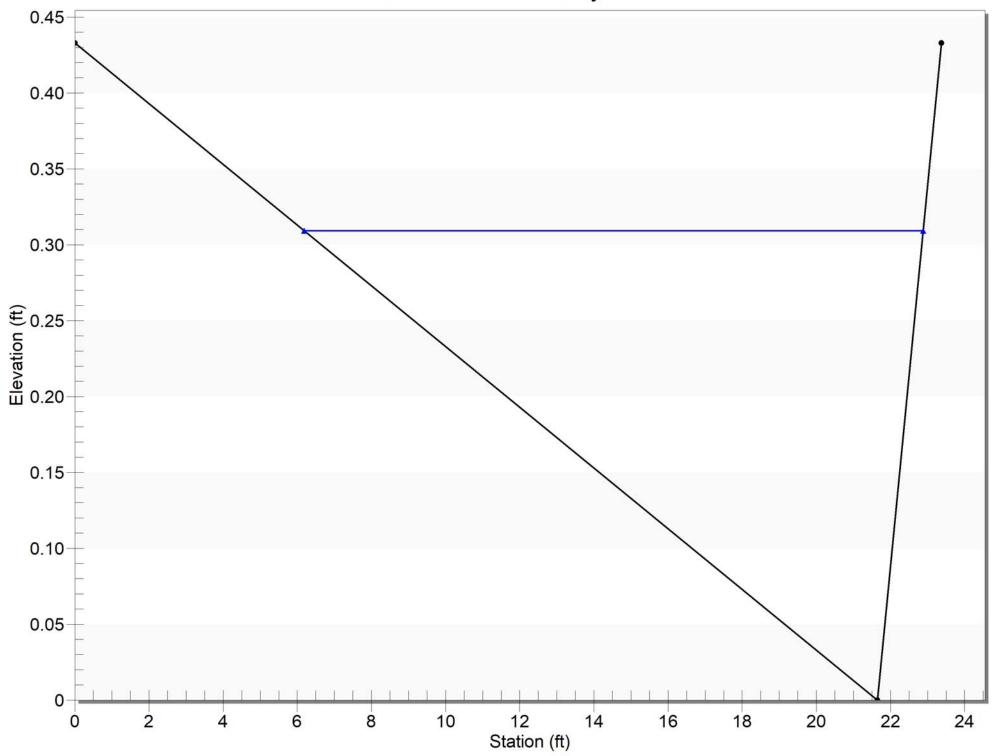
Q100 from off-site basin O3

Section 2C - Flow Depth Run

Channel Analysis: Swale 2C - Velocity Run (Max. Slope = 2.0%, n = 0.03)

Notes:

Input Parameters


Channel Type: Triangular Side Slope 1 (Z1): 50.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0200 ft/ft Manning's n: 0.0300 Flow: 5.2000 cfs

Result Parameters

Depth: 0.3092 ft Area of Flow: 2.5813 ft^2 Wetted Perimeter: 16.7378 ft Hydraulic Radius: 0.1542 ft Average Velocity: 2.0145 ft/s Top Width: 16.6966 ft Froude Number: 0.9029 Critical Depth: 0.3844 ft Critical Velocity: 1.3031 ft/s Critical Slope: 0.0063 ft/ft Critical Top Width: 75.67 ft Calculated Max Shear Stress: 0.3859 lb/ft^2 Calculated Avg Shear Stress: 0.1925 lb/ft^2

-Q100 from off-site basin O3

Section 2C - Velocity Run

Channel Analysis: Swale 2D - Flow Depth Run (Min. Slope = 0.5%, n = 0.04)

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 50.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0050 ft/ft Manning's n: 0.0400 Flow: 3.5000 cfs

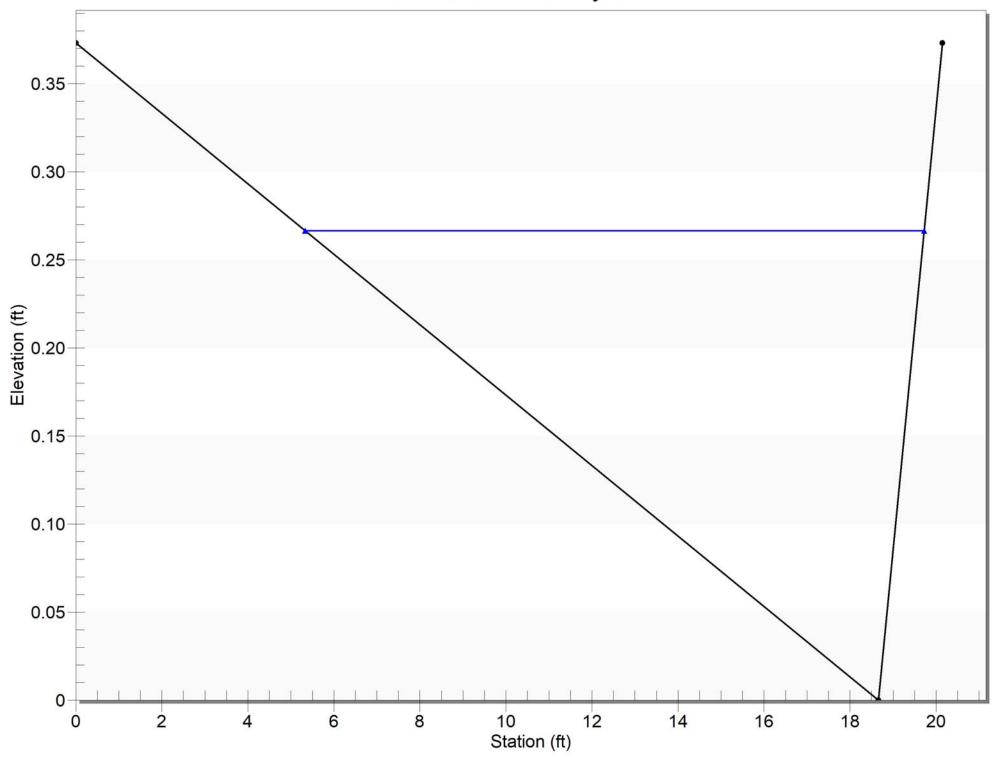
Result Parameters

Q100 from off-site basin O4

Depth: 0.3850 ft Area of Flow: 4.0028 ft^2 Wetted Perimeter: 20.8430 ft Hydraulic Radius: 0.1920 ft Average Velocity: 0.8744 ft/s Top Width: 20.7918 ft Froude Number: 0.3512 Critical Depth: 0.3281 ft Critical Velocity: 1.2039 ft/s Critical Slope: 0.0117 ft/ft Critical Slope: 0.0117 ft/ft Critical Top Width: 64.59 ft Calculated Max Shear Stress: 0.1201 lb/ft^2 Calculated Avg Shear Stress: 0.0599 lb/ft^2 Section 2D - Flow Depth Run

Channel Analysis: Swale 2D - Velocity Run (Max. Slope = 2.0%, n = 0.03)

Notes:


Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 50.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0200 ft/ft Manning's n: 0.0300 Flow: 3.5000 cfs

Result Parameters

Q100 from off-site basin O4

Depth: 0.2665 ft Area of Flow: 1.9181 ft^2 Wetted Perimeter: 14.4285 ft Hydraulic Radius: 0.1329 ft Average Velocity: 1.8247 ft/s Top Width: 14.3931 ft Froude Number: 0.8808 Critical Depth: 0.3281 ft Critical Velocity: 1.2039 ft/s Critical Slope: 0.0066 ft/ft Critical Slope: 0.0066 ft/ft Critical Top Width: 64.59 ft Calculated Max Shear Stress: 0.3326 lb/ft^2 Calculated Avg Shear Stress: 0.1659 lb/ft^2 Section 2D - Velocity Run

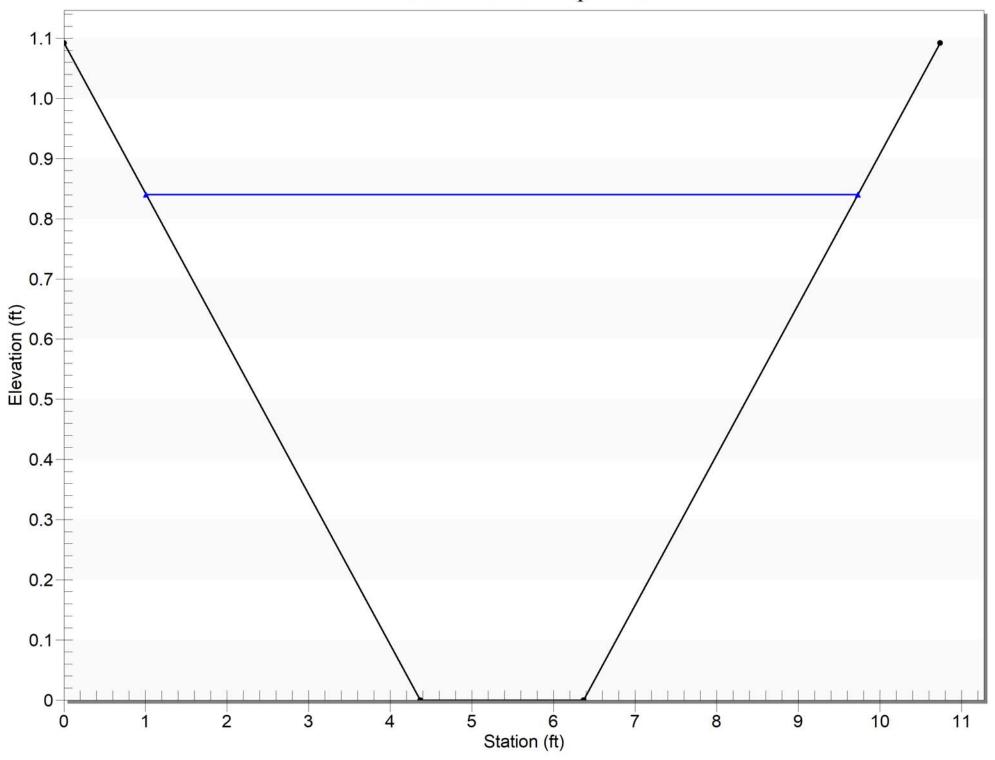
Hydraulic Analysis Report

Project Data

Project Title: JN-1104: Westwood - Swale Sizing Designer: Project Date: Tuesday, August 25, 2020 Project Units: U.S. Customary Units Notes: Swale Sizing

Channel Analysis: Swale 3 - Flow Depth Run (Min. Slope = 1%, n = 0.04)

Notes:


Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Channel Width: 2.0000 ft Longitudinal Slope: 0.0100 ft/ft Manning's n: 0.0400 Flow: 10.6000 cfs

Result Parameters

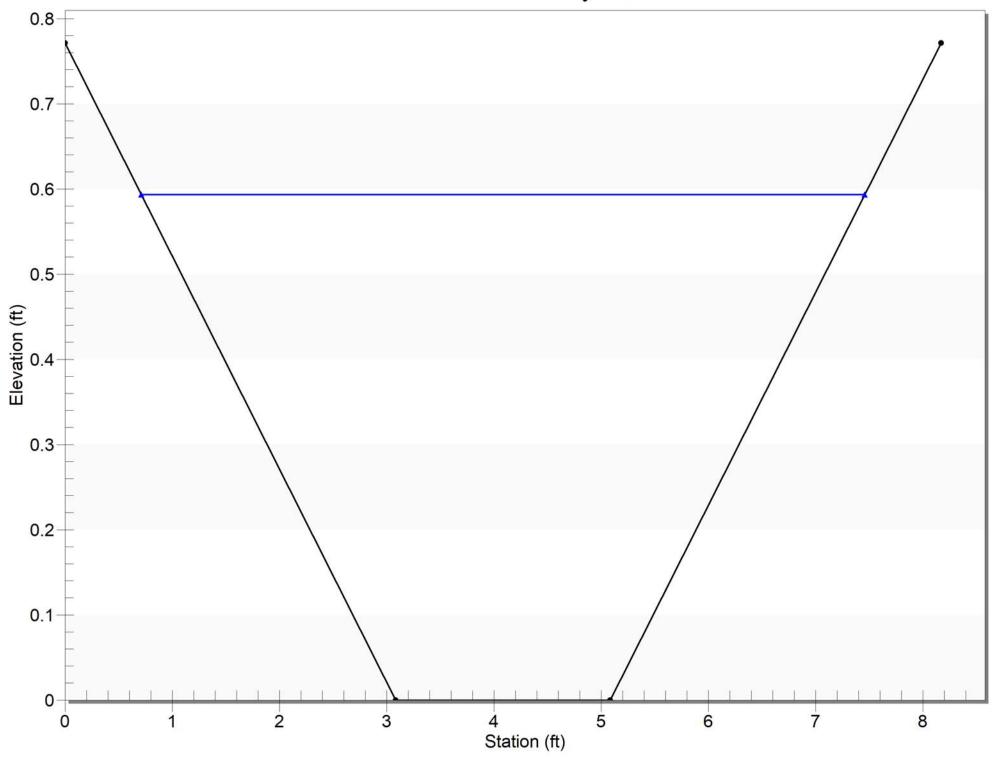
Depth: 0.8400 ft Area of Flow: 4.5028 ft² Wetted Perimeter: 8.9272 ft Hydraulic Radius: 0.5044 ft Average Velocity: 2.3541 ft/s Top Width: 8.7204 ft Froude Number: 0.5773 Critical Depth: 0.6399 ft Critical Velocity: 3.6327 ft/s Critical Slope: 0.0323 ft/ft Critical Top Width: 7.12 ft Calculated Max Shear Stress: 0.5242 lb/ft² Calculated Avg Shear Stress: 0.3147 lb/ft²

Q100 from off-site basin O2 + Sub-Basin 41A Section 3 - Flow Depth Run

Channel Analysis: Swale 3 - Velocity Run (Max. Slope = 2.5%, n = 0.03)

Notes:

Input Parameters


Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Channel Width: 2.0000 ft Longitudinal Slope: 0.0250 ft/ft Manning's n: 0.0300 Flow: 10.6000 cfs

Result Parameters

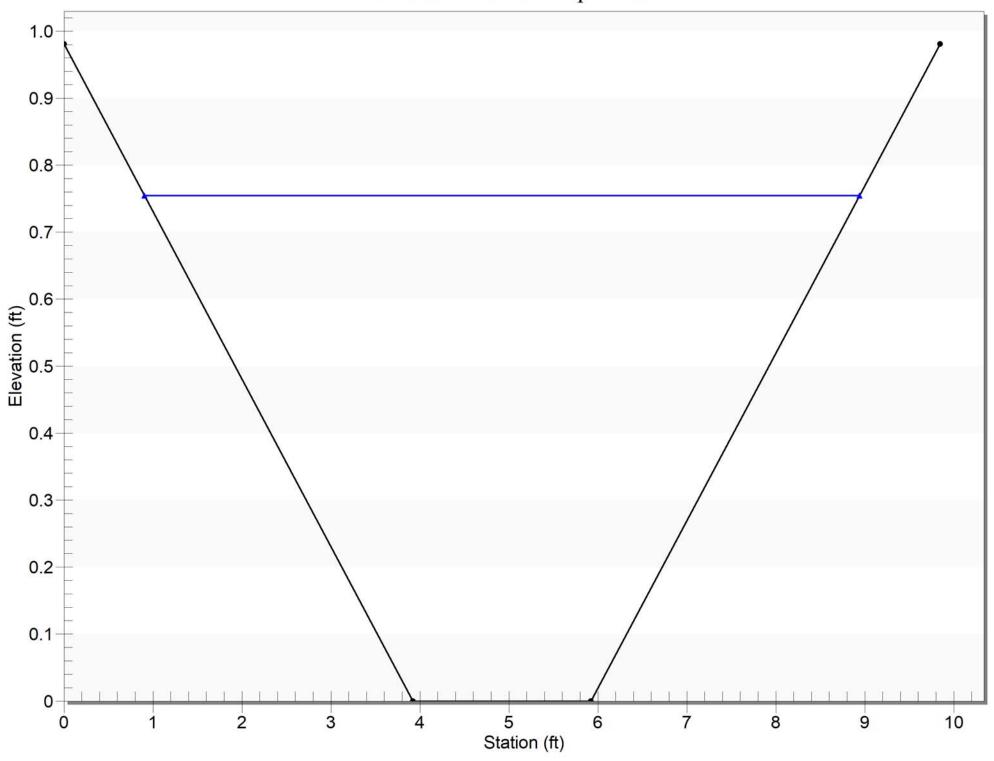
Depth: 0.5933 ft Area of Flow: 2.5944 ft^2 Wetted Perimeter: 6.8922 ft Hydraulic Radius: 0.3764 ft Average Velocity: 4.0858 ft/s Top Width: 6.7461 ft Froude Number: 1.1611 Critical Depth: 0.6402 ft Critical Velocity: 3.6305 ft/s Critical Slope: 0.0182 ft/ft Critical Top Width: 7.12 ft Calculated Max Shear Stress: 0.9255 lb/ft^2 Calculated Avg Shear Stress: 0.5872 lb/ft^2

Q100 from off-site basin O2 + Sub-Basin 41A

Section 3 - Velocity Run

Channel Analysis: Swale 4 - Flow Depth Run (Min. Slope = 1.6%, n = 0.04)

Notes:


Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Channel Width: 2.0000 ft Longitudinal Slope: 0.0160 ft/ft Manning's n: 0.0400 Flow: 10.6000 cfs

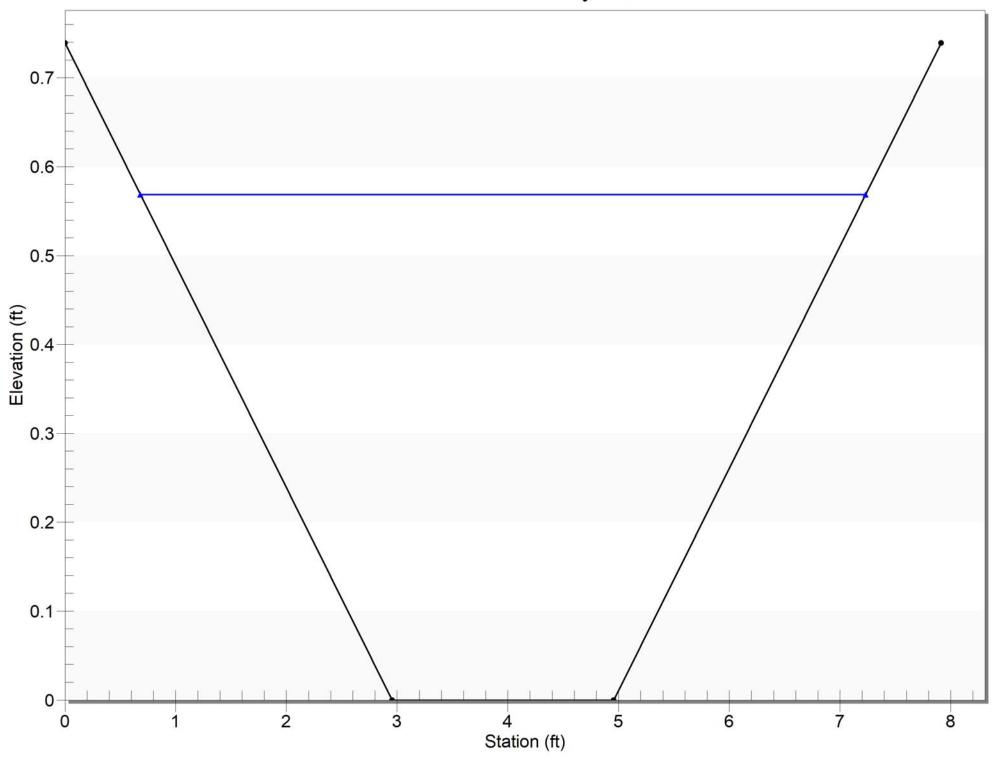
Result Parameters

Depth: 0.7544 ft Area of Flow: 3.7852 ft^2 Wetted Perimeter: 8.2208 ft Hydraulic Radius: 0.4604 ft Average Velocity: 2.8004 ft/s Top Width: 8.0351 ft Froude Number: 0.7190 Critical Depth: 0.6401 ft Critical Velocity: 3.6315 ft/s Critical Slope: 0.0323 ft/ft Critical Top Width: 7.12 ft Calculated Max Shear Stress: 0.7532 lb/ft^2 Calculated Avg Shear Stress: 0.4597 lb/ft^2

Q100 from off-site basin O3, O4 & Sub-Basin 41B Section 4 - Flow Depth Run

Channel Analysis: Swale 4 - Velocity Run (Max. Slope = 3%, n = 0.03)

Notes:


Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Channel Width: 2.0000 ft Longitudinal Slope: 0.0300 ft/ft Manning's n: 0.0300 Flow: 10.6000 cfs

Result Parameters

Depth: 0.5685 ft Area of Flow: 2.4296 ft^2 Wetted Perimeter: 6.6878 ft Hydraulic Radius: 0.3633 ft Average Velocity: 4.3629 ft/s Top Width: 6.5478 ft Froude Number: 1.2622 Critical Depth: 0.6399 ft Critical Velocity: 3.6327 ft/s Critical Slope: 0.0182 ft/ft Critical Top Width: 7.12 ft Calculated Max Shear Stress: 1.0642 lb/ft^2 Calculated Avg Shear Stress: 0.6801 lb/ft^2

Q100 from off-site basin O3, O4 & Sub-Basin 41B Section 4 - Velocity Run

Hydraulic Analysis Report

Project Data

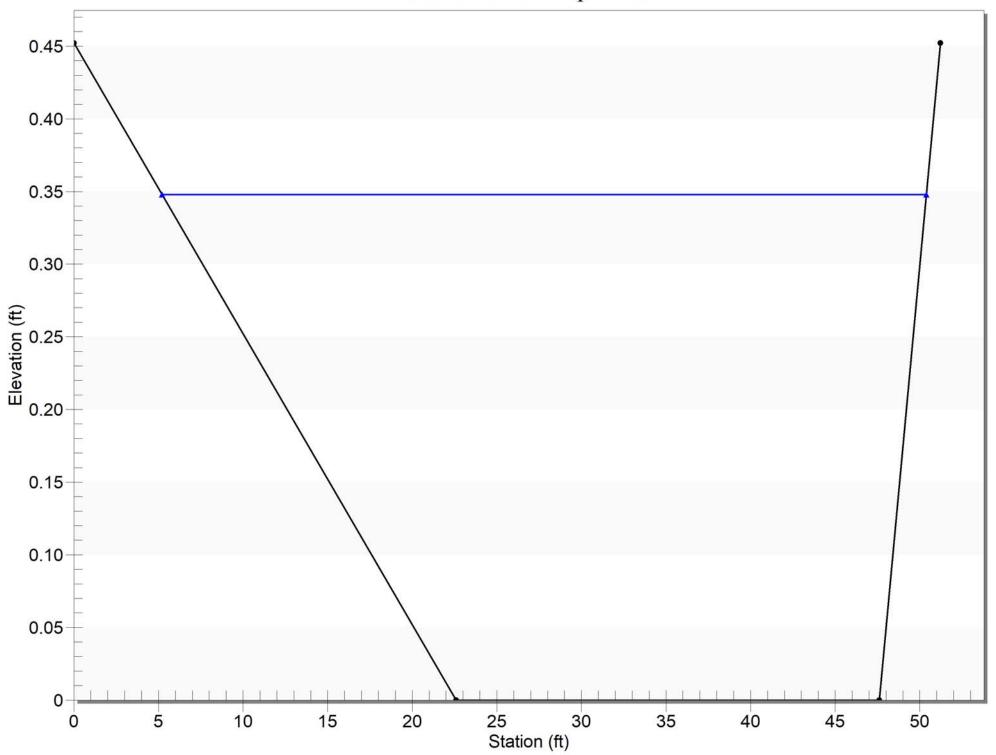
Project Title: JN-1104: Westwood - Swale Sizing Designer: Project Date: Tuesday, August 25, 2020 Project Units: U.S. Customary Units Notes: Swale Sizing

Channel Analysis: Swale 7 (South Park) - Flow Depth Run (Min. Slope = 0.75%, n = 0.04)

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 50.0000 ft/ft Side Slope 2 (Z2): 8.0000 ft/ft Channel Width: 25.0000 ft Longitudinal Slope: 0.0075 ft/ft Manning's n: 0.0400 Flow: 16.4000 cfs


Result Parameters

Depth: 0.3478 ft Area of Flow: 12.2031 ft^2 Wetted Perimeter: 45.1976 ft Hydraulic Radius: 0.2700 ft Average Velocity: 1.3439 ft/s Top Width: 45.1725 ft Froude Number: 0.4557 Critical Depth: 0.2172 ft Critical Velocity: 2.4123 ft/s Critical Slope: 0.0413 ft/ft Critical Top Width: 37.60 ft Calculated Max Shear Stress: 0.1628 lb/ft^2

Calculated Avg Shear Stress: 0.1264 lb/ft^2

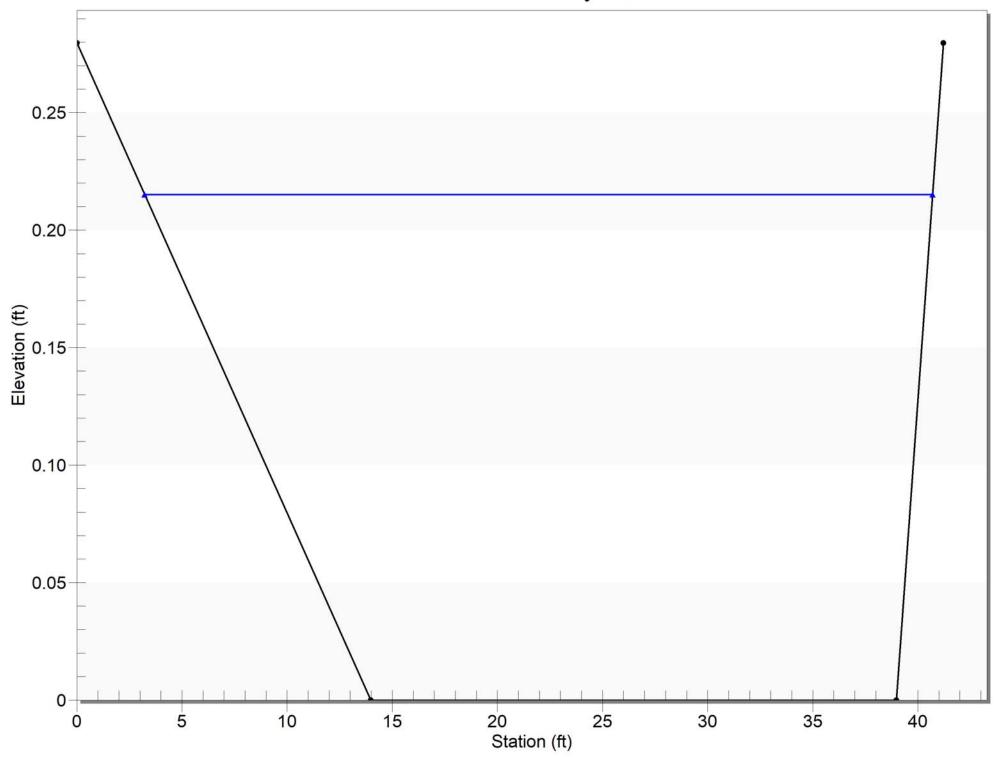
Q100 from Basin 34 to (SDI-32)

Section 7 - Flow Depth Run

Channel Analysis: Swale 7 (South Park) - Velocity Run (Max. Slope = 2.4%, n = 0.03)

Notes:

Input Parameters


Channel Type: Trapezoidal Side Slope 1 (Z1): 50.0000 ft/ft Side Slope 2 (Z2): 8.0000 ft/ft Channel Width: 25.0000 ft Longitudinal Slope: 0.0240 ft/ft Manning's n: 0.0300 Flow: 16.4000 cfs

Result Parameters

Depth: 0.2151 ft Area of Flow: 6.7190 ft^2 Wetted Perimeter: 37.4910 ft Hydraulic Radius: 0.1792 ft Average Velocity: 2.4408 ft/s Top Width: 37.4754 ft Froude Number: 1.0158 Critical Depth: 0.2171 ft Critical Velocity: 2.4132 ft/s Critical Slope: 0.0232 ft/ft Critical Top Width: 37.59 ft Calculated Max Shear Stress: 0.3221 lb/ft^2 Calculated Avg Shear Stress: 0.2684 lb/ft^2

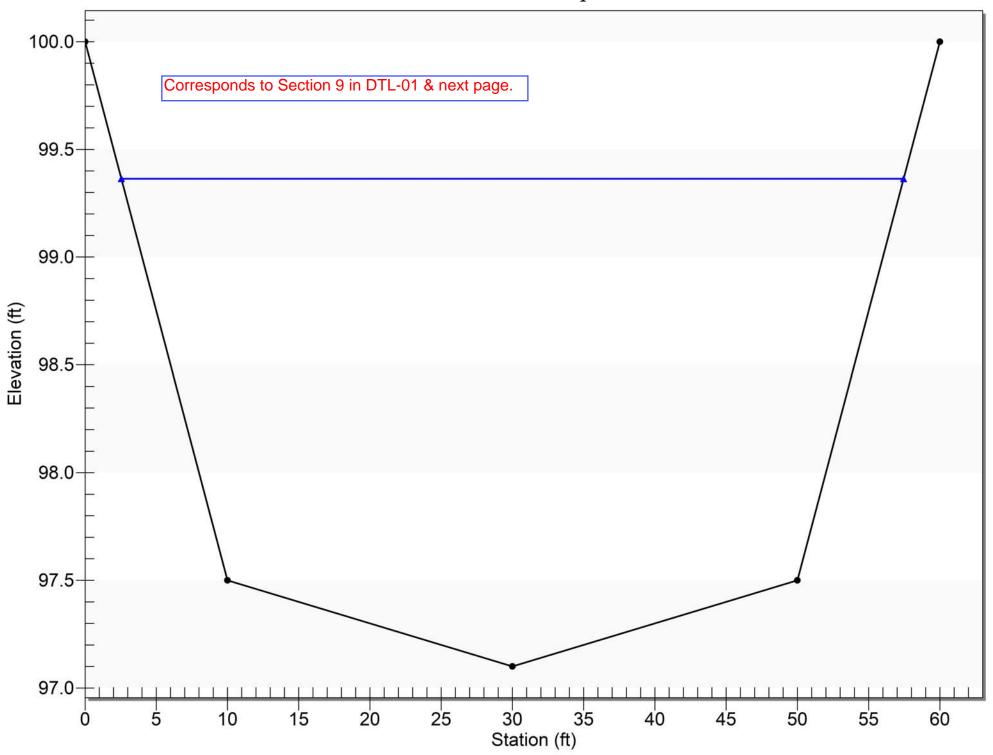
Q100 from Basin 34 to (SDI-32)

Section 7 - Velocity Run

Hydraulic Analysis Report

Project Data

Project Title: JN-1104: Westwood - Swale Sizing Designer: Project Date: Tuesday, August 25, 2020 Project Units: U.S. Customary Units Notes: Swale Sizing


Channel Analysis: Swale 9 - 2 X Undetained Q100 Flow Depth Run (Slope = 0.5%, n = 0.04)

Notes:

Input Parameters

Channel Type: Custom Cross Section

Section 9 - Flow Depth Run

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
0.00	100.00	0.0400
40.00	90.00	0.0400
60.00	89.60	0.0400
80.00	90.00	0.0400
120.00	100.00	

Longitudinal Slope: 0.0050 ft/ft

Flow: 366.8000 cfs

Result Parameters

Depth: 2.2640 ft

Area of Flow: 96.4557 ft^2

Wetted Perimeter: 55.3786 ft

Hydraulic Radius: 1.7418 ft

Average Velocity: 3.8028 ft/s

Top Width: 54.9117 ft

Froude Number: 0.5056

Critical Depth: 1.5441 ft

Critical Velocity: 6.2172 ft/s

Critical Slope: 0.0221 ft/ft

Critical Top Width: 49.15 ft

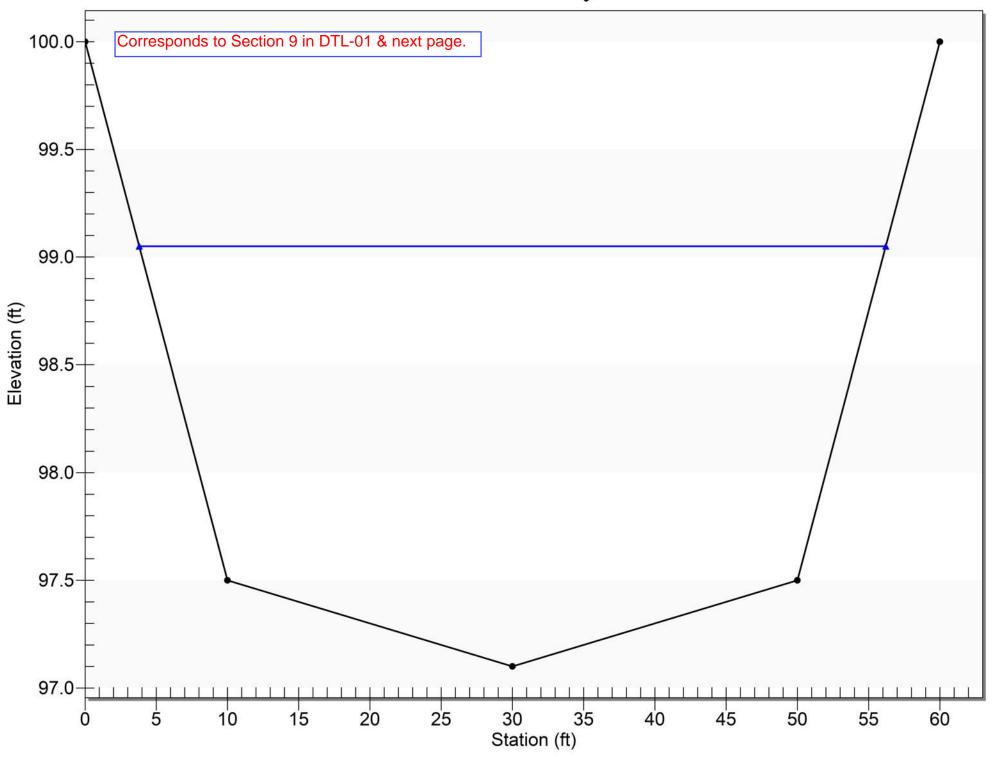
Calculated Max Shear Stress: 0.7064 lb/ft^2

Calculated Avg Shear Stress: 0.5434 lb/ft^2

Composite Manning's n Equation: Lotter method

Manning's n: 0.0400

2 X Undetained Q100 from Detention Basin + Q100 from offsite basin O5


Channel Analysis: Swale 9 - 2 X Undetained Q100 Velocity Run (Slope = 0.5%, n = 0.03)

Notes:

Input Parameters

Channel Type: Custom Cross Section

Section 9 - Velocity Run

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
0.00	100.00	0.0300
40.00	90.00	0.0300
60.00	89.60	0.0300
80.00	90.00	0.0300
120.00	100.00	

Longitudinal Slope: 0.0050 ft/ft Flow: 366.8000 cfs

Result Parameters

Depth: 1.9503 ft Area of Flow: 79.6262 ft^2 Wetted Perimeter: 52.7922 ft Hydraulic Radius: 1.5083 ft Average Velocity: 4.6065 ft/s

Top Width: 52.4025 ft

Froude Number: 0.6586

Critical Depth: 1.5441 ft

Critical Velocity: 6.2172 ft/s

Critical Slope: 0.0124 ft/ft

Critical Top Width: 49.15 ft

Calculated Max Shear Stress: 0.6085 lb/ft^2

Calculated Avg Shear Stress: 0.4706 lb/ft^2

Composite Manning's n Equation: Lotter method

Manning's n: 0.0300

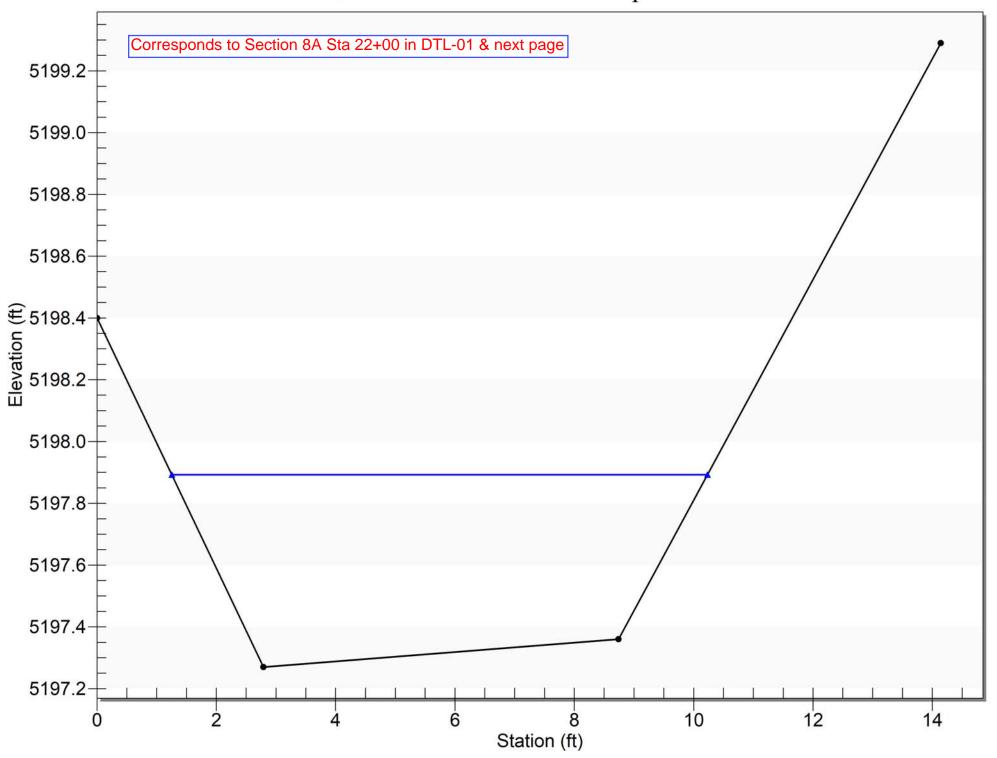
2 X Undetained Q100 from Detention Basin + Q100 from offsite basin O5

```
Corresponds to Section 8A Sta 22+00 in DTL-01. Section 8A Station 22+00 of the DTL-01 is the cross-section that best represents and the most restrictive of the cross-sections from Station 20+20 to 23+50
```

Hydraulic Analysis Report

Project Data

Project Title: JN-1104: Westwood - Roadside Ditch Sizing Designer: Project Date: Thursday, November 19, 2020 Project Units: U.S. Customary Units Notes:


Channel Analysis: Swale 8 22+00 (Roadside Ditch) - Flow Depth Run (Slope = 0.3%, n = 0.04)

Notes:

Input Parameters

Channel Type: Custom Cross Section

Swale 8 Sta 22+00 - Flow Depth Run

Corresponds to Section 8A Sta 22+00 in DTL-01 & the previous page output

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5198.40	0.0400
2.79	5197.27	7 0.0400
8.74	5197.36	0.0400
14.14	5199.29	

Table 8-5, Chapter 8, USDCM Vol. 1 recommends 0.04 for turfgrass sod when assessing Water Depths (Typical for all roadside ditch flow depth runs)

Longitudinal Slope: 0.0030 ft/ft

Flow: 5.3000 cfs

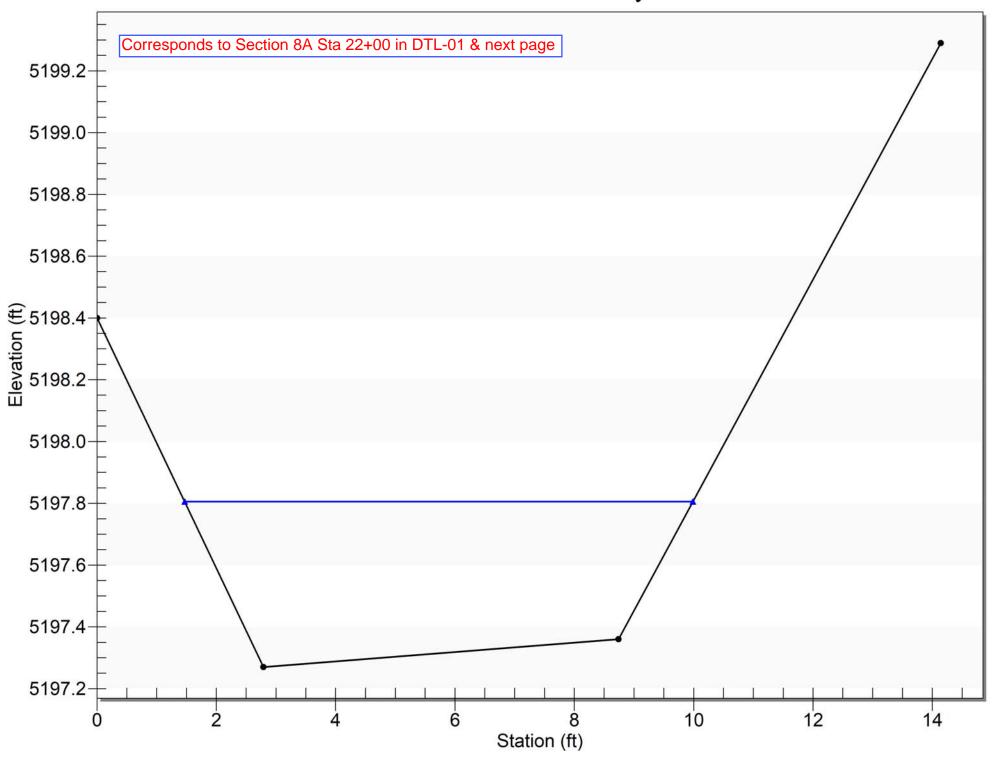
Manning's n: 0.0400

Result Parameters

Depth: 0.6228 ft Area of Flow: 4.3135 ft^2 Wetted Perimeter: 9.1926 ft Hydraulic Radius: 0.4692 ft Average Velocity: 1.2287 ft/s Top Width: 8.9782 ft Froude Number: 0.3124 Critical Depth: 0.3234 ft Critical Velocity: 2.8462 ft/s Critical Slope: 0.0377 ft/ft Critical Top Width: 7.40 ft Calculated Max Shear Stress: 0.1166 lb/ft^2 Calculated Avg Shear Stress: 0.0878 lb/ft^2

Composite Manning's n Equation: Lotter method

Corresponds to Section 8A Sta 22+00 in DTL-01. Section 8A Station 22+00 of the DTL-01 is the cross-section that best represents and the most restrictive of the cross-sections from Station 20+20 to 23+50


Channel Analysis: Swale 8 22+00 (Roadside Ditch) - Velocity Run (Slope = 0.3%, n = 0.03)

Notes:

Input Parameters

Channel Type: Custom Cross Section

Swale 8 Sta 22+00 - Velocity Run

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5198.40	0.0300
2.79	5197.27	0.0300
8.74	5197.36	0.0300
14.14	5199.29	

Longitudinal Slope: 0.0030 ft/ft

Flow: 5.3000 cfs

Depth: 0.5356 ft

Result Parameters

Q5 from Offsite Basin O11

Area of Flow: 3.5508 ft^2

Wetted Perimeter: 8.7013 ft

Hydraulic Radius: 0.4081 ft

Average Velocity: 1.4926 ft/s

Top Width: 8.5190 ft

Froude Number: 0.4074

Critical Depth: 0.3234 ft

Critical Velocity: 2.8462 ft/s

Critical Slope: 0.0212 ft/ft

Critical Top Width: 7.40 ft

Calculated Max Shear Stress: 0.1003 lb/ft^2

Calculated Avg Shear Stress: 0.0764 lb/ft^2

Composite Manning's n Equation: Lotter method

Manning's n: 0.0300

Corresponds to Section 8B Sta 24+00 in DTL-01. Section 8B Station 24+00 of the DTL-01 is the cross-section that best represents and the most restrictive of the cross-sections from Station 23+50 to 26+40

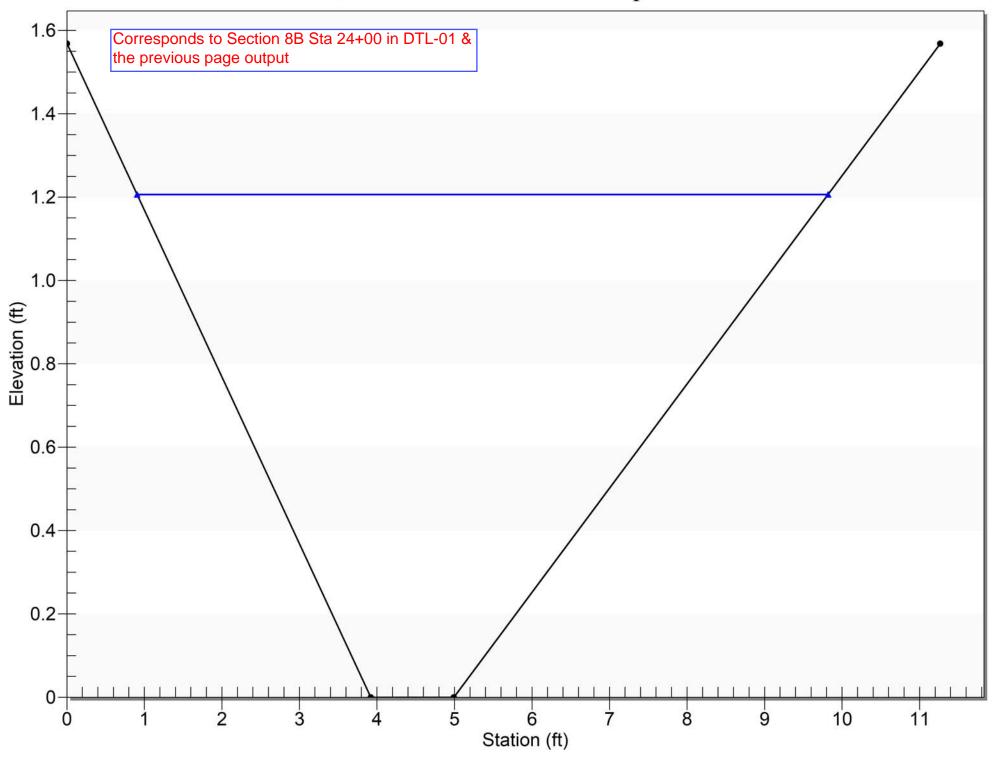
Hydraulic Analysis Report

Project Data

Project Title: JN-1104: Westwood - Roadside Ditch Sizing Designer: Project Date: Thursday, November 19, 2020 Project Units: U.S. Customary Units Notes:

Channel Analysis: Swale 8 24+00 (Roadside Ditch) - Flow Depth Run (Slope = 0.1%, n = 0.04)

Notes:


Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 2.5000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Channel Width: 1.0700 ft Longitudinal Slope: 0.0010 ft/ft Manning's n: 0.0400 Flow: 5.3000 cfs

Result Parameters

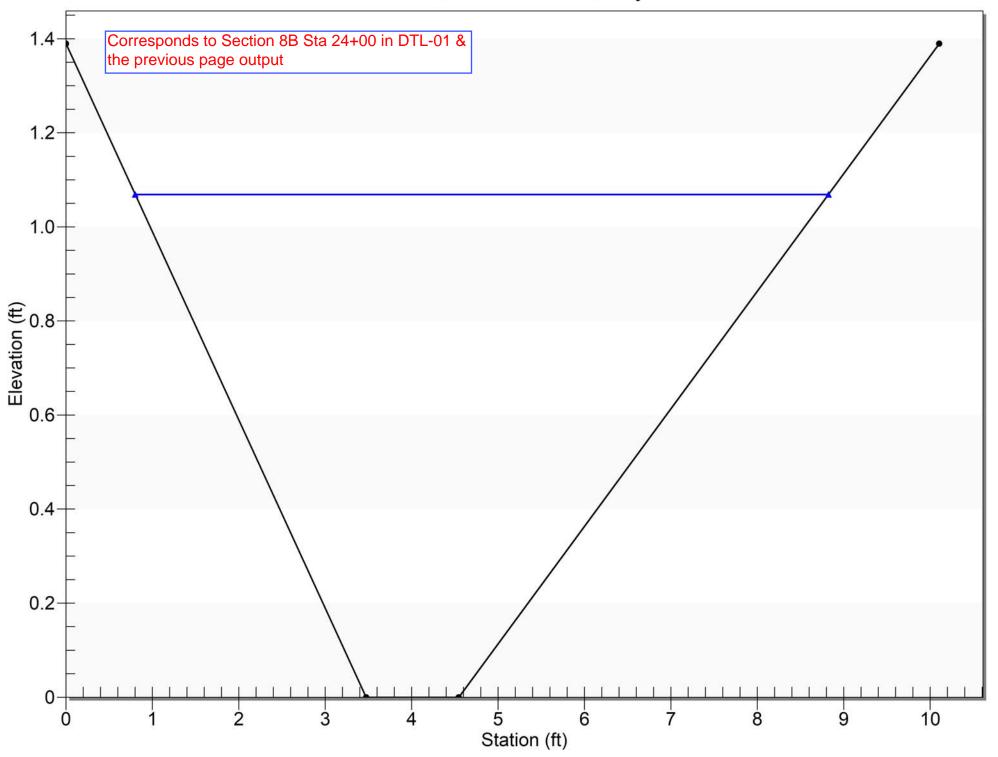
Depth: 1.2066 ft Area of Flow: 6.0226 ft² Wetted Perimeter: 9.2937 ft Hydraulic Radius: 0.6480 ft Average Velocity: 0.8800 ft/s Top Width: 8.9128 ft Froude Number: 0.1887 Critical Depth: 0.5555 ft Critical Velocity: 3.3178 ft/s Critical Slope: 0.0351 ft/ft Critical Top Width: 4.68 ft Calculated Max Shear Stress: 0.0753 lb/ft² Calculated Avg Shear Stress: 0.0404 lb/ft² Table 8-5, Chapter 8, USDCM Vol. 1 recommends 0.04 for turfgrass sod when assessing Water Depths (Typical for all roadside ditch flow depth runs)

Swale 8 Sta 24+00 - Flow Depth Run

Corresponds to Section 8B Sta 24+00 in DTL-01. Section 8B Station 24+00 of the DTL-01 is the cross-section that best represents and the most restrictive of the cross-sections from Station 23+50 to 26+40

Channel Analysis: Swale 8 24+00 (Roadside Ditch) - Velocity Run (Slope = 0.1%, n = 0.03)

Notes:


Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 2.5000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Channel Width: 1.0700 ft Longitudinal Slope: 0.0010 ft/ft Manning's n: 0.0300

Result Parameters

Depth: 1.0691 ft Area of Flow: 4.8584 ft² Wetted Perimeter: 8.3565 ft Hydraulic Radius: 0.5814 ft Average Velocity: 1.0909 ft/s Top Width: 8.0190 ft Froude Number: 0.2470 Critical Depth: 0.5557 ft Critical Velocity: 3.3160 ft/s Critical Slope: 0.0197 ft/ft Critical Top Width: 4.68 ft Calculated Max Shear Stress: 0.0667 lb/ft² Calculated Avg Shear Stress: 0.0363 lb/ft² Table 8-5, Chapter 8, USDCM Vol. 1 recommends 0.03 for turfgrass sod when assessing Velocity and Shear Stress (Typical for all roadside ditch velocity runs)

Swale 8 Sta 24+00 - Velocity Run

Corresponds to Section 8C Sta 28+00 in DTL-01. Section 8C Station 28+00 of the DTL-01 is the cross-section that best represents and the most restrictive of the cross-sections from Station 26+70 to 28+50

Hydraulic Analysis Report

Project Data

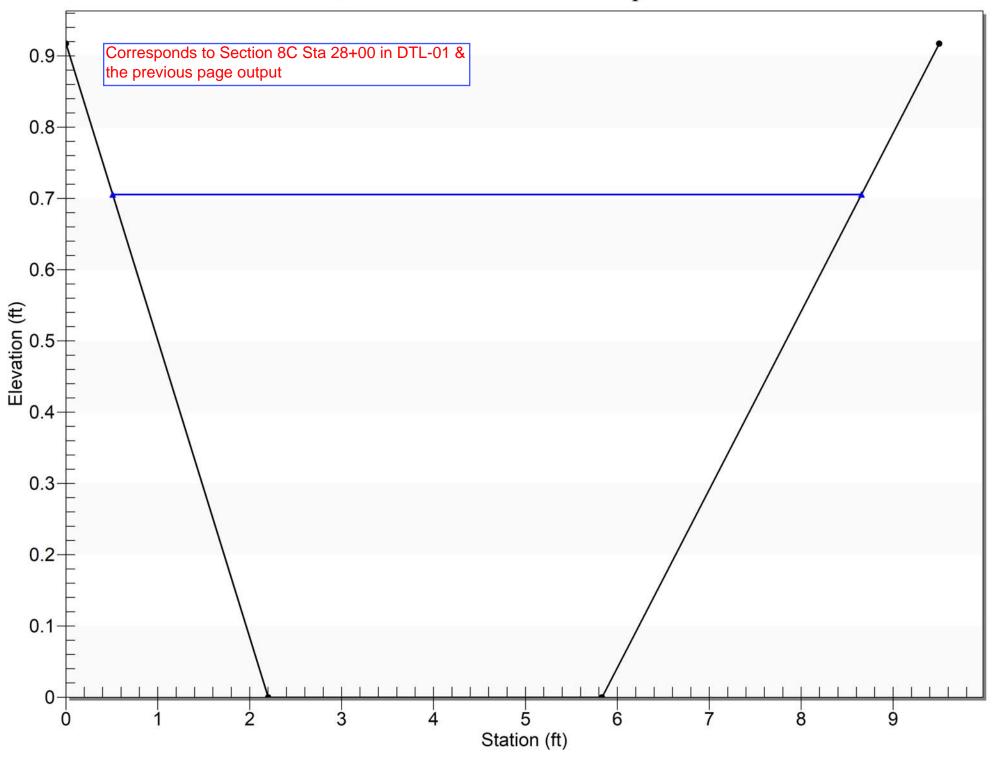
Project Title: JN-1104: Westwood - Roadside Ditch Sizing Designer: Project Date: Thursday, November 19, 2020 Project Units: U.S. Customary Units Notes:

Channel Analysis: Swale 8 28+00 (Roadside Ditch) - Flow Depth Run (Slope = 0.3%, n = 0.04)

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 2.4000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Channel Width: 3.6300 ft Longitudinal Slope: 0.0030 ft/ft Manning's n: 0.0400 Flow: 5.3000 cfs


Result Parameters

Depth: 0.7057 ft Area of Flow: 4.1556 ft^2 Wetted Perimeter: 8.3747 ft Hydraulic Radius: 0.4962 ft Average Velocity: 1.2754 ft/s Top Width: 8.1467 ft Froude Number: 0.3147 Critical Depth: 0.3617 ft Critical Velocity: 3.0612 ft/s Critical Slope: 0.0361 ft/ft Critical Top Width: 5.94 ft Calculated Max Shear Stress: 0.1321 lb/ft^2

Calculated Avg Shear Stress: 0.0929 lb/ft^2

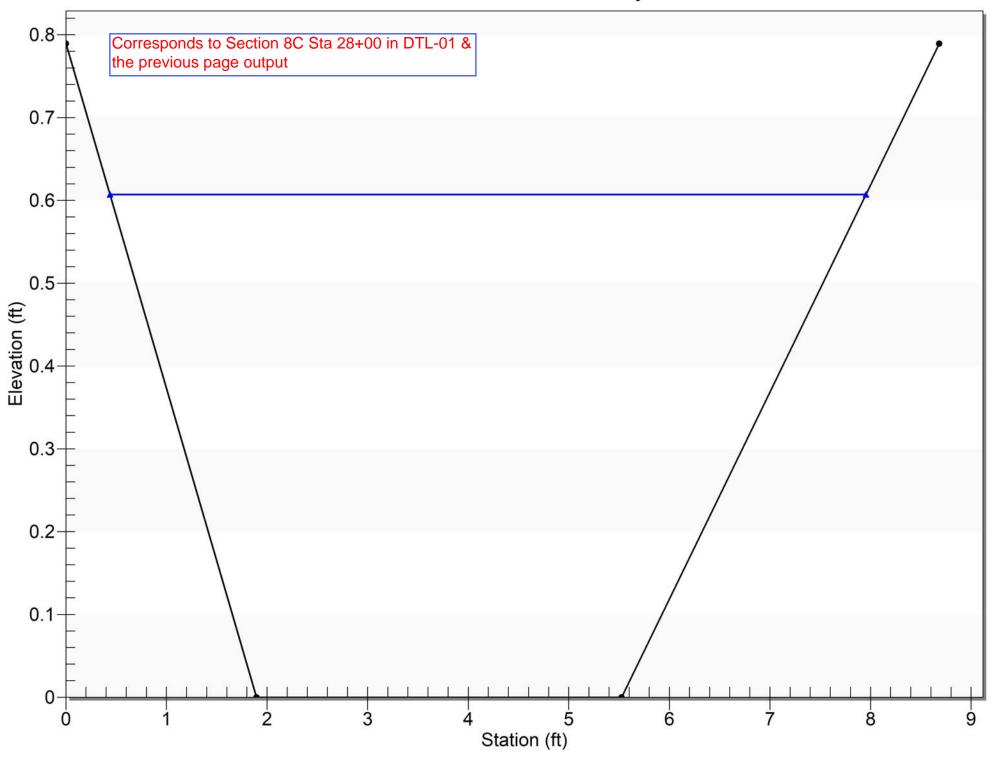
Table 8-5, Chapter 8, USDCM Vol. 1 recommends 0.04 for turfgrass sod when assessing Water Depths (Typical for all roadside ditch flow depth runs)

Swale 8 Sta 28+00 - Flow Depth Run

Corresponds to Section 8C Sta 28+00 in DTL-01. Section 8C Station 28+00 of the DTL-01 is the cross-section that best represents and the most restrictive of the cross-sections from Station 26+70 to 28+50

Channel Analysis: Swale 8 28+00 (Roadside Ditch) - Velocity Run (Slope = 0.3%, n = 0.03)

Notes:


Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 2.4000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Channel Width: 3.6300 ft Longitudinal Slope: 0.0030 ft/ft Manning's n: 0.0300

Result Parameters

Depth: 0.6073 ft Area of Flow: 3.3845 ft² Wetted Perimeter: 7.7128 ft Hydraulic Radius: 0.4388 ft Average Velocity: 1.5660 ft/s Top Width: 7.5165 ft Froude Number: 0.4113 Critical Depth: 0.3615 ft Critical Velocity: 3.0634 ft/s Critical Slope: 0.0203 ft/ft Critical Top Width: 5.94 ft Calculated Max Shear Stress: 0.1137 lb/ft² Calculated Avg Shear Stress: 0.0821 lb/ft² Table 8-5, Chapter 8, USDCM Vol. 1 recommends 0.03 for turfgrass sod when assessing Velocity and Shear Stress (Typical for all roadside ditch velocity runs)

Swale 8 Sta 28+00 - Velocity Run

Corresponds to Section 8D Sta 29+00 in DTL-01. Section 8D Station 29+00 of the DTL-01 is the cross-section that best represents and the most restrictive of the cross-sections from Station 28+50 to 30+70

Hydraulic Analysis Report

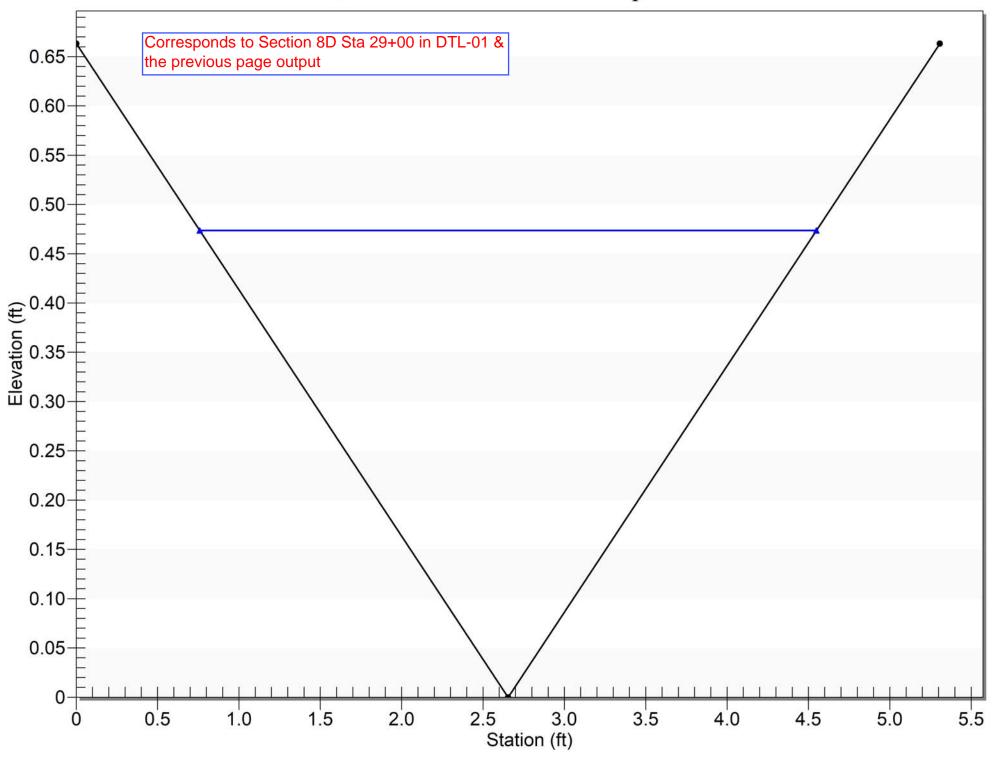
Project Data

Project Title: JN-1104: Westwood - Roadside Ditch Sizing Designer: Project Date: Thursday, November 19, 2020 Project Units: U.S. Customary Units Notes:

Channel Analysis: Swale 8 29+00 (Roadside Ditch) - Flow Depth Run (Slope = 2%, n = 0.04)

Notes:

Input Parameters


Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0200 ft/ft Manning's n: 0.0400 Flow: 1.7700 cfs

Result Parameters

Depth: 0.4738 ft Area of Flow: 0.8979 ft^2 Wetted Perimeter: 3.9070 ft Hydraulic Radius: 0.2298 ft Average Velocity: 1.9712 ft/s Top Width: 3.7903 ft Froude Number: 0.7137 Critical Depth: 0.4140 ft Critical Velocity: 2.5817 ft/s Critical Slope: 0.0411 ft/ft Critical Top Width: 3.31 ft Calculated Max Shear Stress: 0.5913 lb/ft^2 Calculated Avg Shear Stress: 0.2868 lb/ft^2 Table 8-5, Chapter 8, USDCM Vol. 1 recommends 0.04 for turfgrass sod when assessing Water Depths (Typical for all roadside ditch flow depth runs)

1/3 rd of total Q5 (5.3 CFS) from Offsite Basin O11. This is the most upstream portion of the swale and the tributary area to this portion of the swale is far less than 1/3 of the total area of Basin O11. Hence, this analysis conservatively assumes 1/3rd of total Q5 from Basin O11.

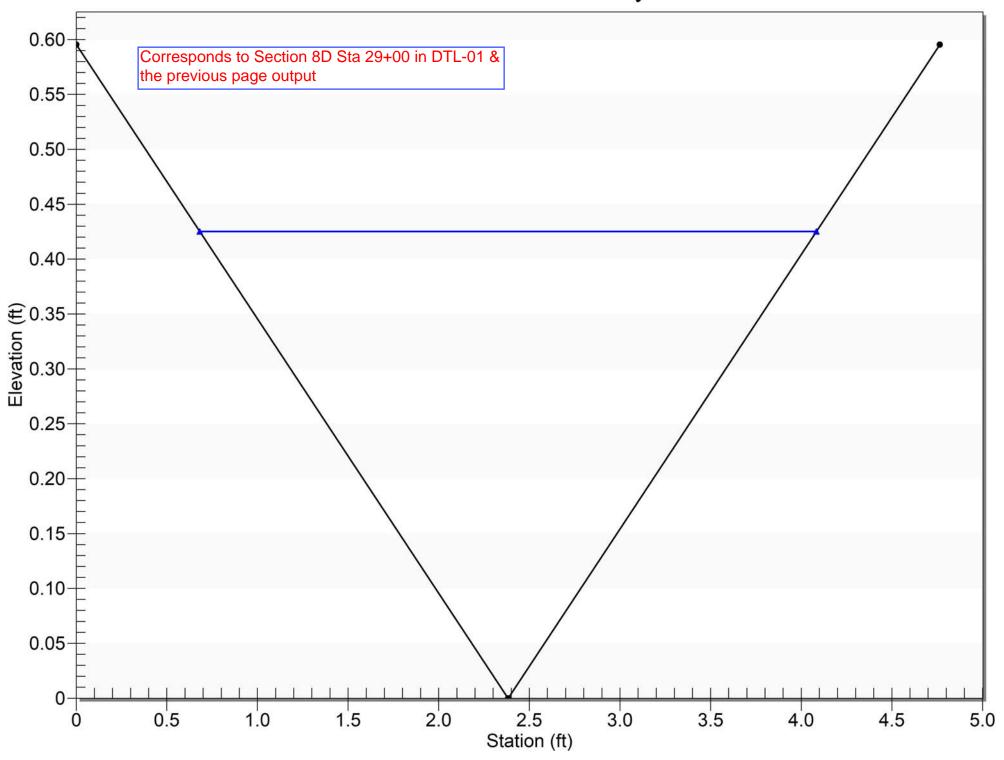
Swale 8 Sta 29+00 - Flow Depth Run

Corresponds to Section 8D Sta 29+00 in DTL-01. Section 8D Station 29+00 of the DTL-01 is the cross-section that best represents and the most restrictive of the cross-sections from Station 28+50 to 30+70

Channel Analysis: Swale 8 29+00 (Roadside Ditch) - Velocity Run (Slope = 2%, n = 0.03)

Notes:

Input Parameters


Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0200 ft/ft Manning's n: 0.0300 Flow: 1.7700 cfs

Result Parameters

Depth: 0.4253 ft Area of Flow: 0.7237 ft² Wetted Perimeter: 3.5074 ft Hydraulic Radius: 0.2063 ft Average Velocity: 2.4459 ft/s Top Width: 3.4027 ft Froude Number: 0.9347 Critical Depth: 0.4140 ft Critical Velocity: 2.5817 ft/s Critical Slope: 0.0231 ft/ft Critical Top Width: 3.31 ft Calculated Max Shear Stress: 0.5308 lb/ft² Calculated Avg Shear Stress: 0.2575 lb/ft² Table 8-5, Chapter 8, USDCM Vol. 1 recommends 0.03 for turfgrass sod when assessing Velocity and Shear Stress (Typical for all roadside ditch velocity runs)

1/3 rd of total Q5 (5.3 CFS) from Offsite Basin O11. This is the most upstream portion of the swale and the tributary area to this portion of the swale is far less than 1/3 of the total area of Basin O11. Hence, this analysis conservatively assumes 1/3rd of total Q5 from Basin O11.

Swale 8 Sta 29+00 - Velocity Run

Hydraulic Analysis Report

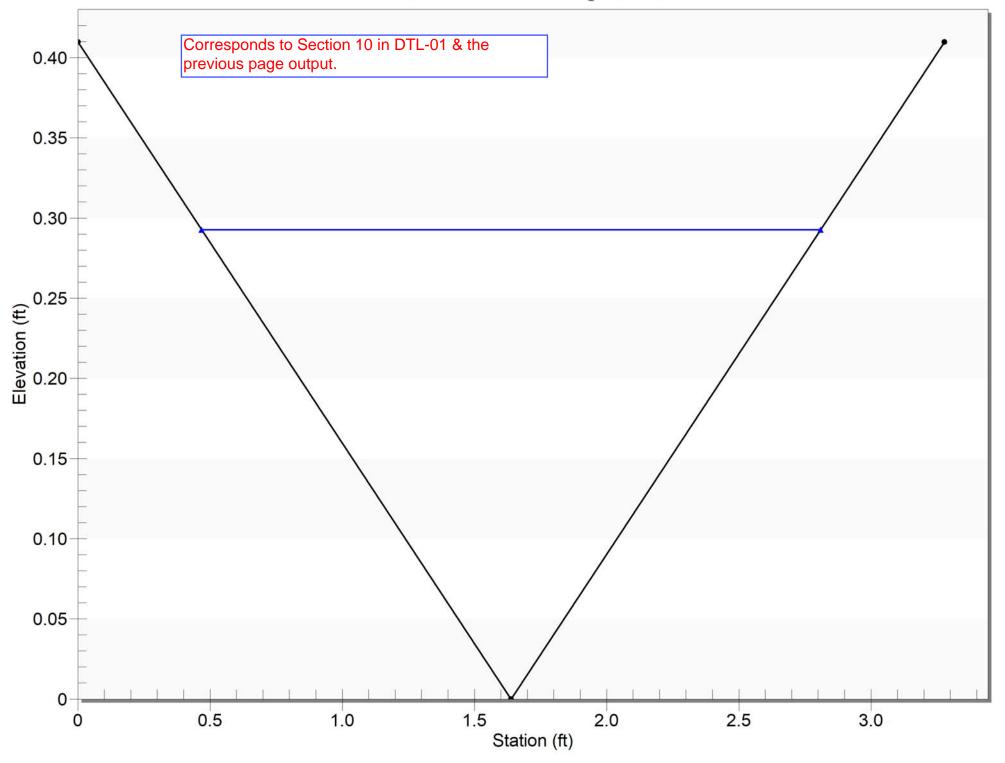
Project Data

Project Title: JN-1104: Westwood - Roadside Ditch Sizing Designer: Project Date: Thursday, November 19, 2020 Project Units: U.S. Customary Units Notes:

Channel Analysis: Swale 10 (Roadside Ditch) - Flow Depth Run (Min. Slope = 3%, n = 0.04)

Notes:

Input Parameters


Result Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0300 ft/ft Manning's n: 0.0400 Flow: 0.6000 cfs Table 8-5, Chapter 8, USDCM Vol. 1 recommends 0.04 for turfgrass sod when assessing Water Depths (Typical for all roadside ditch flow depth runs)

Q5 from offsite basin O6

Depth: 0.2927 ft Area of Flow: 0.3426 ft[^]2 Wetted Perimeter: 2.4135 ft Hydraulic Radius: 0.1420 ft Average Velocity: 1.7511 ft/s Top Width: 2.3414 ft Froude Number: 0.8067 Critical Depth: 0.2686 ft Critical Velocity: 2.0795 ft/s Critical Slope: 0.0474 ft/ft Critical Top Width: 2.15 ft Calculated Max Shear Stress: 0.5479 lb/ft[^]2

Section 10 - Flow Depth Run

Channel Analysis: Swale 10 (Roadside Ditch) - Velocity Run (Max. Slope = 4.4%, n = 0.03)

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0440 ft/ft Manning's n: 0.0300 Flow: 0.6000 cfs

Result Parameters

Depth: 0.2445 ft Area of Flow: 0.2392 ft^2 Wetted Perimeter: 2.0165 ft Hydraulic Radius: 0.1186 ft Average Velocity: 2.5084 ft/s Top Width: 1.9563 ft Froude Number: 1.2642 Critical Depth: 0.2686 ft Critical Velocity: 2.0795 ft/s Critical Slope: 0.0267 ft/ft Critical Top Width: 2.15 ft Calculated Max Shear Stress: 0.6714 lb/ft^2 Calculated Avg Shear Stress: 0.3257 lb/ft^2 Table 8-5, Chapter 8, USDCM Vol. 1 recommends 0.03 for turfgrass sod when assessing Velocity and Shear Stress (Typical for all roadside ditch velocity runs)

Section 10 - Velocity Run

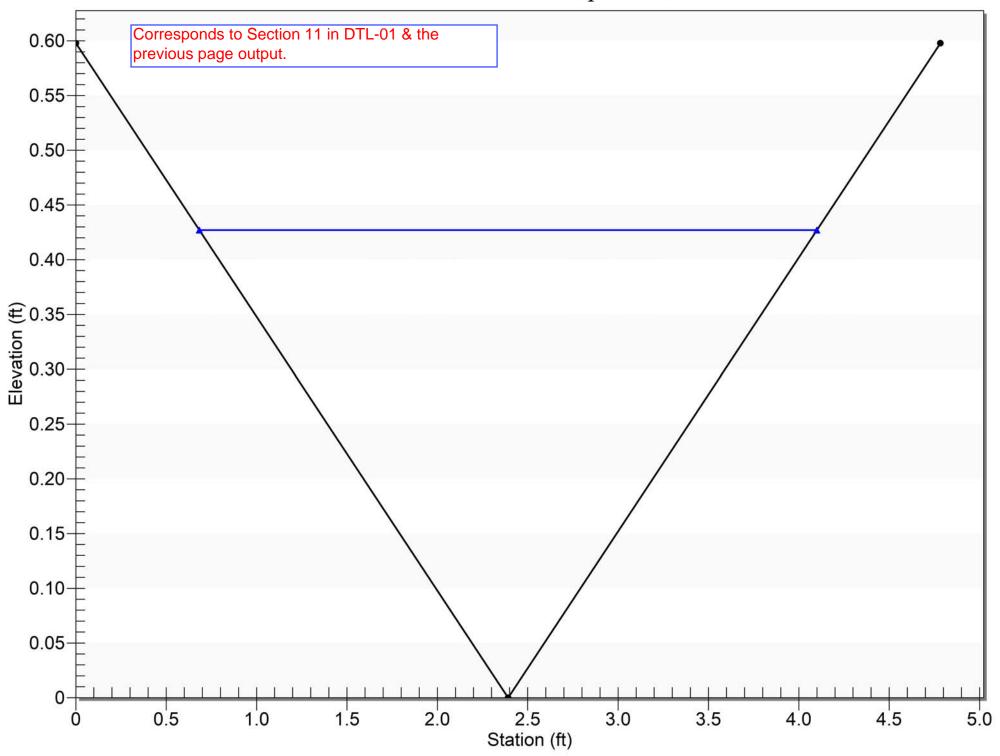
Hydraulic Analysis Report

Project Data

Project Title: JN-1104: Westwood - Roadside Ditch Sizing Designer: Project Date: Thursday, November 19, 2020 Project Units: U.S. Customary Units Notes:

Channel Analysis: Swale 11 (Roadside Ditch) - Flow Depth Run (Min. Slope = 1.6%, n = 0.04)

Notes:


Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0160 ft/ft Manning's n: 0.0400 Flow: 1.2000 cfs

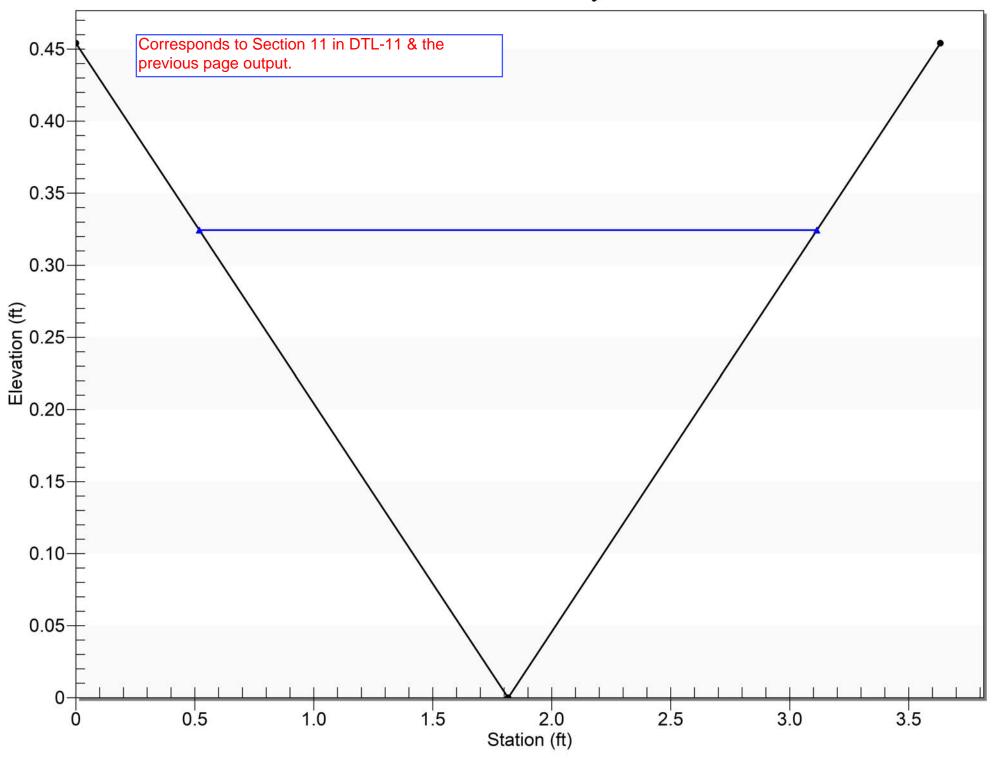
Result Parameters

Depth: 0.4270 ft Area of Flow: 0.7294 ft^2 Wetted Perimeter: 3.5214 ft Hydraulic Radius: 0.2071 ft Average Velocity: 1.6451 ft/s Top Width: 3.4163 ft Froude Number: 0.6274 Critical Depth: 0.3544 ft Critical Velocity: 2.3887 ft/s Critical Slope: 0.0433 ft/ft Critical Slope: 0.0433 ft/ft Critical Top Width: 2.84 ft Calculated Max Shear Stress: 0.4264 lb/ft^2 Calculated Avg Shear Stress: 0.2068 lb/ft^2

Section 11 - Flow Depth Run

Channel Analysis: Swale 11 (Roadside Ditch) - Velocity Run (Max. Slope = 3.9%, n = 0.03)

Notes:


Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0390 ft/ft Manning's n: 0.0300 Flow: 1.2000 cfs

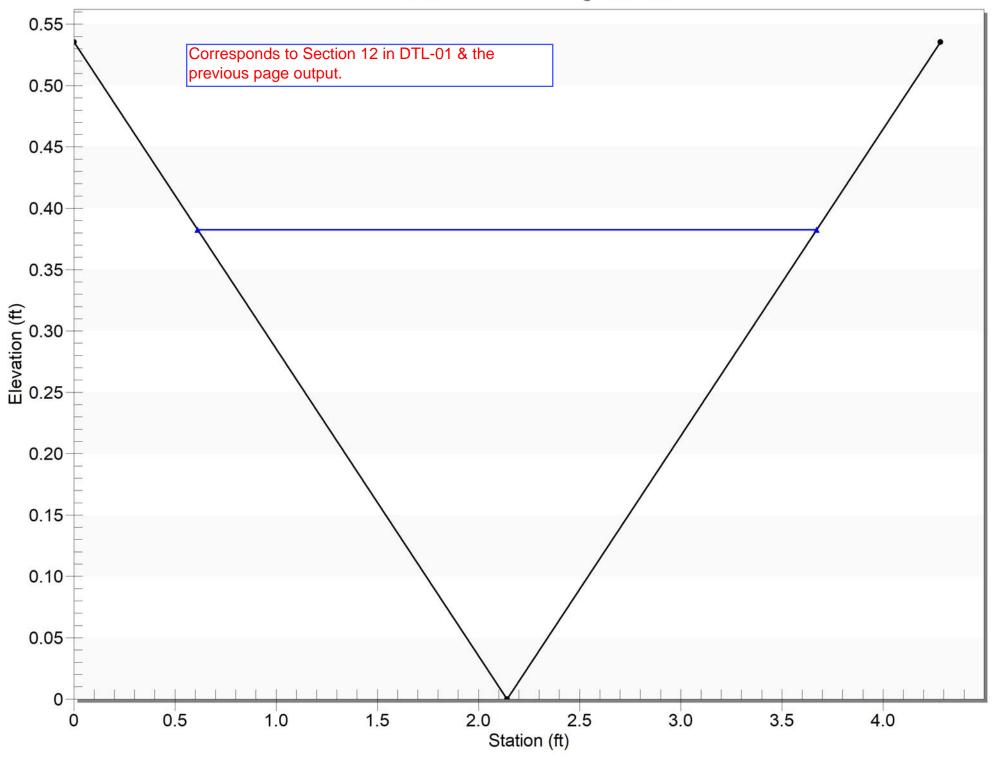
Result Parameters

Depth: 0.3244 ft Area of Flow: 0.4209 ft^2 Wetted Perimeter: 2.6749 ft Hydraulic Radius: 0.1573 ft Average Velocity: 2.8511 ft/s Top Width: 2.5951 ft Froude Number: 1.2476 Critical Depth: 0.3544 ft Critical Velocity: 2.3887 ft/s Critical Slope: 0.0243 ft/ft Critical Top Width: 2.84 ft Calculated Max Shear Stress: 0.7894 lb/ft^2 Calculated Avg Shear Stress: 0.3829 lb/ft^2

Section 11 - Velocity Run

Channel Analysis: Swale 12 (Roadside Ditch) - Flow Depth Run (Min. Slope = 0.5%, n = 0.04)

Notes:


Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0050 ft/ft Manning's n: 0.0400 Flow: 0.5000 cfs

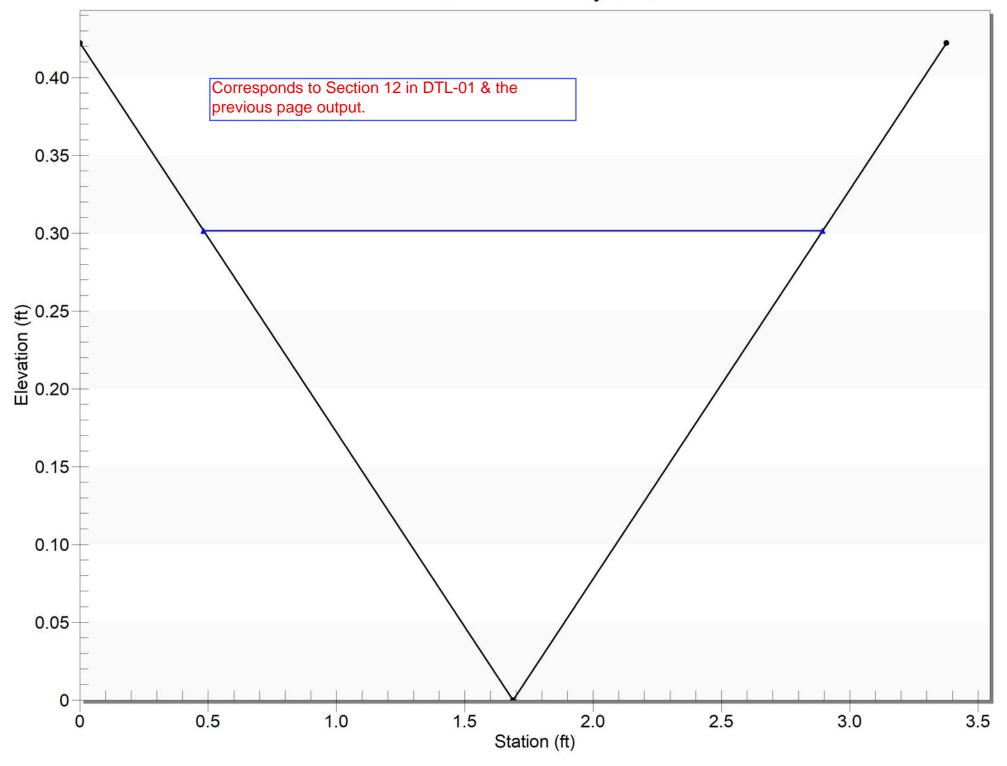
Result Parameters

Depth: 0.3825 ft Area of Flow: 0.5851 ft² Wetted Perimeter: 3.1539 ft Hydraulic Radius: 0.1855 ft Average Velocity: 0.8545 ft/s Top Width: 3.0598 ft Froude Number: 0.3444 Critical Depth: 0.2497 ft Critical Velocity: 2.0050 ft/s Critical Slope: 0.0486 ft/ft Critical Top Width: 2.00 ft Calculated Max Shear Stress: 0.1193 lb/ft² Calculated Avg Shear Stress: 0.0579 lb/ft²

Section 12 - Flow Depth Run

Channel Analysis: Swale 12 (Roadside Ditch) - Velocity Run (Max. Slope = 1.0%, n = 0.03)

Notes:


Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0100 ft/ft Manning's n: 0.0300 Flow: 0.5000 cfs

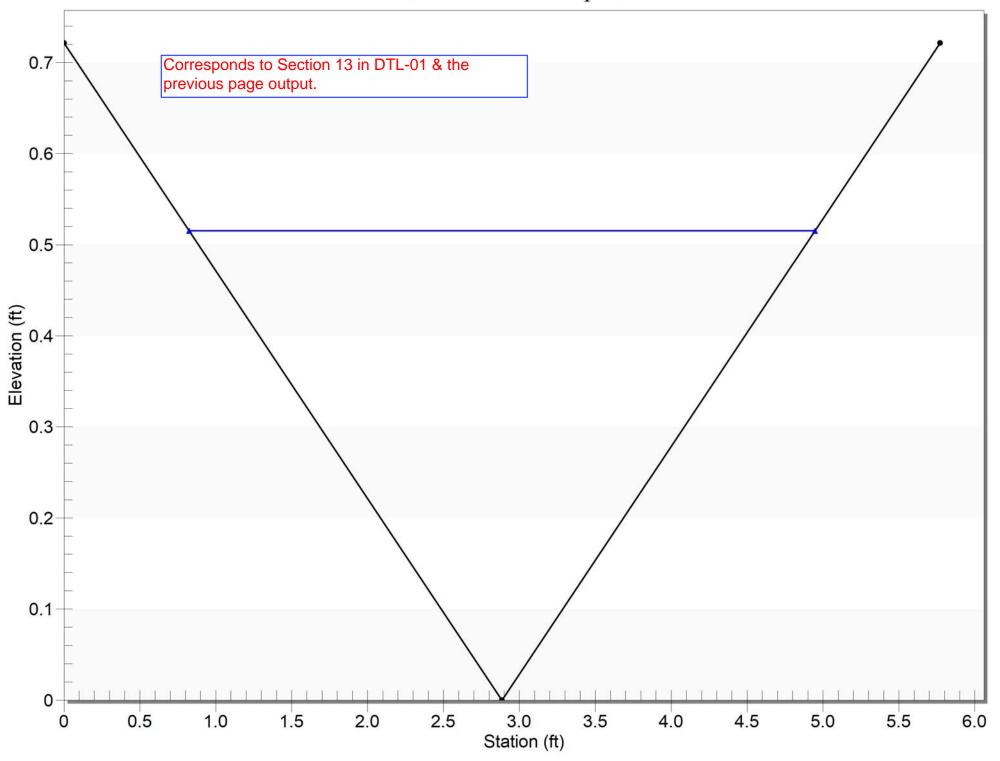
Result Parameters

Q5 from offsite basin O8

Depth: 0.3015 ft Area of Flow: 0.3636 ft^2 Wetted Perimeter: 2.4863 ft Hydraulic Radius: 0.1463 ft Average Velocity: 1.3750 ft/s Top Width: 2.4121 ft Froude Number: 0.6241 Critical Depth: 0.2497 ft Critical Velocity: 2.0050 ft/s Critical Slope: 0.0273 ft/ft Critical Top Width: 2.00 ft Calculated Max Shear Stress: 0.1881 lb/ft^2 Calculated Avg Shear Stress: 0.0913 lb/ft^2 Section 12 - Velocity Run

Channel Analysis: Swale 13 (Roadside Ditch) - Flow Depth Run (Min. Slope = 0.8%, n = 0.04)

Notes:


Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0080 ft/ft Manning's n: 0.0400 Flow: 1.4000 cfs

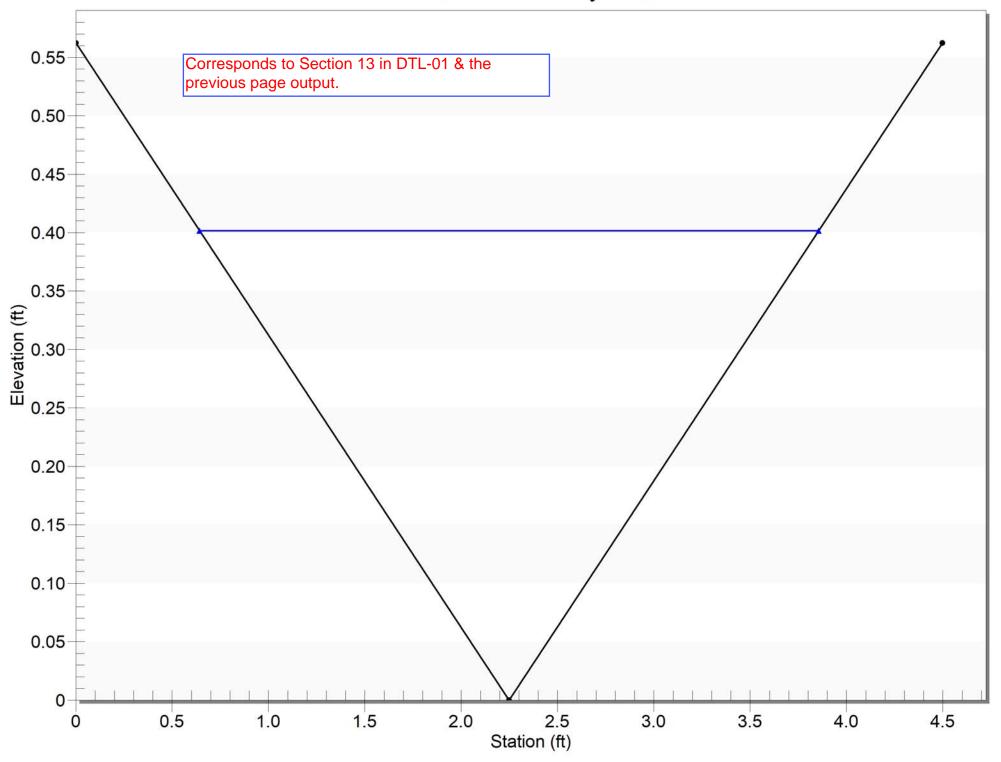
Result Parameters

Depth: 0.5152 ft Area of Flow: 1.0619 ft^2 Wetted Perimeter: 4.2488 ft Hydraulic Radius: 0.2499 ft Average Velocity: 1.3184 ft/s Top Width: 4.1219 ft Froude Number: 0.4578 Critical Depth: 0.3769 ft Critical Velocity: 2.4635 ft/s Critical Slope: 0.0424 ft/ft Critical Top Width: 3.02 ft Calculated Max Shear Stress: 0.2572 lb/ft^2 Calculated Avg Shear Stress: 0.1248 lb/ft^2

Section 13 - Flow Depth Run

Channel Analysis: Swale 13 (Roadside Ditch) - Velocity Run (Max. Slope = 1.7%, n = 0.03)

Notes:


Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0170 ft/ft Manning's n: 0.0300 Flow: 1.4000 cfs

Result Parameters

Depth: 0.4016 ft Area of Flow: 0.6451 ft² Wetted Perimeter: 3.3116 ft Hydraulic Radius: 0.1948 ft Average Velocity: 2.1703 ft/s Top Width: 3.2127 ft Froude Number: 0.8535 Critical Depth: 0.3769 ft Critical Velocity: 2.4635 ft/s Critical Slope: 0.0238 ft/ft Critical Slope: 0.0238 ft/ft Critical Top Width: 3.02 ft Calculated Max Shear Stress: 0.4260 lb/ft² Calculated Avg Shear Stress: 0.2066 lb/ft²

Section 13 - Velocity Run

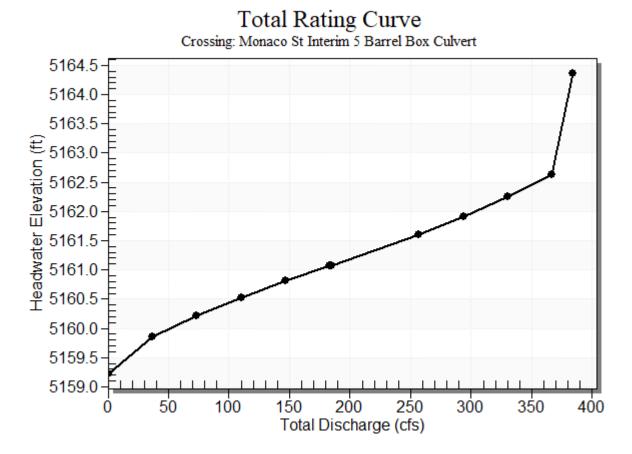
Appendix B – Hydraulic Computations Culvert Design

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 184.4 cfs Maximum Flow: 366.8 cfs

Monaco Street Interim Culvert Sizing Design Flow = Onsite Undetained Q100 from Detention Basin + Q100 from Offsite Basin O5 Maximum Flow = 2 X Onsite Undetained Q100 from Detention Basin + Q100 from Offsite Basin O5 Five (5) - 5'W X 2'H Rectangular Concrete Box (RCB) Culverts


The Interim Monaco Culvert has been designed for the on-site un-detained Q100 which is higher than the max. detained elease rate from pond. Hence, the existing design is more conservative.

Headwater Elevation (ft)	Total Discharge (cfs)	Monaco St Interim 5 Barrel Box Culvert Discharge (cfs)	Roadway Discharge (cfs)	Iterations
5159.23	0.00	0.00	0.00	1
5159.85	36.68	36.68	0.00	1
5160.22	73.36	73.36	0.00	1
5160.53	110.04	110.04	0.00	1
5160.81	146.72	146.72	0.00	1
5161.07	183.40	183.40	0.00	1
5161.07	184.40	184.40	0.00	1
5161.61	256.76	256.76	0.00	1
5161.91	293.44	293.44	0.00	1
5162.25	330.12	330.12	0.00	1
5162.63	366.80	366.80	0.00	1
5162.82	384.14	384.14	0.00	Overtopping

Table 1 - Summary of Culvert Flows at Crossing: Monaco St Interim 5 Barrel Box

2 X Undetained Q100 WSEL

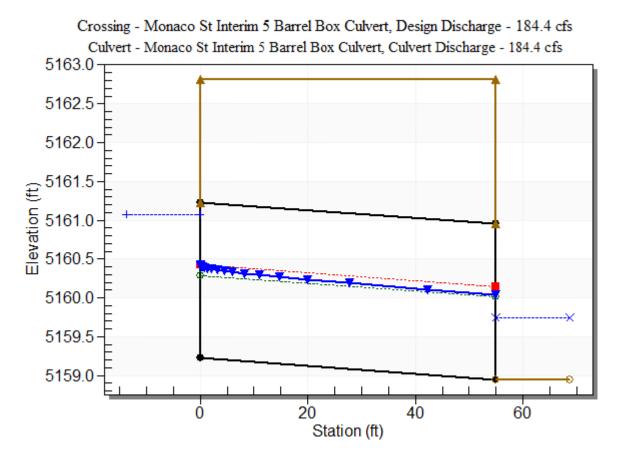
Undetained Q100 WSEL

Rating Curve Plot for Crossing: Monaco St Interim 5 Barrel Box Culvert

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	5159.23	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
36.68	36.68	5159.85	0.621	0.141	1-S2n	0.368	0.406	0.368	0.308	3.992	2.202
73.36	73.36	5160.22	0.985	0.425	1-S2n	0.573	0.644	0.573	0.463	5.118	2.828
110.04	110.04	5160.53	1.299	0.701	1-S2n	0.748	0.844	0.770	0.586	5.720	3.261
146.72	146.72	5160.81	1.577	0.986	1-S2n	0.906	1.023	0.934	0.691	6.281	3.598
183.40	183.40	5161.07	1.838	1.287	1-S2n	1.054	1.187	1.088	0.785	6.741	3.879
184.40	184.40	5161.07	1.845	1.296	1-S2n	1.058	1.191	1.092	0.788	6.753	3.886
256.76	256.76	5161.61	2.378	1.951	5-S2n	1.330	1.485	1.373	0.950	7.480	4.334
293.44	293.44	5161.91	2.681	2.506	5-S2n	1.461	1.623	1.509	1.024	7.779	4.525
330.12	330.12	5162.25	3.019	2.831	5-S2n	1.588	1.756	1.640	1.094	8.052	4.699
366.80	366.80	5162.63	3.396	3.185	5-S2n	1.713	1.884	1.767	1.160	8.304	4.859

Table 2 - Culvert Summary Table: Monaco St Interim 5 Barrel Box Culvert

For tailwater rating curve information refer to Table 3 of the output.



Straight Culvert

Inlet Elevation (invert): 5159.23 ft, Outlet Elevation (invert): 5158.95 ft Culvert Length: 55.00 ft, Culvert Slope: 0.0051

Culvert Performance Curve Plot: Monaco St Interim 5 Barrel Box Culvert

Water Surface Profile Plot for Culvert: Monaco St Interim 5 Barrel Box Culvert

Site Data - Monaco St Interim 5 Barrel Box Culvert

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 5159.23 ft Outlet Station: 55.00 ft Outlet Elevation: 5158.95 ft Number of Barrels: 5

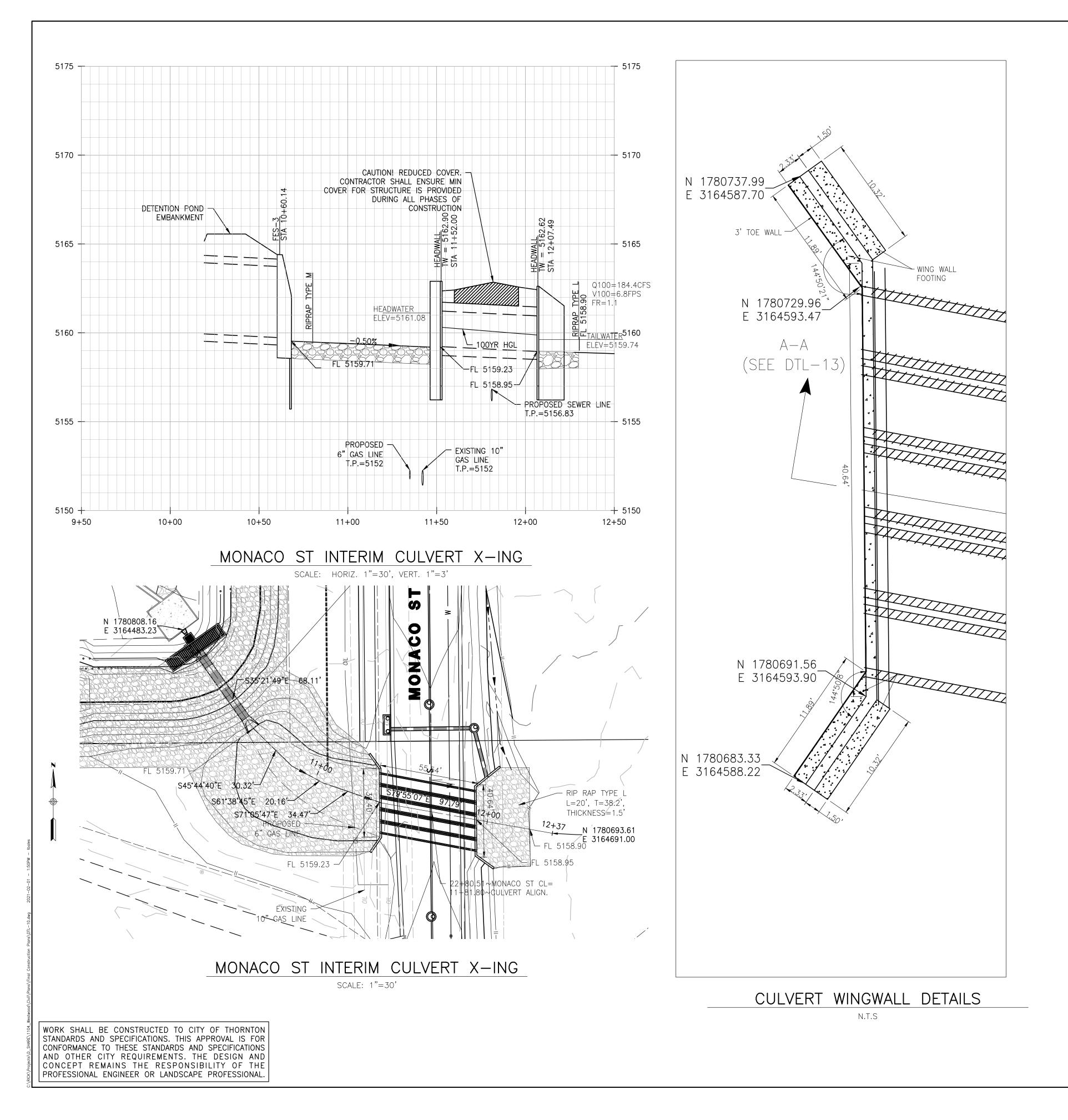
Culvert Data Summary - Monaco St Interim 5 Barrel Box Culvert

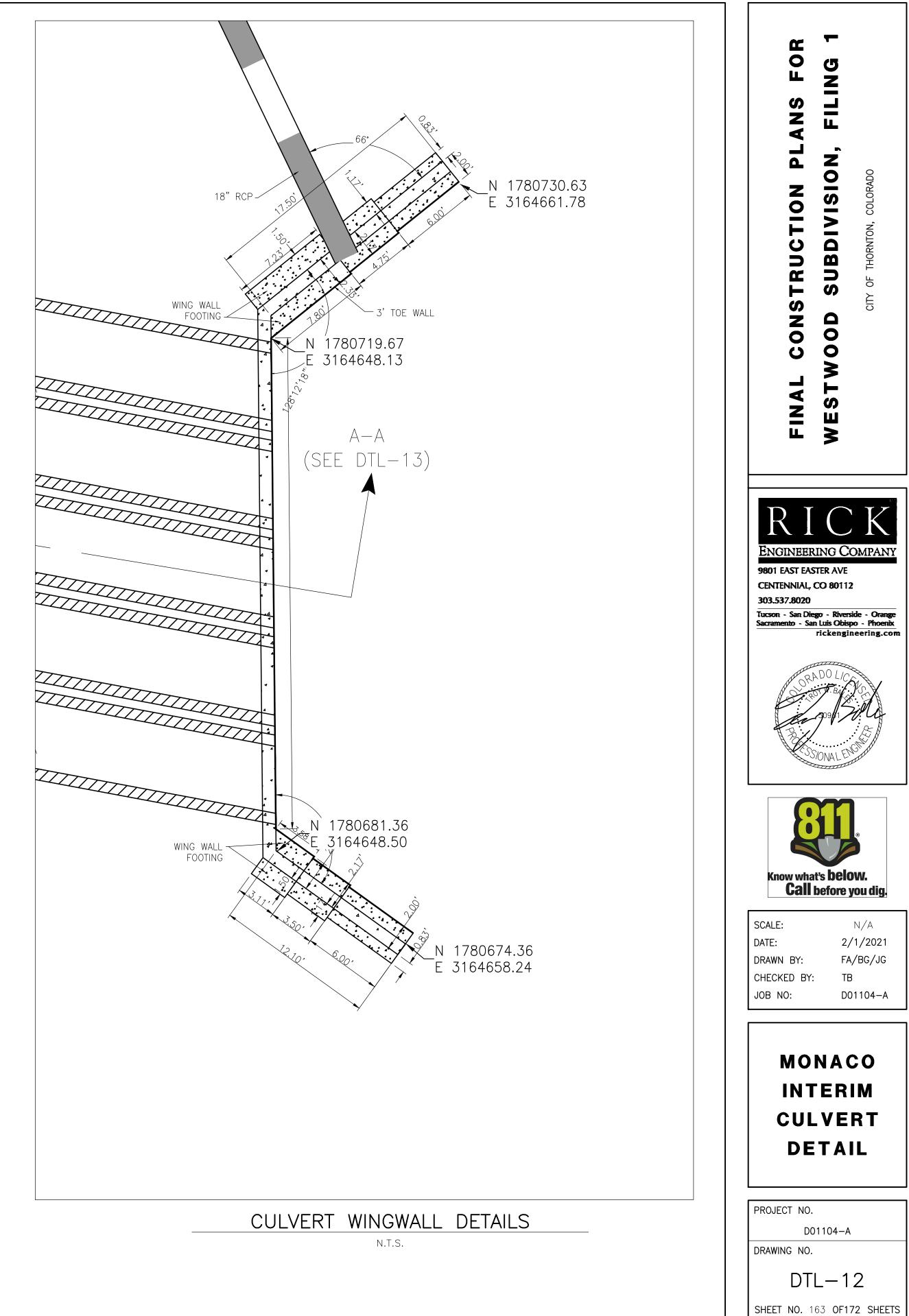
Barrel Shape: Concrete Box Barrel Span: 5.00 ft Barrel Rise: 2.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Square Edge (30-75° flare) Wingwall Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	5158.95	0.00	0.00	0.00	0.00
36.68	5159.26	0.31	2.20	0.56	0.72
73.36	5159.41	0.46	2.83	0.84	0.77
110.04	5159.54	0.59	3.26	1.06	0.80
146.72	5159.64	0.69	3.60	1.25	0.82
183.40	5159.74	0.79	3.88	1.42	0.83
184.40	5159.74	0.79	3.89	1.43	0.83
256.76	5159.90	0.95	4.33	1.72	0.86
293.44	5159.97	1.02	4.52	1.85	0.87
330.12	5160.04	1.09	4.70	1.98	0.87
366.80	5160.11	1.16	4.86	2.10	0.88

Table 3 - Downstream Channel Rating Curve (Crossing: Monaco St Interim 5 Barrel

Rip-rap apron sizing at the culvert outfall is included in the "Rip-rap Apron Sizing" section of Appendix B to follow.


Tailwater Channel Data - Monaco St Interim 5 Barrel Box Culvert


Tailwater Channel Option: Trapezoidal Channel Bottom Width: 50.00 ft Side Slope (H:V): 13.00 (_:1) Channel Slope: 0.0290 Channel Manning's n: 0.0500 Channel Invert Elevation: 5158.95 ft

Based on the site topography at the tailwater channel in interim condition.

Roadway Data for Crossing: Monaco St Interim 5 Barrel Box Culvert

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 5162.82 ft Roadway Surface: Paved Roadway Top Width: 55.00 ft

August 31, 2020 Date 5620 Friars Road San Diego, CA 92110-2596 Job No. 1 Page Tel: (619) 291-0707 ENGINEERING COMPANY Ash Fax: (619) 291-4165 Done By Signal grigation Ditch Dutlet Structure Schemalic. Checked By Signal Ditch Company has already signed off on this design 5207.8 Holly shreet 6 charte Signal Ditch -> 2.42' FL = 5205.38' 48" × 76" Elliptical Pipe INU aut = 5200.1 Floped Grate 6.5' 9'

August 31,2020 5620 Friars Road Date San Diego, CA 92110-2596 Job No. 1104 2 Tel: (619) 291-0707 Page INEERING COMPAN Fax: (619) 291-4165 Ash Done By Checked By Grate Capacity = G A JagH Standard orifice equation Grate effective gen area A = 9 × 2.42 × 0.7 × 0.7 = 10.67 ft Assuming 70% effective open anca & 30 % clogging (sloped grate) Discharge coefficient, (d = 0.67 Available Head H = 2:42/2 = 1.21' Grate Capacity, 0 = 0.67 × 10.67 × J2+32.2×1.21 Guate Capacity, a = 63.11 45 > Design Flow 60 CFS

Design flow source - Signal Ditch Company -

HY-8 Culvert Analysis Report

Project Notes

Project Title:JN-1104: Westwood

Designer:

Project Date:Monday, August 31, 2020

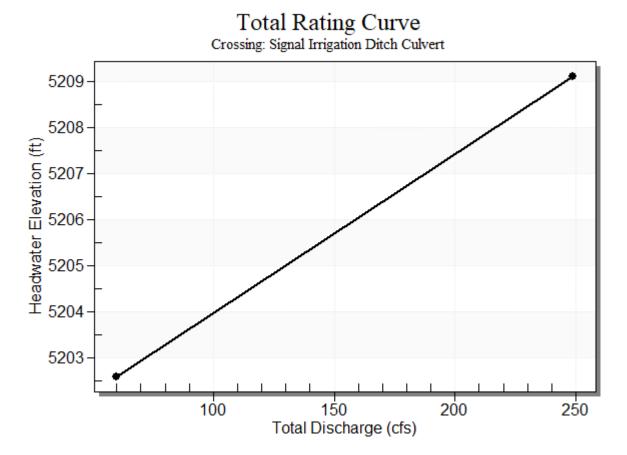
Notes:

Signal Ditch Irrigation Culvert

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 60 cfs


Design Flow: 60 cfs

Maximum Flow: 60 cfs

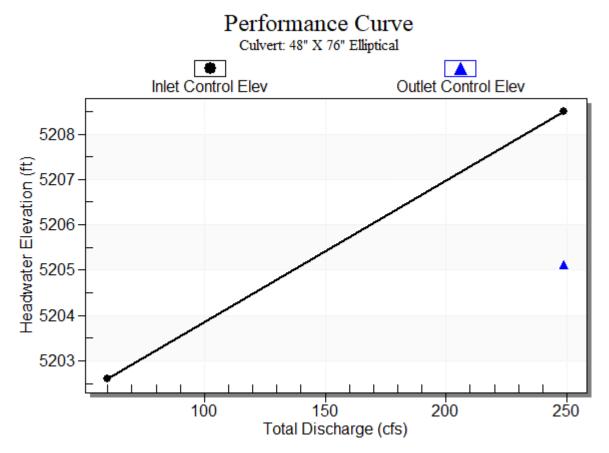
Table 1 - Summary of Culvert Flows at Crossing	g: Signal Irrigation Ditch Culvert
--	------------------------------------

Headwater Elevation (ft)	Total Discharge (cfs)	48" X 76" Elliptical Discharge (cfs)	Roadway Discharge (cfs)	Iterations
5202.60	60.00	60.00	0.00	1
5202.60	60.00	60.00	0.00	1
5202.60	60.00	60.00	0.00	1
5202.60	60.00	60.00	0.00	1
5202.60	60.00	60.00	0.00	1
5202.60	60.00	60.00	0.00	1
5202.60	60.00	60.00	0.00	1
5202.60	60.00	60.00	0.00	1
5202.60	60.00	60.00	0.00	1
5202.60	60.00	60.00	0.00	1
5202.60	60.00	60.00	0.00	1
5208.50	248.68	248.68	0.00	Overtopping

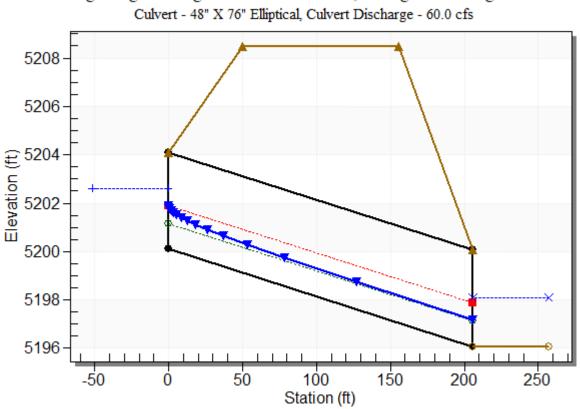
Capacity of 48" X 76" culvert

Rating Curve Plot for Crossing: Signal Irrigation Ditch Culvert

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
60.00	60.00	5202.60	2.501	0.0*	1-S2n	1.059	1.783	1.114	2.000	12.041	0.000
60.00	60.00	5202.60	2.501	0.0*	1-S2n	1.059	1.783	1.114	2.000	12.041	0.000
60.00	60.00	5202.60	2.501	0.0*	1-S2n	1.059	1.783	1.114	2.000	12.041	0.000
60.00	60.00	5202.60	2.501	0.0*	1-S2n	1.059	1.783	1.114	2.000	12.041	0.000
60.00	60.00	5202.60	2.501	0.0*	1-S2n	1.059	1.783	1.114	2.000	12.041	0.000
60.00	60.00	5202.60	2.501	0.0*	1-S2n	1.059	1.783	1.114	2.000	12.041	0.000
60.00	60.00	5202.60	2.501	0.0*	1-S2n	1.059	1.783	1.114	2.000	12.041	0.000
60.00	60.00	5202.60	2.501	0.0*	1-S2n	1.059	1.783	1.114	2.000	12.041	0.000
60.00	60.00	5202.60	2.501	0.0*	1-S2n	1.059	1.783	1.114	2.000	12.041	0.000
60.00	60.00	5202.60	2.501	0.0*	1-S2n	1.059	1.783	1.114	2.000	12.041	0.000
60.00	60.00	5202.60	2.501	0.0*	1-S2n	1.059	1.783	1.114	2.000	12.041	0.000


 Table 2 - Culvert Summary Table: 48" X 76" Elliptical

* Full Flow Headwater elevation is below inlet invert.


Straight Culvert

Inlet Elevation (invert): 5200.10 ft, Outlet Elevation (invert): 5196.08 ft Culvert Length: 205.64 ft, Culvert Slope: 0.0196

Culvert Performance Curve Plot: 48" X 76" Elliptical

Water Surface Profile Plot for Culvert: 48" X 76" Elliptical

Crossing - Signal Irrigation Ditch Culvert, Design Discharge - 60.0 cfs

Site Data - 48" X 76" Elliptical

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 5200.10 ft Outlet Station: 205.60 ft Outlet Elevation: 5196.08 ft Number of Barrels: 1

Culvert Data Summary - 48" X 76" Elliptical

Barrel Shape: Elliptical Barrel Span: 76.00 in Barrel Rise: 48.00 in Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

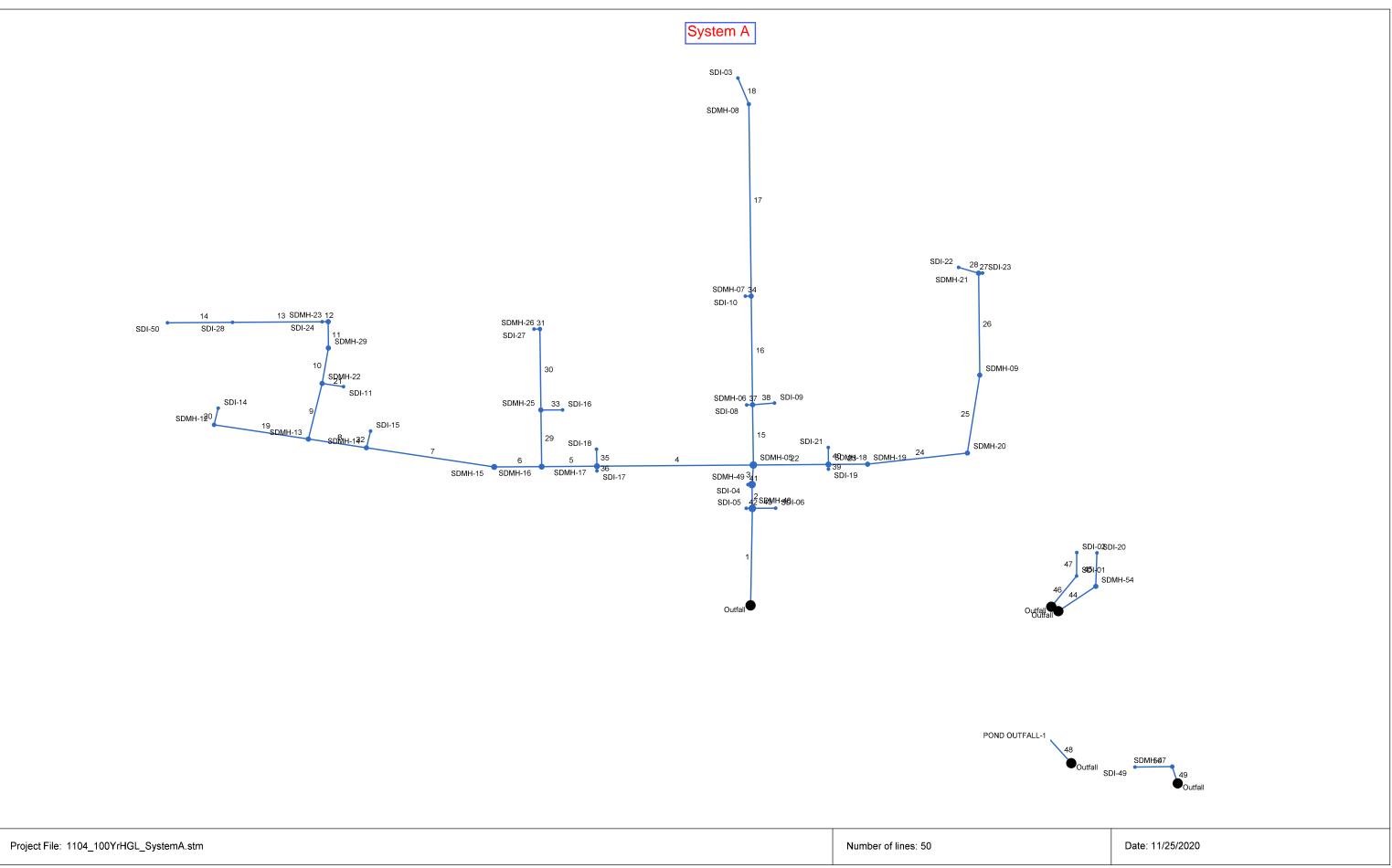
ver	Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
	60.00	5198.08	2.00
	60.00	5198.08	2.00
	60.00	5198.08	2.00
	60.00	5198.08	2.00
	60.00	5198.08	2.00
	60.00	5198.08	2.00
	60.00	5198.08	2.00
	60.00	5198.08	2.00
	60.00	5198.08	2.00
	60.00	5198.08	2.00
	60.00	5198.08	2.00

Table 3 - Downstream Channel Rating Curve (Crossing: Signal Irrigation Ditch Culver Flow (cfs) Water Surface Fley (ft) Depth (ft)

A constant tailwater elevation of 2 feet at the outfall invert has been used as requested by the third party reviewer of Signal Ditch company. So froude number is constant here.

Tailwater Channel Data - Signal Irrigation Ditch Culvert

Tailwater Channel Option: Enter Constant Tailwater Elevation

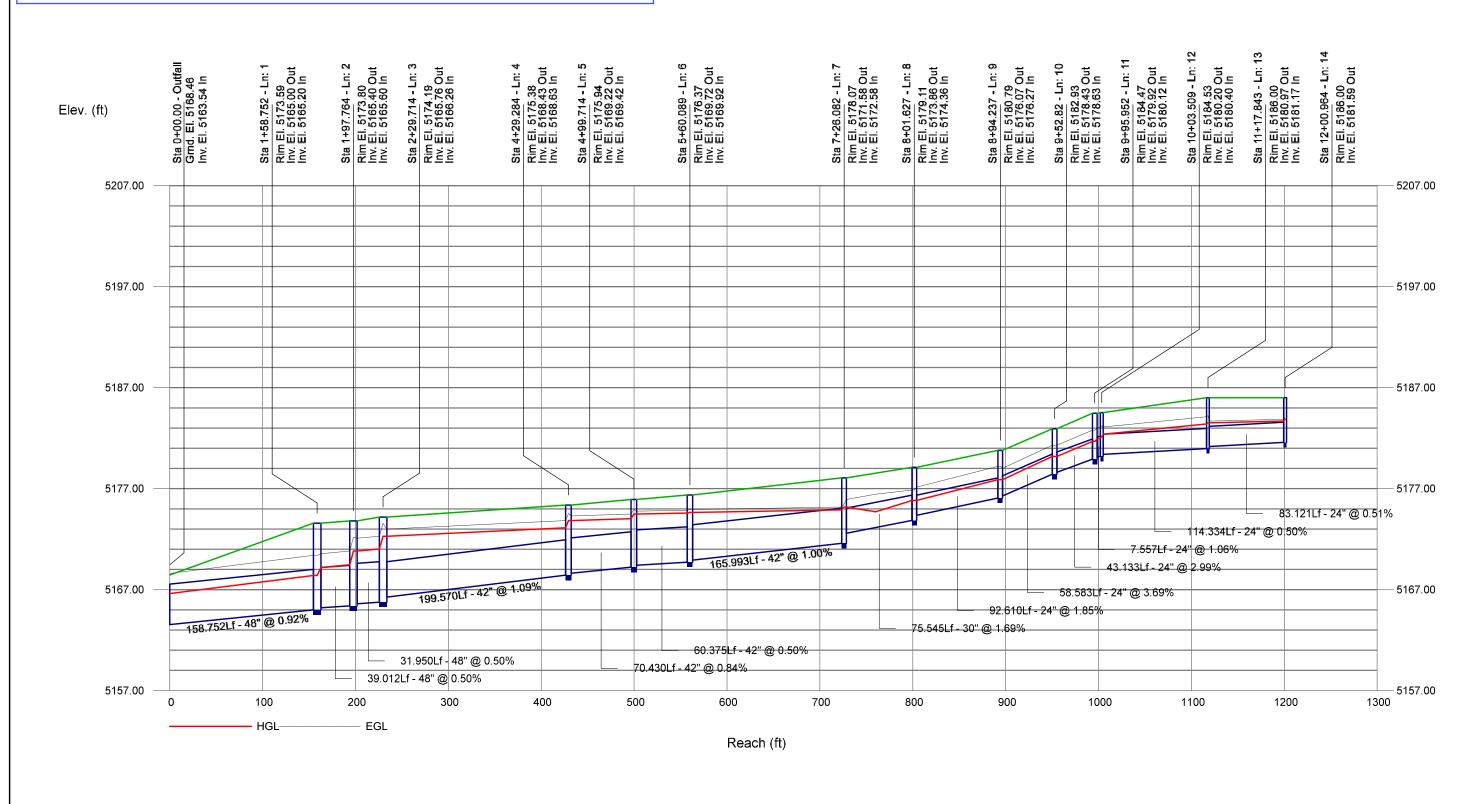

Constant Tailwater Elevation: 5198.08 ft

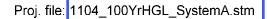
2FT above channel invert

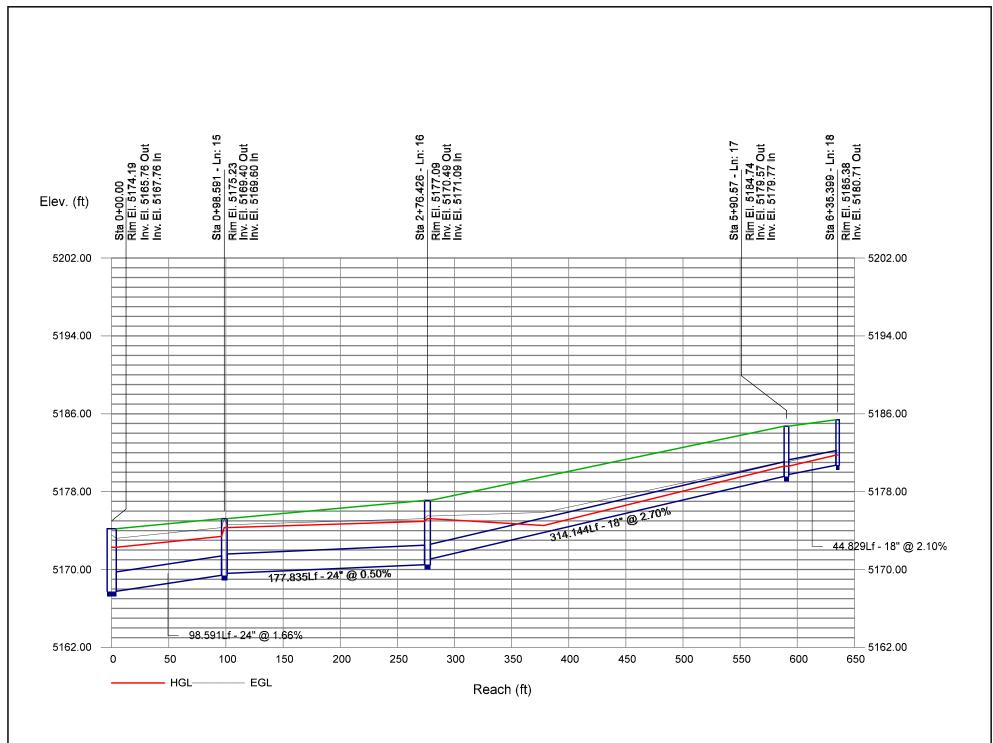
Appendix B – Hydraulic Computations Storm Drain Design

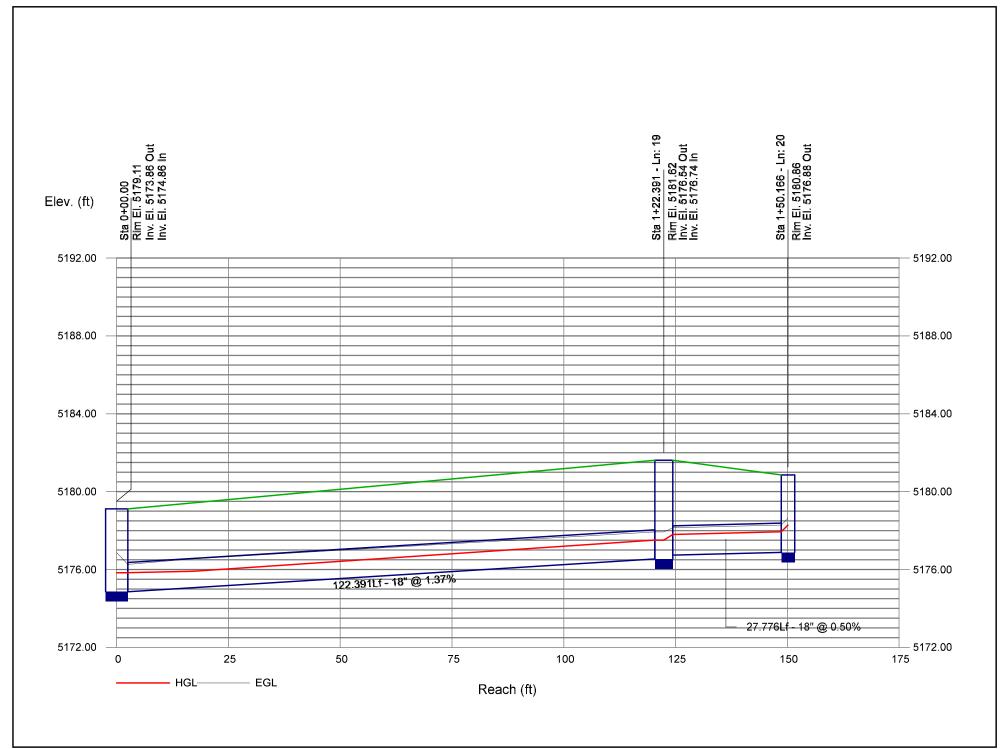
Please note that it is not possible in Hydraflow to label Q, V, HGL IN and OUT in the profile output. However, the provided Summary Output Table tabulates the Line ID and Inlet/Manhole ID (matching CDs) and their corresponding length, slope, size, INV IN, INV OUT, HGL IN, HGL OUT, Q, Q capacity and Velocity. Everything required is already provided either in the Summary Output Table and/or the profile output. If you need more information please refer to pipe profiles in CDs. These outputs directly correspond to the pipe profiles on CDs.

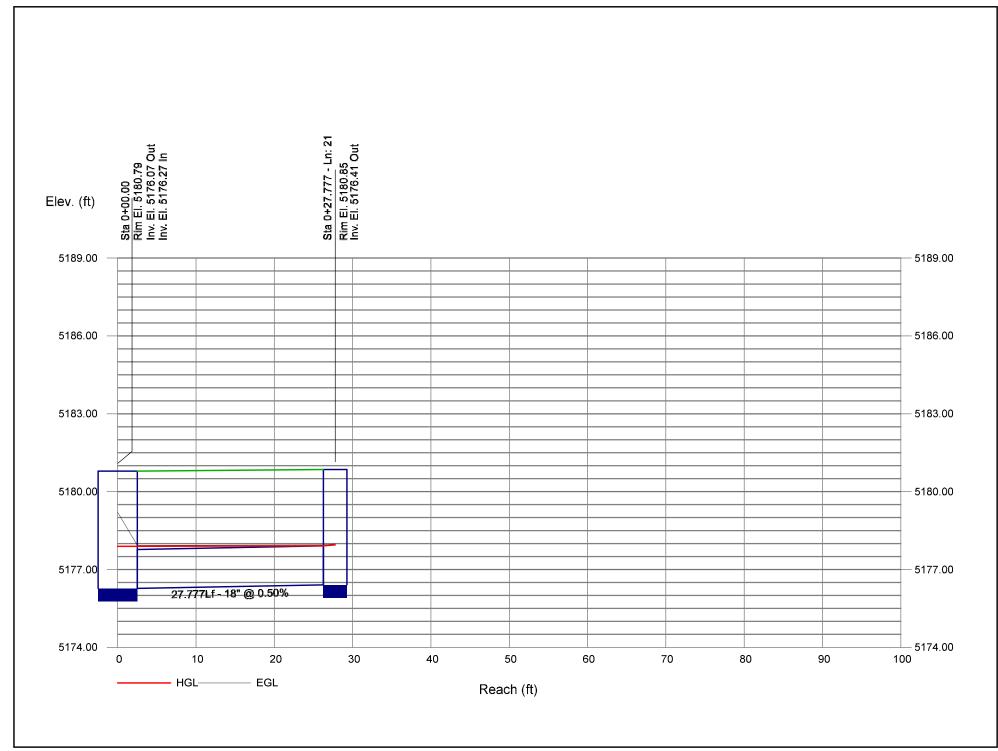
User defined tailwater elevation was provided as input per request. Tailwater input is either 100year or 5-year WSEL of the detention basin. However, in some cases the normal depth of the outfall pipe is higher (and consequently more conservative) than the 100-year or 5-year WSEL in the detention basin. In such cases, the program automatically defaults and uses the normal depth of the pipe as the tailwater. This gives a more conservative HGL result. Explanation of the design approach has been provided for all outfalls individually in the summary output table.

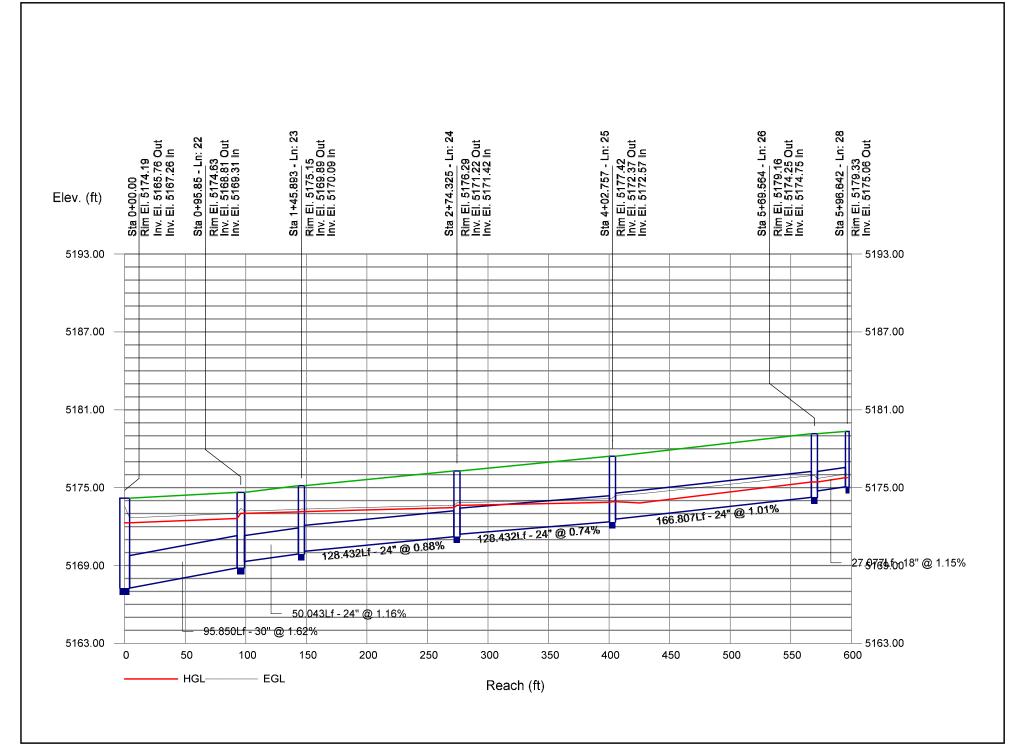

Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan

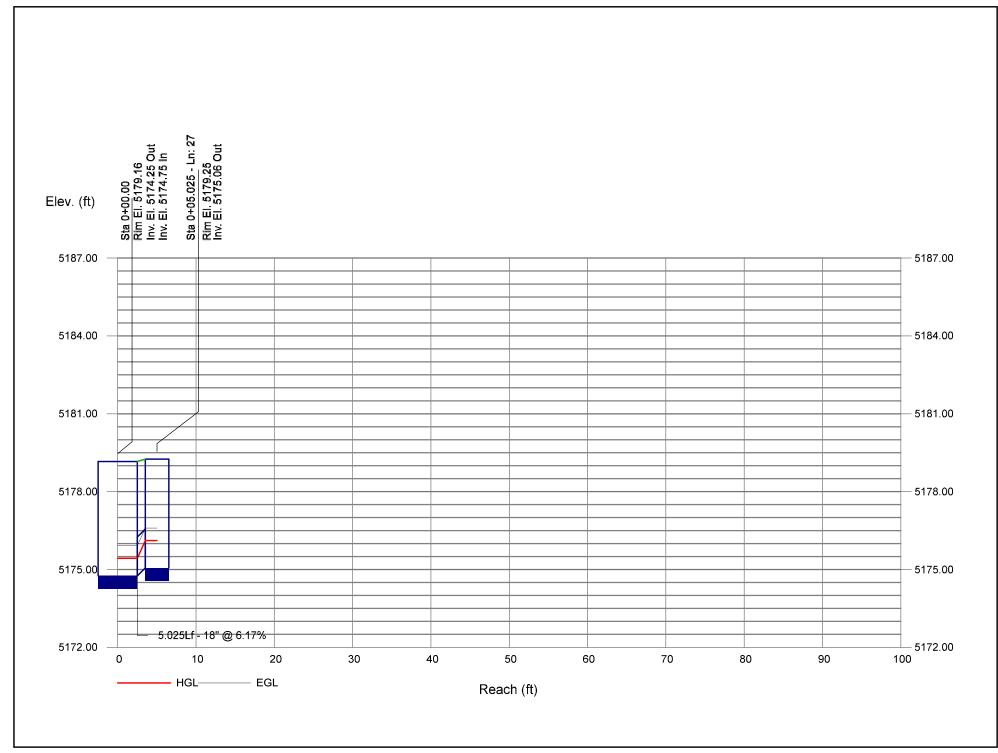

Line No.	Line ID	Inlet ID	Line Rise	Line Span	Line Length	Line Slope	Flow Rate	Capac Full	Vel Ave	Invert Up	Invert Dn	HGL Up	HGL Dn	EGL Up	EGL Dn	n-val Pipe
			(in)	(in)	(ft)	(%)	(cfs)	(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	15	SDMH-48	48	48	158.752	0.92	128.90	137.76	11.89	5165.00	5163.54	5168.40	5166.61	5170.39	5168.61	0.013
2	100	SDMH-49	48	48	39.012	0.50	117.60	101.51	9.36	5165.40	5165.20	5169.46	5169.20	5170.82	5170.56	0.013
3	16	SDMH-05	48	48	31.950	0.50	113.40	101.55	9.02	5165.76	5165.60	5171.02	5170.82	5172.29	5172.09	0.013 TW = 5166.61' = Normal Depth > 100-Yr Detention
4	35	SDMH-17	42	42	199.570	1.09	65.00	104.92	6.76	5168.43	5166.26	5173.12	5172.29	5173.83	5173.00	0.013 Pond WSE (5165.93')
5	34	SDMH-16	42	42	70.430	0.84	52.30	92.11	5.44	5169.22	5168.63	5174.02	5173.83	5174.48	5174.29	0.013
6	33	SDMH-15	42	42	60.375	0.50	41.00	70.95	4.26	5169.72	5169.42	5174.58	5174.48	5174.87	5174.77	0.013
7	32	SDMH-14	42	42	165.993	1.00	41.00	100.61	4.31	5171.58	5169.92	5174.90	5174.65	5175.19	5174.93	0.013
8	31	SDMH-13	30	30	75.545	1.69	33.90	53.38	7.52	5173.86	5172.58	5175.84 j	5175.19	5176.87	5175.93	0.013
9	44	SDMH-22	24	24	92.610	1.85	27.60	30.76	10.14	5176.07	5174.36	5177.89	5175.84	5179.21	5177.16	0.013
10	63	SDMH-29	24	24	58.583	3.69	24.80	43.43	8.79	5178.43	5176.27	5180.19	5177.89	5181.31	5179.01	0.013
11	45	SDMH-23	24	24	43.133	2.99	24.80	39.12	8.97	5179.92	5178.63	5181.68	5180.19	5182.80	5181.31	0.013
12	46	SDI-24	24	24	7.557	1.06	24.80	23.28	8.34	5180.20	5180.12	5182.00	5181.92	5183.08	5183.00	0.013
13	47	SDI-28	24	24	114.334	0.50	21.20	15.97	6.75	5180.97	5180.40	5183.41	5182.40	5184.11	5183.11	0.013
14	105	SDI-50	24	24	83.121	0.51	10.60	16.08	3.37	5181.59	5181.17	5183.69	5183.51	5183.87	5183.69	0.013
15	17	SDMH-06	24	24	98.591	1.66	24.00	29.17	7.64	5169.40	5167.76	5173.40	5172.29	5174.31	5173.20	0.013
16	18	SDMH-07	24	24	177.835	0.50	13.50	16.00	4.30	5170.49	5169.60	5174.94	5174.31	5175.23	5174.60	0.013
17	19	SDMH-08	18	18	314.144	2.70	7.30	17.25	4.84	5179.57	5171.09	5180.62 j	5175.23	5181.09	5175.50	0.013
18	21	SDI-03	18	18	44.829	2.10	7.30	15.21	6.33	5180.71	5179.77	5181.76	5180.62	5182.23	5181.09	0.013
19	30	SDMH-12	18	18	122.391	1.37	6.30	12.30	5.19	5176.54	5174.86	5177.51 j	5175.84	5177.93	5176.26	0.013
20	43	SDI-14	18	18	27.776	0.50	6.30	7.45	4.73	5176.88	5176.74	5177.94	5177.80	5178.29	5178.15	0.013
21	49	SDI-11	18	18	27.777	0.50	2.80	7.46	1.58	5176.41	5176.27	5177.91	5177.89	5177.95	5177.93	0.013
22	36	SDMH-18	30	30	95.850	1.62	24.40	52.12	4.97	5168.81	5167.26	5172.63	5172.29	5173.01	5172.67	0.013
23	37	SDMH-19	24	24	50.043	1.16	10.90	24.39	3.47	5169.89	5169.31	5173.13	5173.01		5173.20 0 100-vea	0.013 r WSE was given as user
				 ¬									i	input. However	, in this pa	articular case normal depth of
Projec	t File: 11	04_100YrHGL_System	mA.stm									Number of li		basin. So the p	rogram de	efaults to using normal depth of
NOTE	S: ** Cri	tical depth											C	detention pond	WSEL. T	his results in a more
													t			ation. The user defined Sewers han the 100-year WSE at the

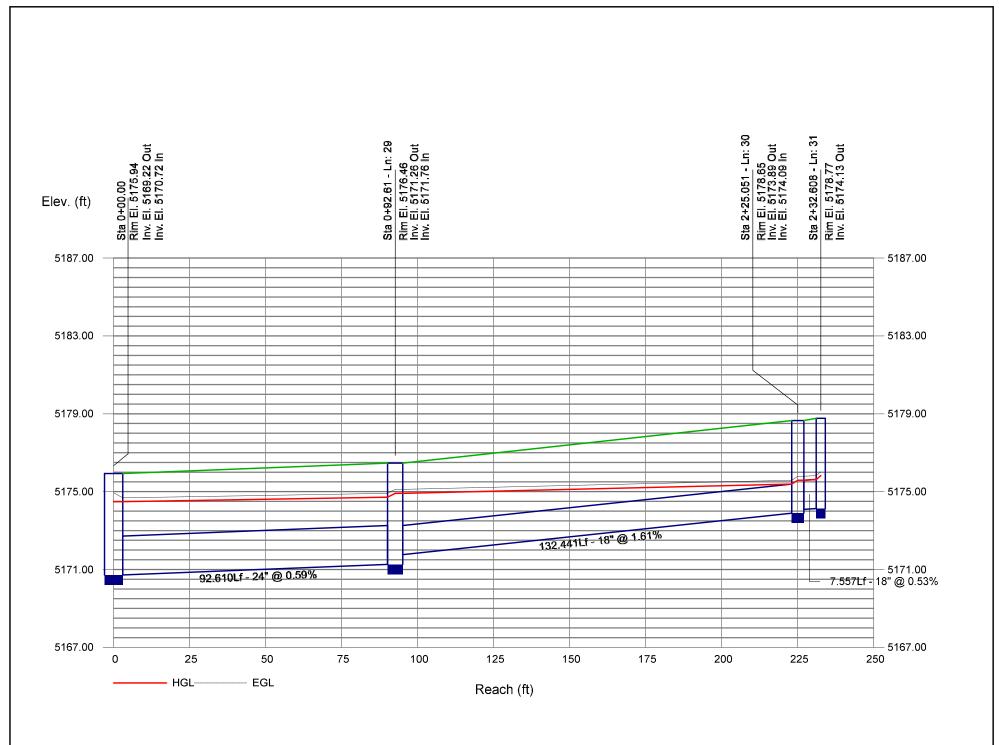

Line No.	Line ID	Inlet ID	Line Rise	Line Span	Line Length	Line Slope	Flow Rate	Capac Full	Vel Ave	Invert Up	Invert Dn	HGL Up	HGL Dn	EGL Up	EGL Dn	n-val Pipe		
			(in)	(in)	(ft)	(%)	(cfs)	(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)			
24	38	SDMH-20	24	24	128.432	0.88	10.90	21.22	3.47	5171.22	5170.09	5173.46	5173.16	5173.65	5173.35	0.013		
25	20	SDMH-09	24	24	128.432	0.74	10.90	19.45	3.90	5172.37	5171.42	5173.87	5173.64	5174.16	5173.83	0.013		
26	39	SDMH-21	24	24	166.807	1.01	10.90	22.70	5.25	5174.25	5172.57	5175.43 j	5173.91	5175.93	5174.41	0.013		
27	60	SDI-23	18	18	5.025	6.17	7.40	26.08	7.52	5175.06	5174.75	5176.11	5175.43	5176.60	5175.92	0.013		
28	59	SDI-22	18	18	27.077	1.15	3.50	11.24	4.35	5175.06	5174.75	5175.77	5175.43	5176.05	5175.71	0.013		
29	51	SDMH-25	24	24	92.610	0.59	11.30	17.32	3.60	5171.26	5170.72	5174.71	5174.48	5174.92	5174.68	0.013		
30	52	SDMH-26	18	18	132.441	1.61	6.40	13.31	3.62	5173.89	5171.76	5175.39	5174.92	5175.59	5175.12	0.013		
31	53	SDI-27	18	18	7.557	0.53	6.40	7.64	3.62	5174.13	5174.09	5175.62	5175.59	5175.82	5175.79	0.013		
32	50	SDI-15	18	18	27.777	1.01	7.10	10.54	4.04	5173.86	5173.58	5175.30	5175.19	5175.56	5175.44	0.013		
33	54	SDI-16	18	18	27.777	0.50	4.90	7.46	2.77	5171.90	5171.76	5174.98	5174.92	5175.10	5175.04	0.013		
34	27	SDI-10	18	18	7.558	18.26	6.20	44.88	3.51	5172.47	5171.09	5175.26	5175.23	5175.45	5175.42	0.013		
35	56	SDI-18	18	18	27.777	1.26	6.80	11.78	3.85	5170.78	5170.43	5173.95	5173.83	5174.18	5174.06	0.013		
36	55	SDI-17	18	18	7.557	4.63	5.90	22.59	3.34	5170.78	5170.43	5173.86	5173.83	5174.03	5174.01	0.013		
37	26	SDI-08	18	18	7.570	8.46	5.40	30.54	3.06	5170.54	5169.90	5174.33	5174.31	5174.47	5174.45	0.013		
38	25	SDI-09	18	18	28.041	2.82	5.10	17.63	2.89	5170.69	5169.90	5174.37	5174.31	5174.50	5174.44	0.013		
39	57	SDI-19	18	18	7.557	2.64	6.80	17.07	3.85	5170.01	5169.81	5173.05	5173.01	5173.28	5173.24	0.013		
40	58	SDI-21	18	18	27.777	0.72	6.70	8.90	3.79	5170.01	5169.81	5173.13	5173.01	5173.35	5173.24	0.013		
41	98	SDI-04	18	18	4.925	2.03	4.20	14.97	2.38	5168.00	5167.90	5170.83	5170.82	5170.92	5170.91	0.013		
42	99	SDI-05	18	18	7.560	1.98	6.10	14.79	5.30	5167.64	5167.49	5168.59	5168.40	5169.01	5168.81	0.013		
43	22	SDI-06	18	18	29.771	2.01	5.20	14.90	4.75	5168.09	5167.49	5168.97 j	5168.40	5169.33	5168.76	0.013		
44	111	SDMH-54	24	24	62.559	0.50	8.10	15.92	2.58	5162.08	5161.77	5166.01	5165.93	5166.11	5166.03	0.013		
45	110	SDI-20	24	24	54.820	0.51	8.10	16.16	2.58	5162.38	5162.10	5166.16	5166.09	5166.27	5166.19	0.013		
46	02	SDI-01	24	24	59.634	0.50	11.70	16.04	3.72	5162.07	5161.77	5166.09	5165.93	5166.31	5166.15	0.013		
Projec	t File: 1	104_100YrHGL_Syste	mA.stm		In this case basin 100-y	year WSI	EL is					Number of li	nes: 50			Yr Detentio 5.93')	on Pond WSE	
NOTE	S: ** Cri	tical depth			of the pipe. honors the	. So the p user defi	orogram ined											-
					detention b tailwater el		-yr											Storm Sewers

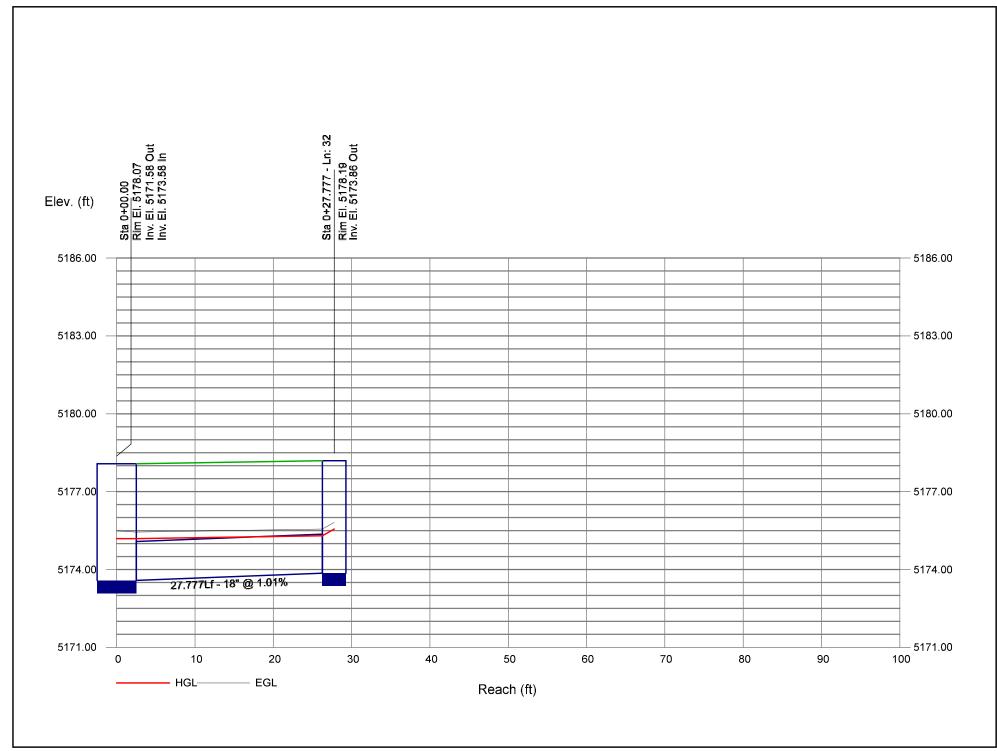

Line No.	Line ID	Inlet ID	Line Rise	Line Span	Line Length	Line Slope	Flow Rate	Capac Full	Vel Ave	Invert Up	Invert Dn	HGL Up	HGL Dn	EGL Up	EGL Dn	n-val Pipe	
			(in)	(in)	(ft)	(%)	(cfs)	(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		
47	04	SDI-02	24	24	38.334	0.50	8.00	15.92	2.55	5162.28	5162.09	5166.26	5166.22	5166.36	5166.32	0.013	
48	01	POND OUTFALL-1	48	48	45.588	0.48	110.30	99.73	8.78	5159.94	5159.72	5163.94	5163.72	5165.14	5164.92	0.013	
49	106	SDMH-47	18	18	28.360	0.50	2.20	7.42	3.64	5159.09	5158.95	5159.66	5159.51	5159.86	5159.72	0.013	
50	94	SDI-49	18	18	47.530	0.50	2.20	7.46	3.63	5159.53	5159.29	5160.09 j	5159.86	5160.30	5160.06	0.013	
Projec	t File: 1	104_100YrHGL_Syste	mA.stm									Number of li	nes: 50		Date	e: 12/29/2	2020
NOTE	S: ** Cr	itical depth															

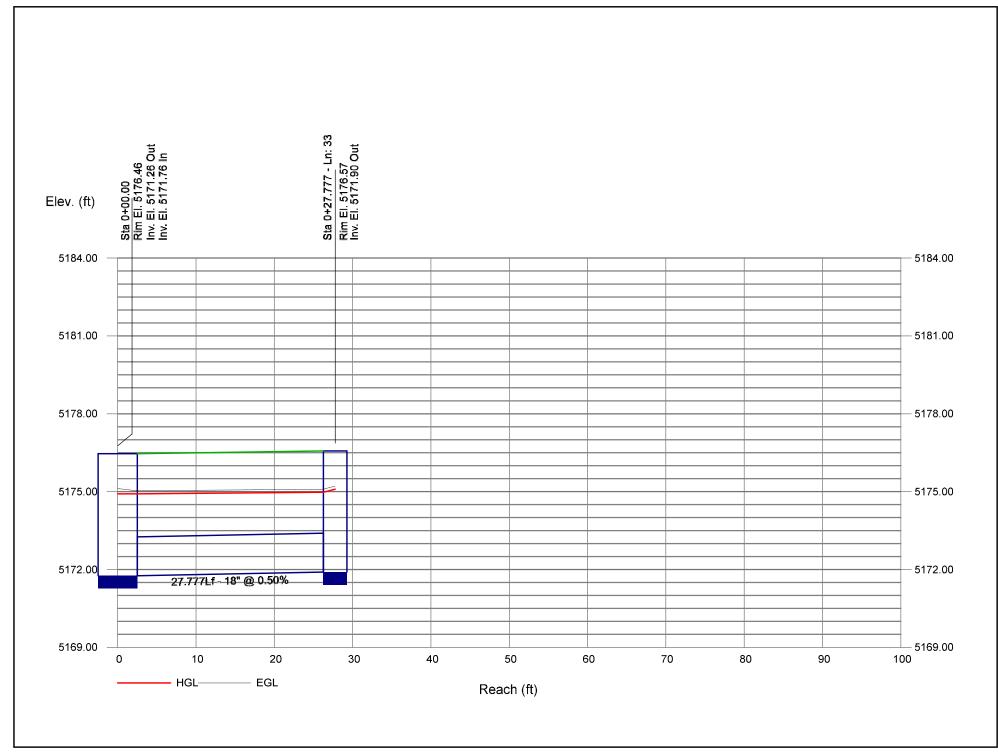

Please note that it is not possible in Hydraflow to label Q, V, HGL IN and OUT in the profile output. However, the provided Summary Output Table tabulates the Line ID and Inlet/Manhole ID (matching CDs) and their corresponding length, slope, size, INV IN, INV OUT, HGL IN, HGL OUT, Q, Q capacity and Velocity. Everything required is already provided either in the Summary Output Table and/or the profile output. If you need more information please refer to pipe profiles in CDs. These outputs directly correspond to the pipe profiles on CDs.

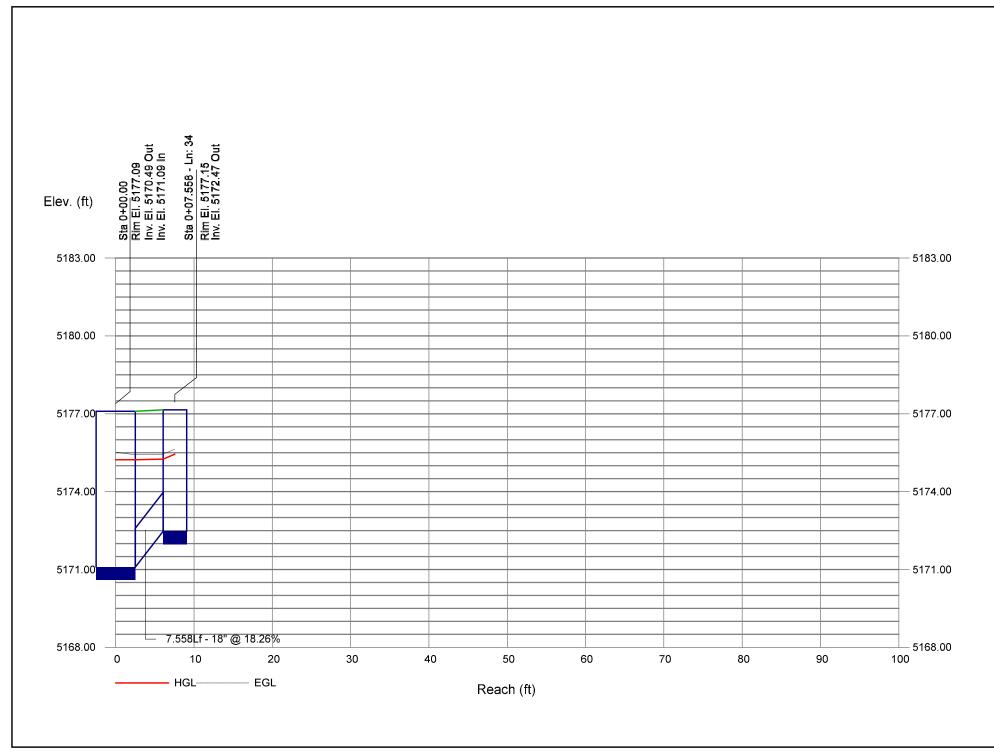


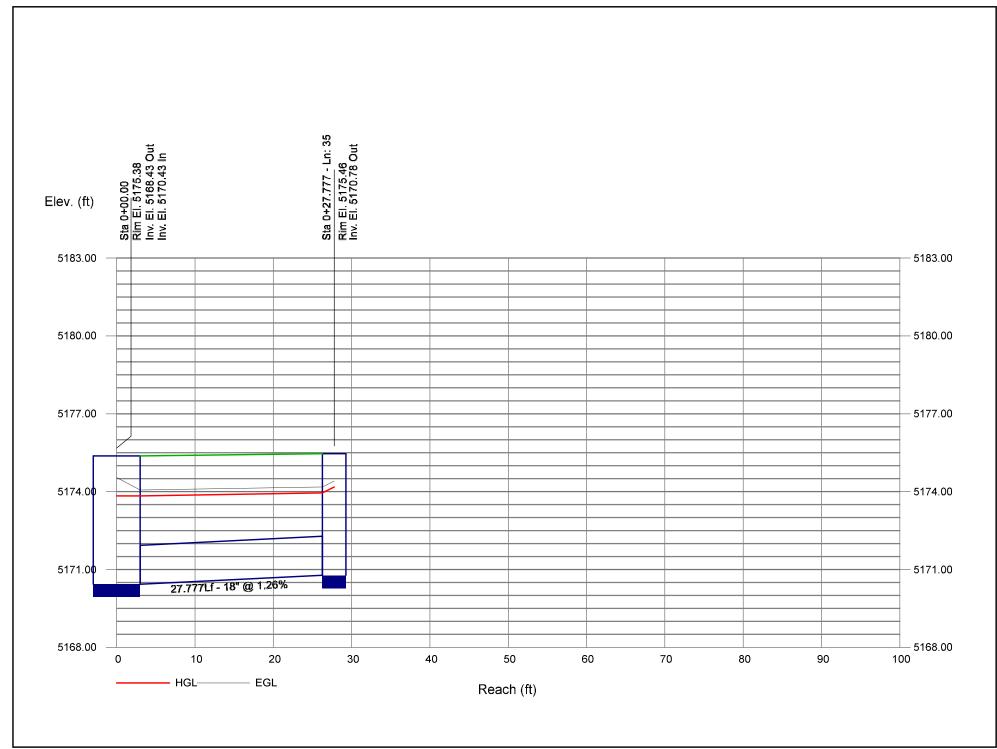


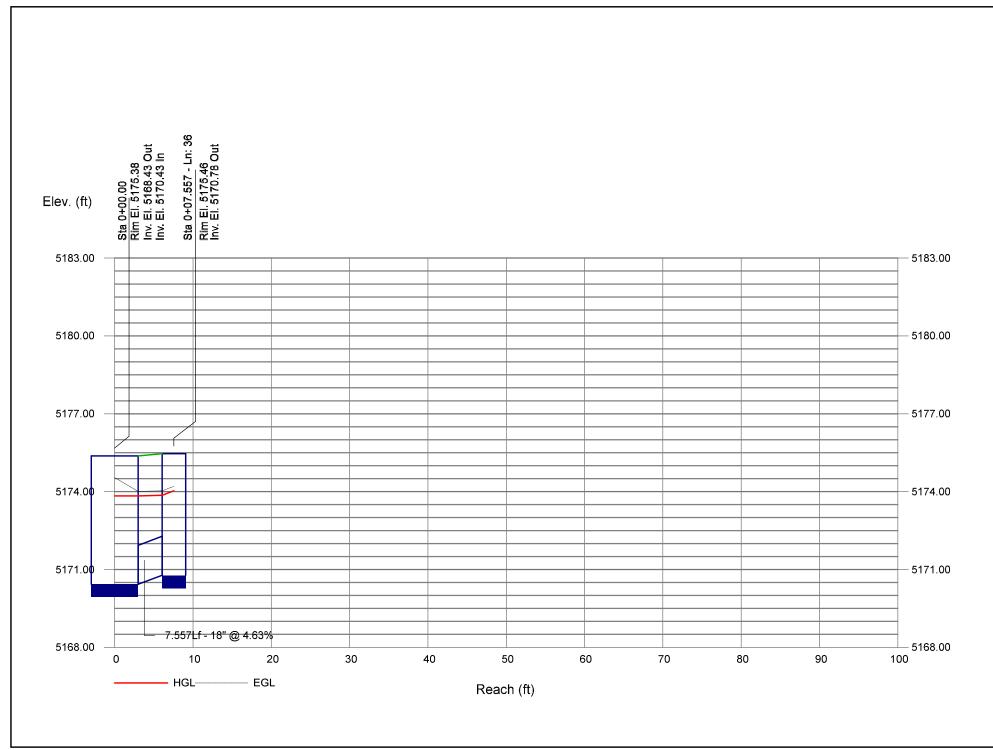


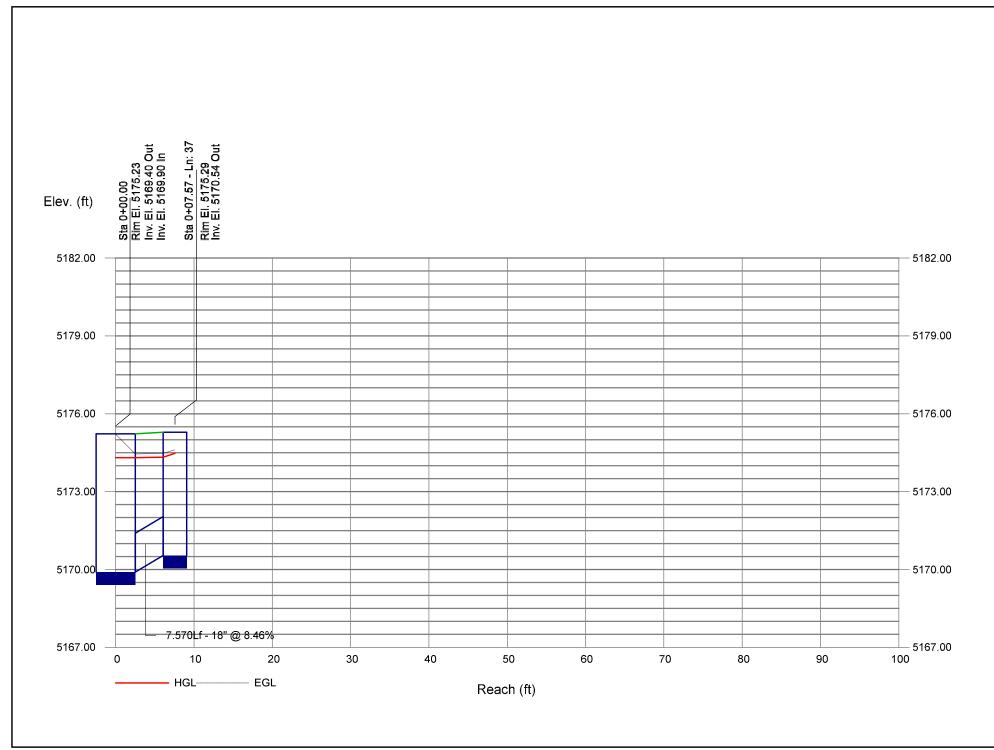


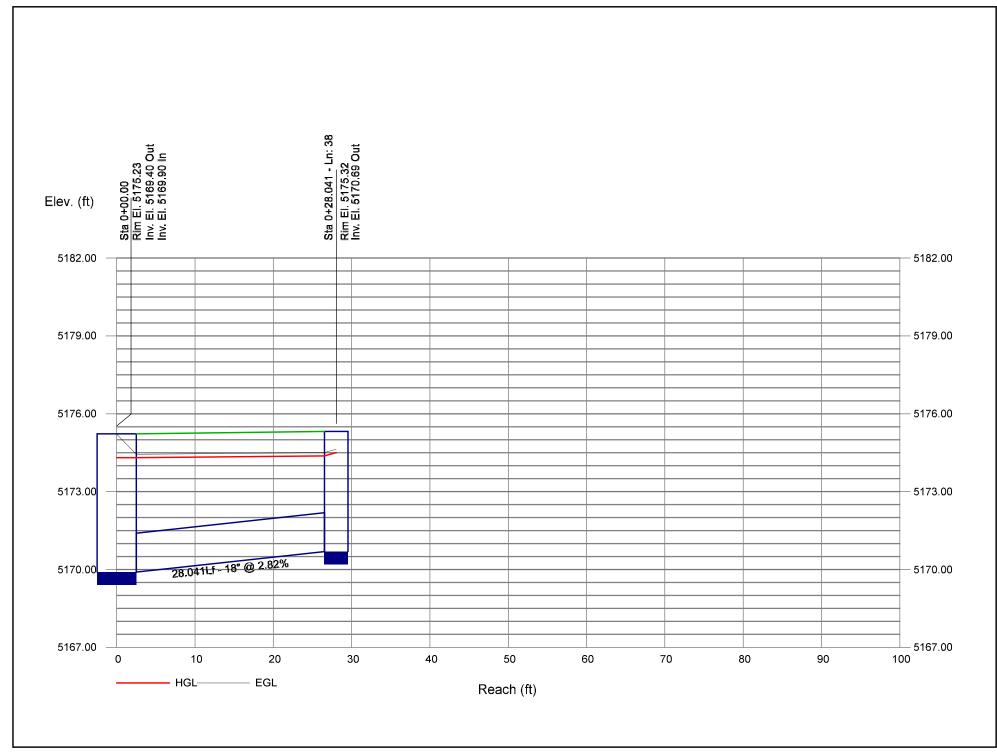


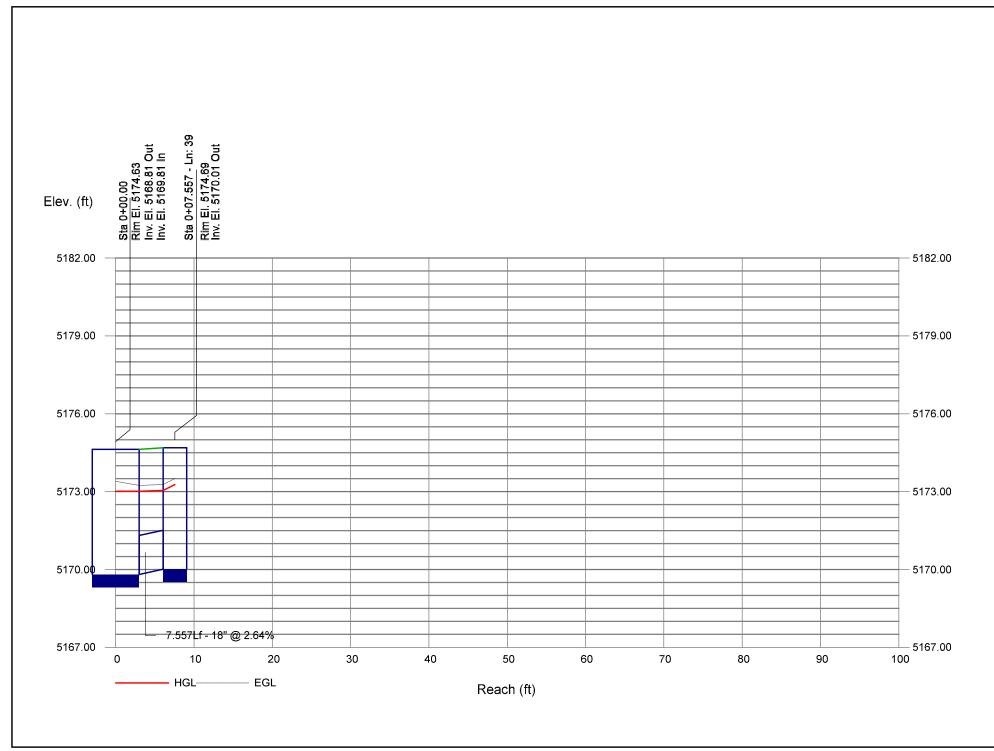


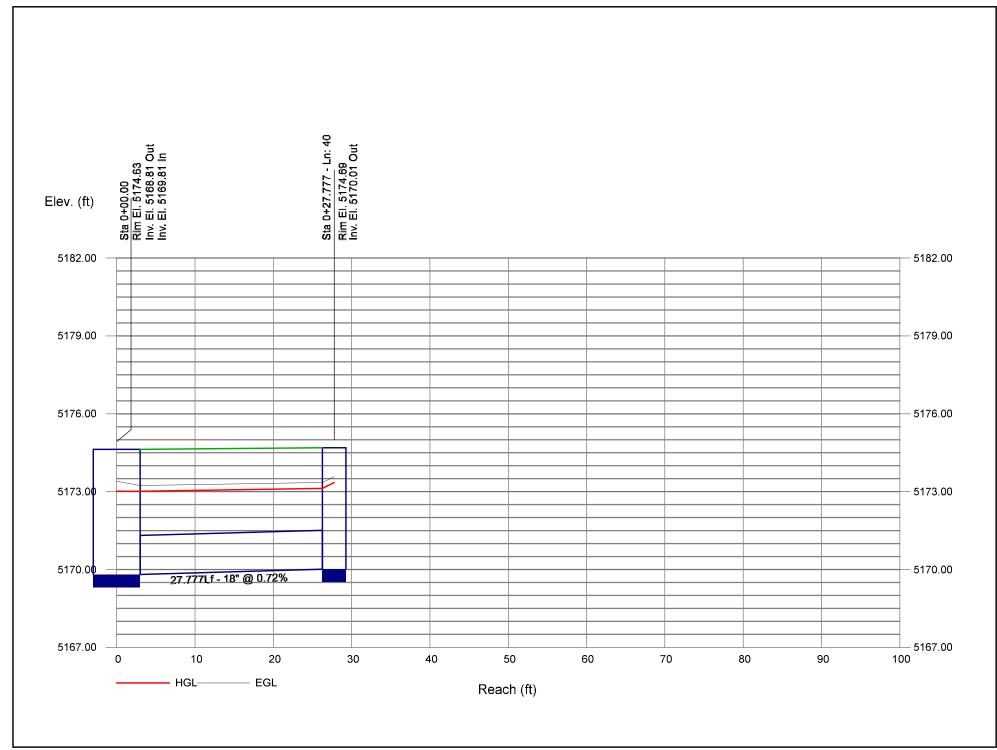


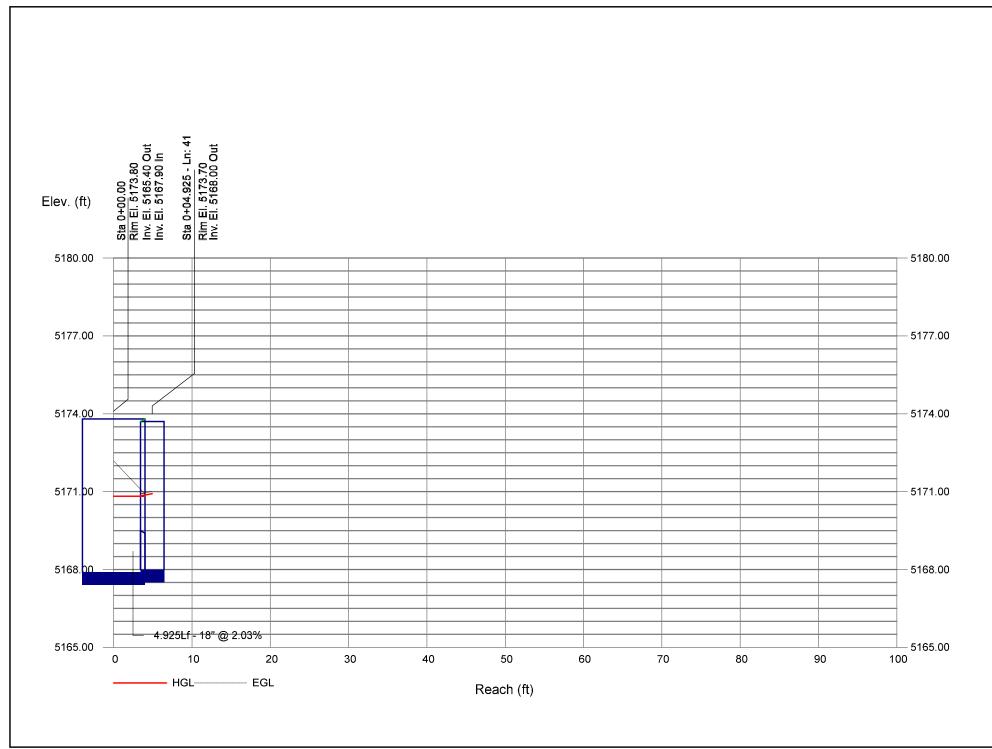


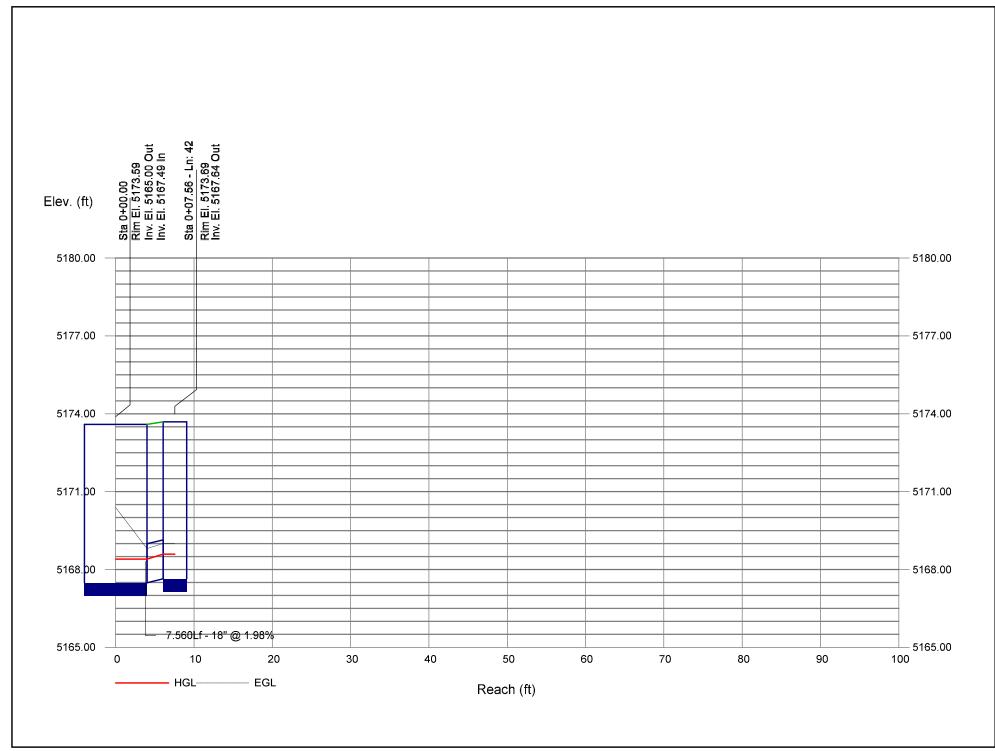


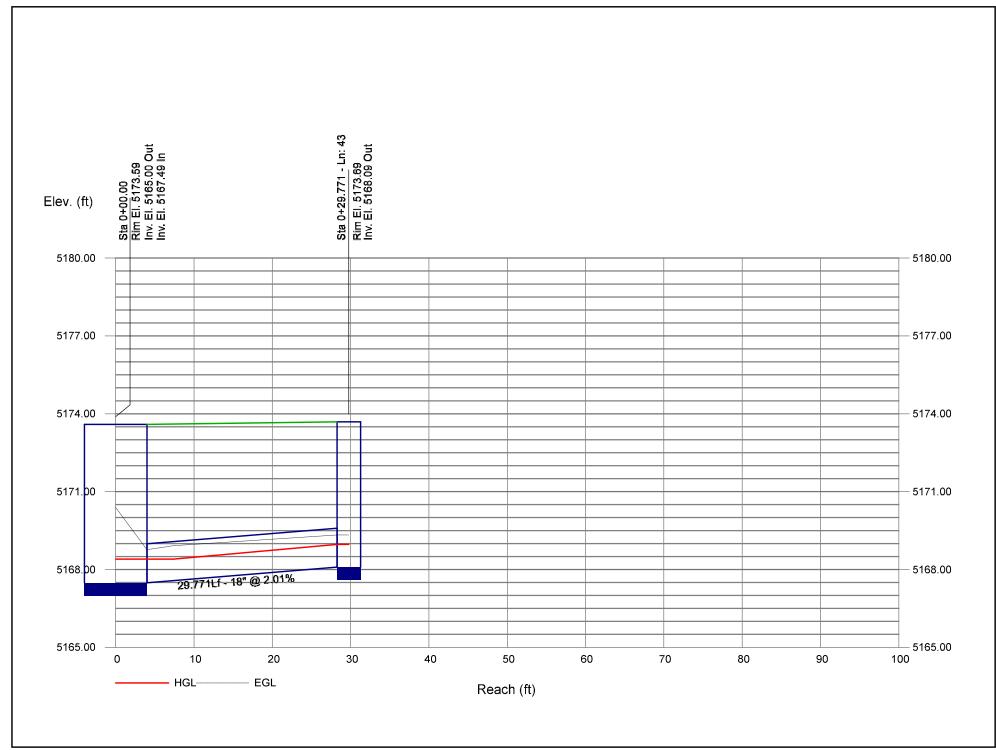


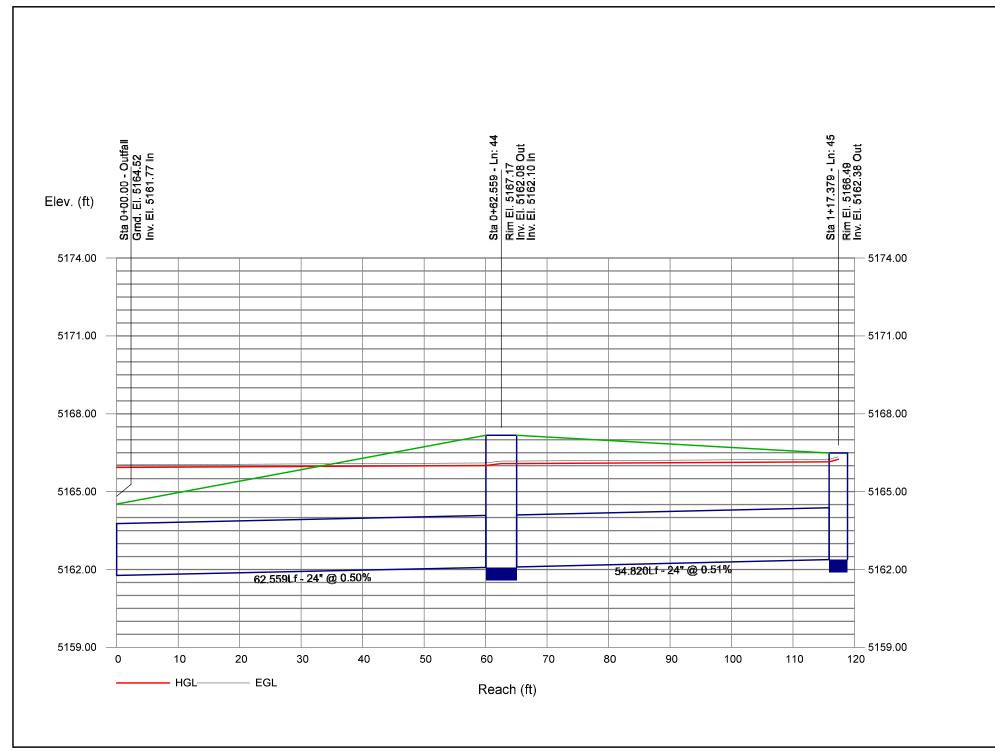


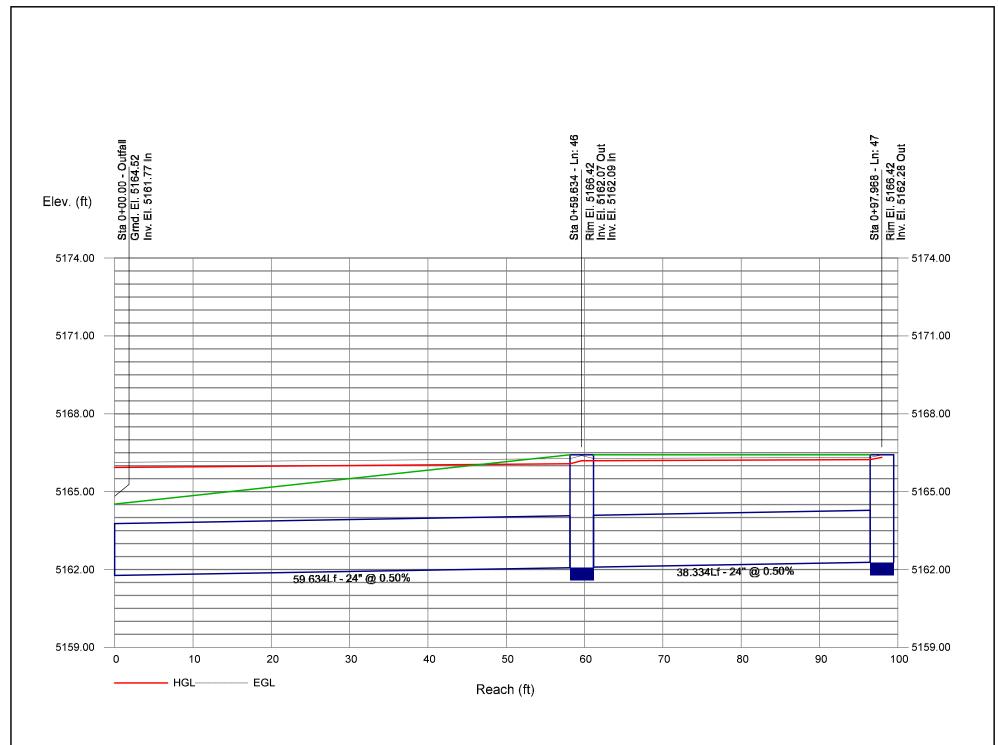


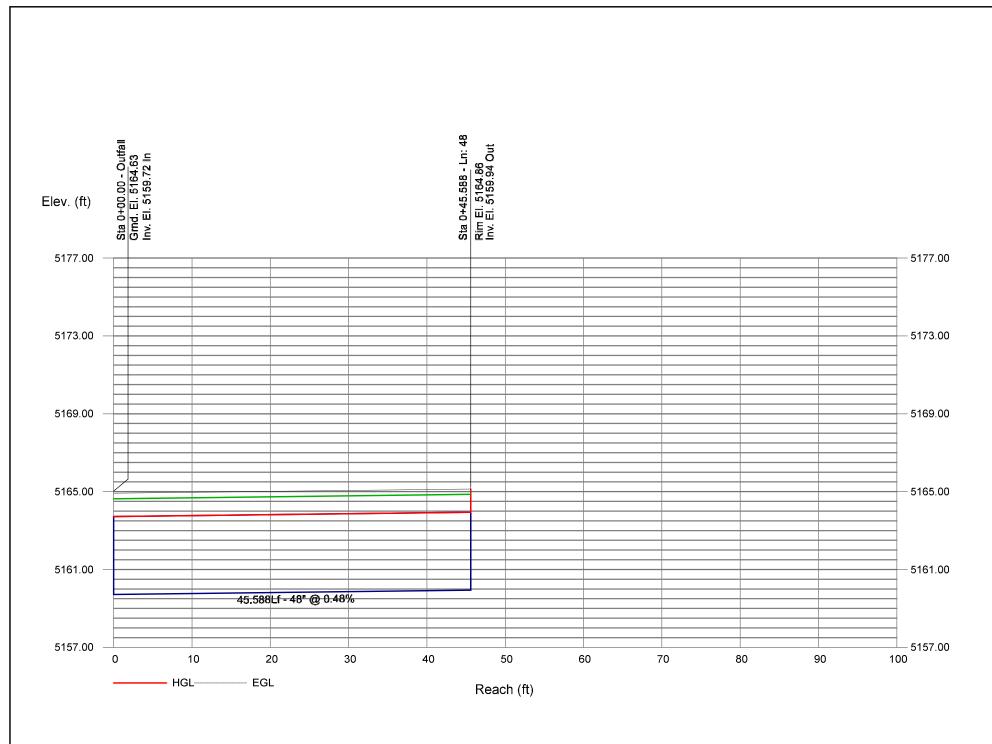


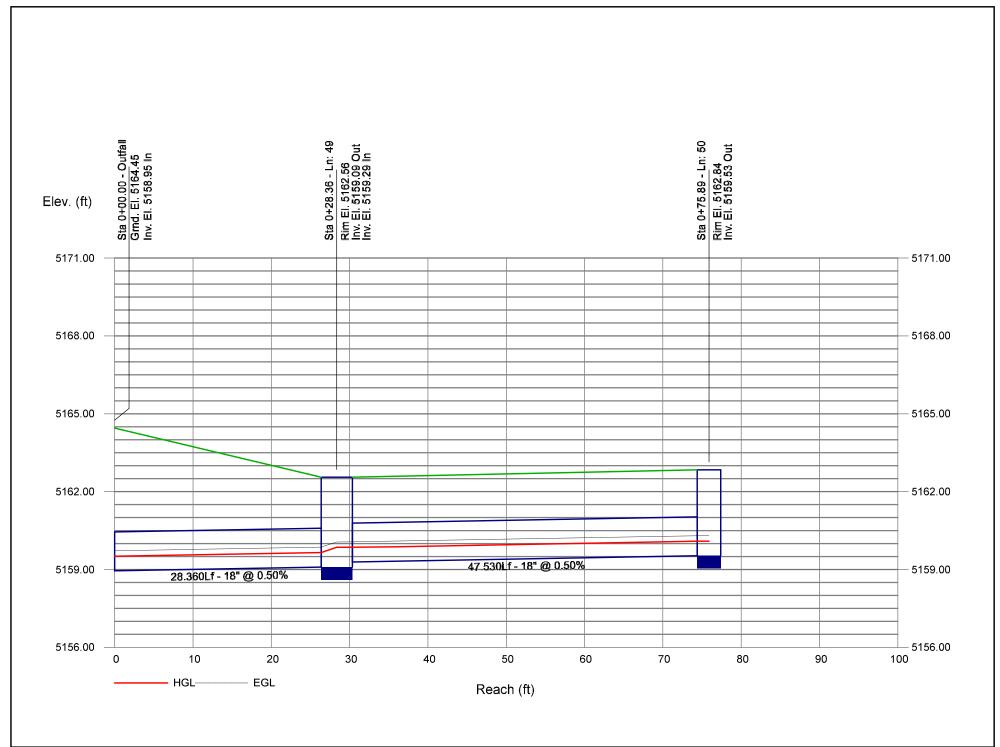


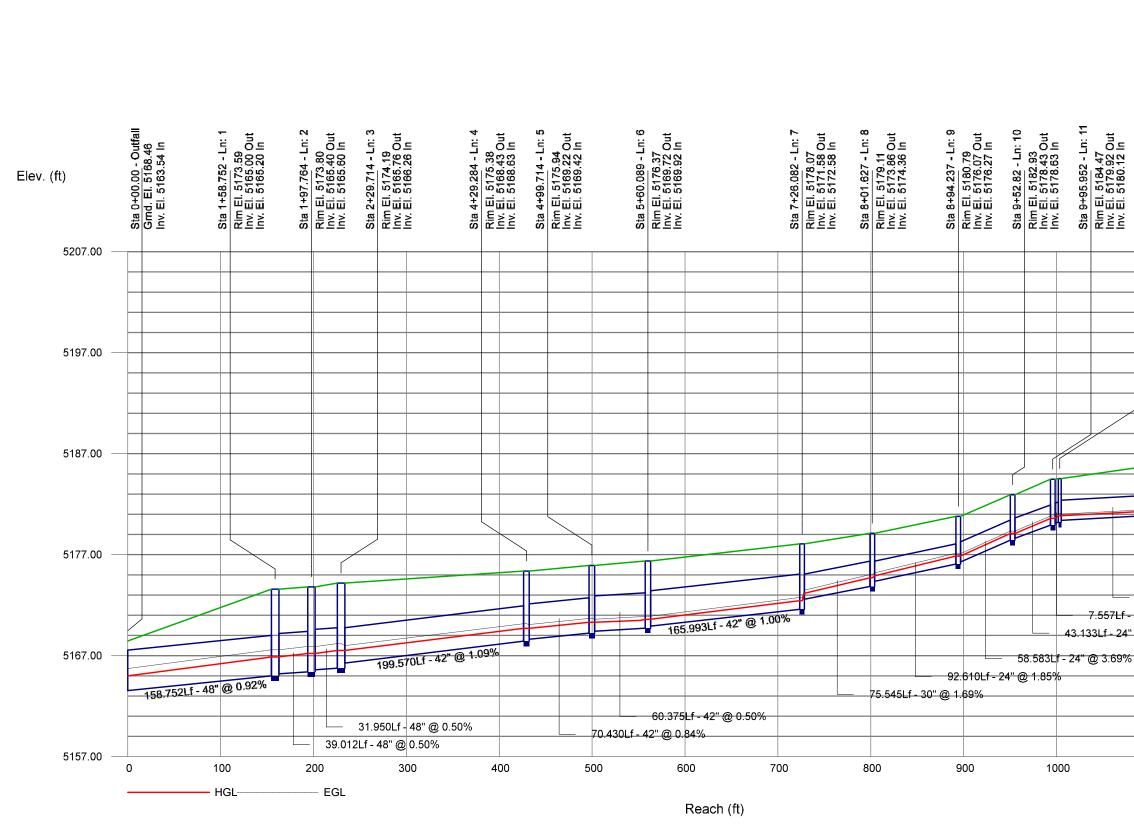






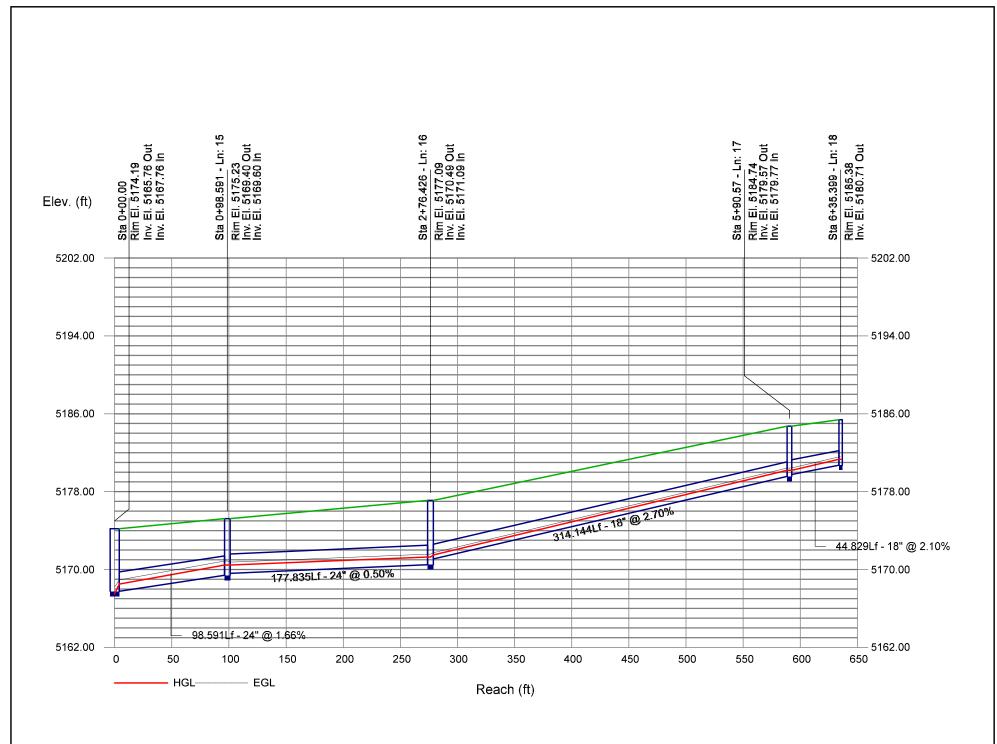


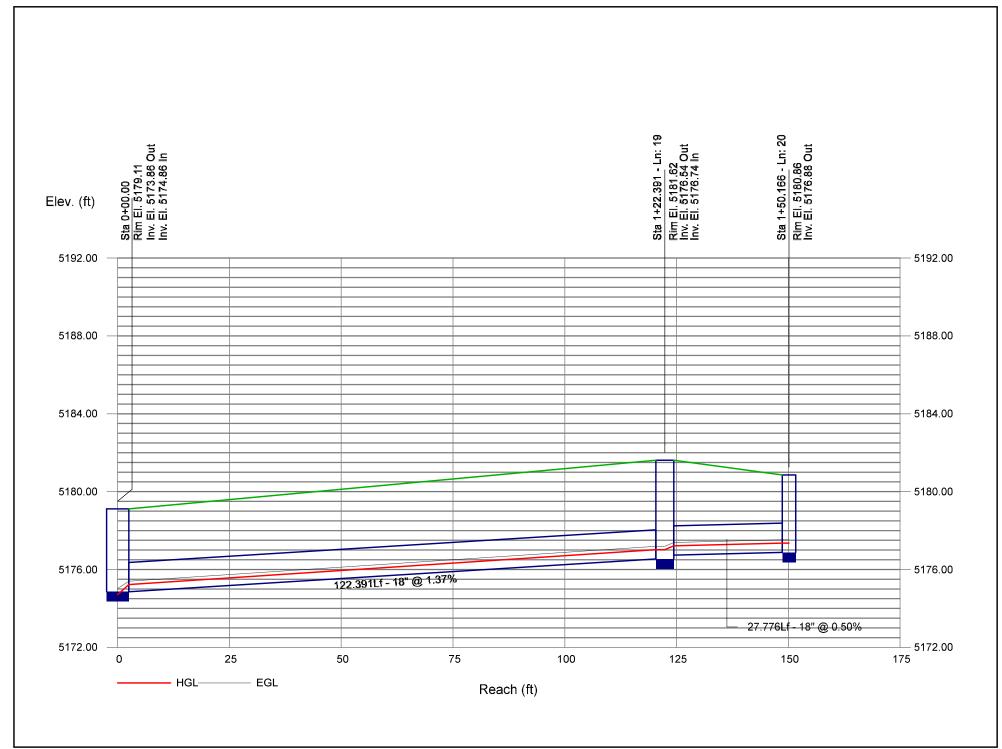


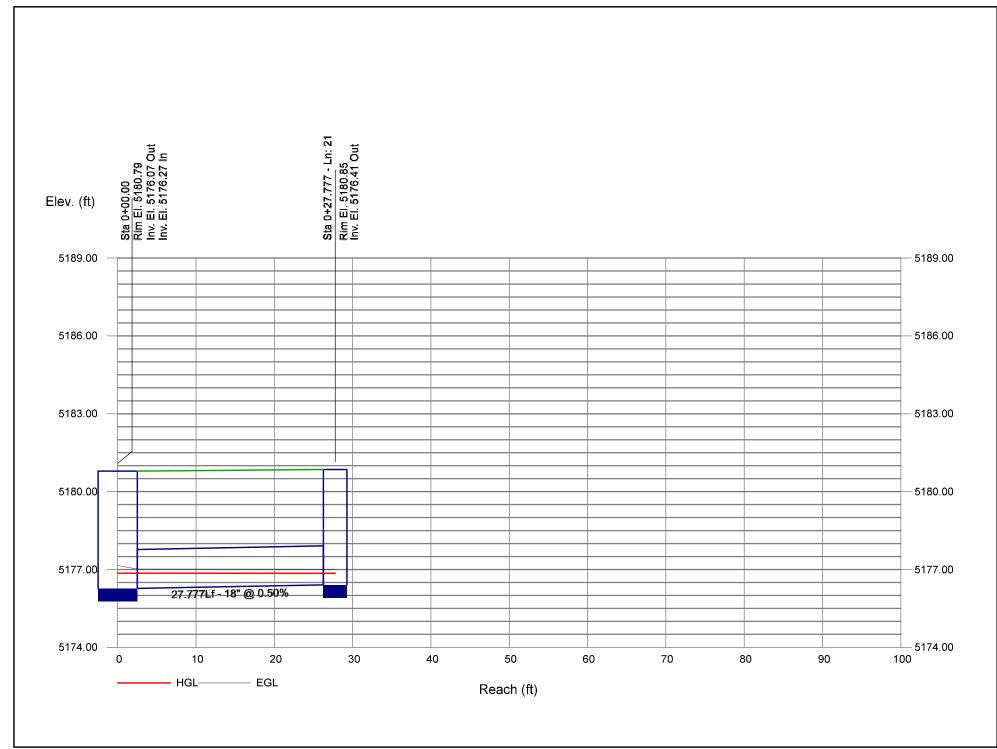


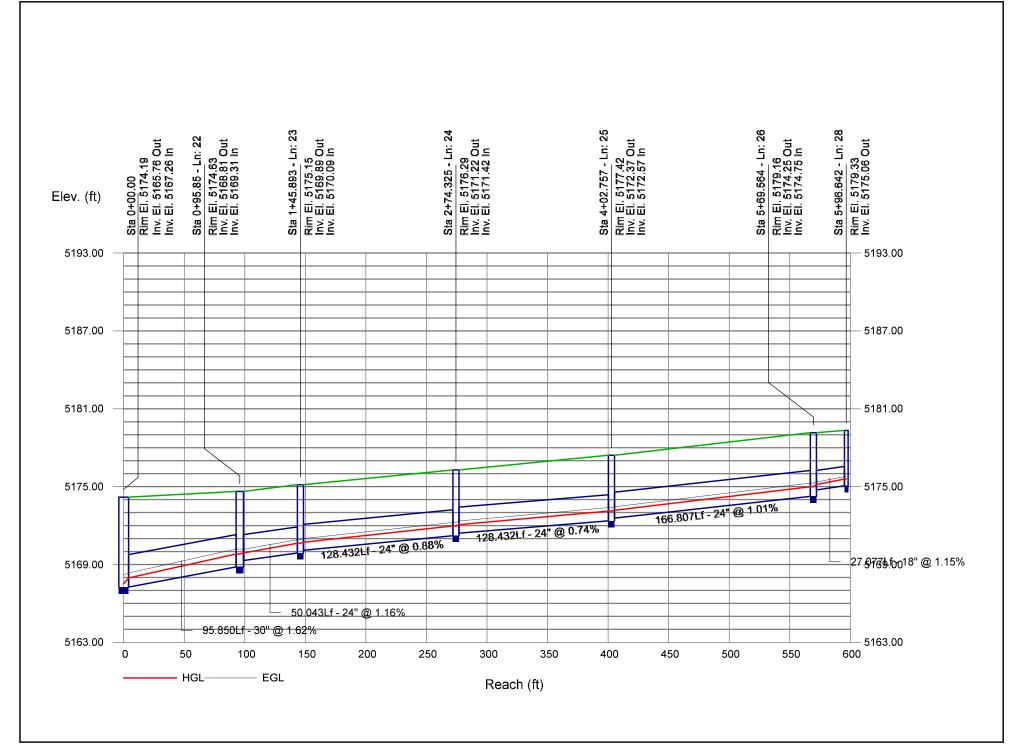
Line No.	Line ID	Inlet ID	Line Rise	Line Span	Line Length	Line Slope	Flow Rate	Capac Full	Vel Ave	Invert Up	Invert Dn	HGL Up	HGL Dn	EGL Up	EGL Dn	n-val Pipe	
			(in)	(in)	(ft)	(%)	(cfs)	(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		
1	15	SDMH-48	48	48	158.752	0.92	39.00	137.76	8.10	5165.00	5163.54	5166.86	5165.00	5167.58	5165.72	0.013	
2	100	SDMH-49	48	48	39.012	0.50	37.40	101.51	7.09	5165.40	5165.20	5167.22	5166.88	5167.92	5167.58	0.013	
3	16	SDMH-05	48	48	31.950	0.50	35.00	101.55	6.95	5165.76	5165.60	5167.52	5167.22	5168.19	5167.89	0.013	
4	35	SDMH-17	42	42	199.570	1.09	17.20	104.92	5.50	5168.43	5166.26	5169.70	5167.52	5170.16	5167.99	0.013	
5	34	SDMH-16	42	42	70.430	0.84	12.60	92.11	5.05	5169.22	5168.63	5170.30	5169.70	5170.69	5170.09	0.013	
6	33	SDMH-15	42	42	60.375	0.50	8.30	70.95	4.43	5169.72	5169.42	5170.59 j	5170.30	5170.90	5170.61		etention basin 100-year
7	32	SDMH-14	42	42	165.993	1.00	8.30	100.61	5.39	5171.58	5169.92	5172.45	5170.60	5172.76	5170.91	0.013 H	VSE was given as user i lowever, in this particula
8	31	SDMH-13	30	30	75.545	1.69	6.60	53.38	5.94	5173.86	5172.58	5174.71	5173.17	5175.02	5173.49	0.013 <mark>h</mark>	ase normal depth of pip igher than the 5-year W
9	44	SDMH-22	24	24	92.610	1.85	5.00	30.76	5.78	5176.07	5174.36	5176.86	5174.91	5177.16	5175.20	0.013 p	n the detention basin. So rogram defaults to using
10	63	SDMH-29	24	24	58.583	3.69	3.60	43.43	4.30	5178.43	5176.27	5179.09	5176.86	5179.34	5177.10		ormal depth of pipe as ailwater as opposed to u
11	45	SDMH-23	24	24	43.133	2.99	3.60	39.12	5.23	5179.92	5178.63	5180.58	5179.09	5180.83	5179.34	0.013	ne 5-year detention pon VSEL. This results in a
12	46	SDI-24	24	24	7.557	1.06	3.60	23.28	4.66	5180.20	5180.12	5180.86	5180.65	5181.11	5180.89	0.013 ^C	onservative HGL estimation on the section of the se
13	47	SDI-28	24	24	114.334	0.50	1.60	15.97	3.02	5180.97	5180.40	5181.41 j	5180.86	5181.56	5181.02	0.013 ⁿ	ever lower than the 5-ye
14	105	SDI-50	24	24	83.121	0.51	0.80	16.08	2.64	5181.59	5181.17	5181.90	5181.47	5182.00	5181.58	0.013	
15	17	SDMH-06	24	24	98.591	1.66	8.70	29.17	6.65	5169.40	5167.76	5170.45	5168.51	5170.87	5168.93	0.013	
16	18	SDMH-07	24	24	177.835	0.50	5.10	16.00	4.19	5170.49	5169.60	5171.29	5170.45	5171.58	5170.75	0.013	
17	19	SDMH-08	18	18	314.144	2.70	2.70	17.25	5.50	5179.57	5171.09	5180.19	5171.49	5180.43	5171.73	0.013	
18	21	SDI-03	18	18	44.829	2.10	2.70	15.21	5.19	5180.71	5179.77	5181.33	5180.20	5181.57	5180.43	0.013	
19	30	SDMH-12	18	18	122.391	1.37	1.60	12.30	4.07	5176.54	5174.86	5177.02	5175.23	5177.19	5175.40	0.013	
20	43	SDI-14	18	18	27.776	0.50	1.60	7.45	3.35	5176.88	5176.74	5177.35	5177.21	5177.53	5177.39	0.013	
21	49	SDI-11	18	18	27.777	0.50	1.40	7.46	2.69	5176.41	5176.27	5176.85	5176.86	5177.01	5177.02	0.013	
22	36	SDMH-18	30	30	95.850	1.62	9.10	52.12	6.45	5168.81	5167.26	5169.81	5167.97	5170.19	5168.35	0.013	
23	37	SDMH-19	24	24	50.043	1.16	4.50	24.39	5.07	5169.89	5169.31	5170.64	5169.89	5170.91	5170.17	0.013	
 Projec	t File: 110	04_5YrHGL_SystemA	.stm									Number of lin	nes: 50	<u> </u>	Date	: 11/24/2	2020

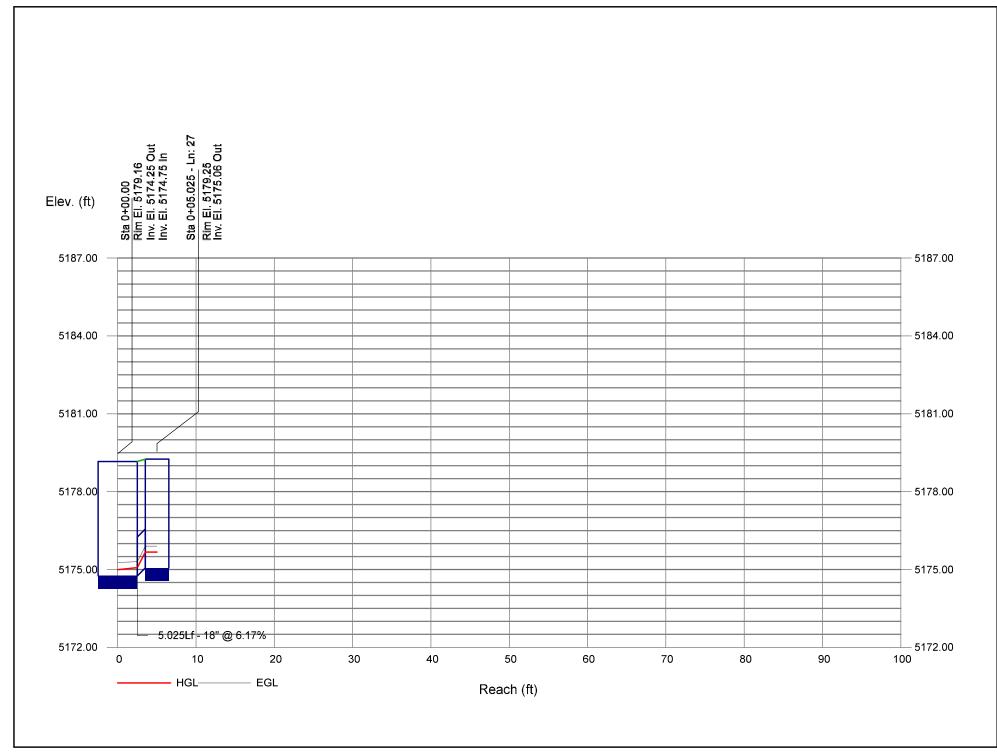
CustomDan

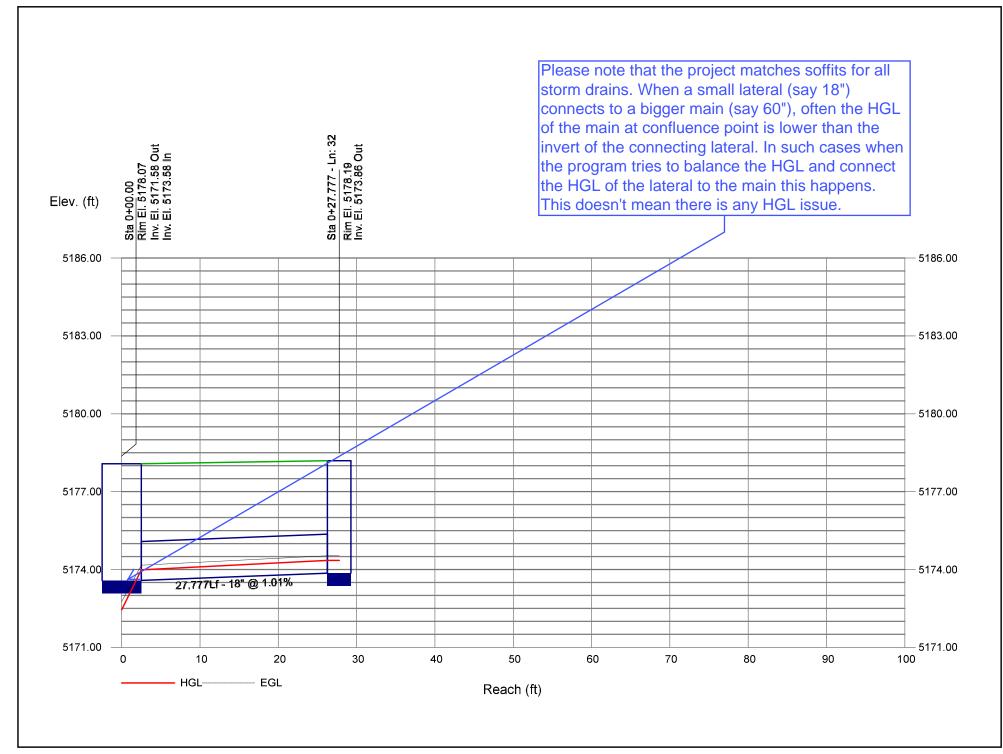

Line No.	Line ID	Inlet ID	Line Rise	Line Span	Line Length	Line Slope	Flow Rate	Capac Full	Vel Ave	Invert Up	Invert Dn	HGL Up	HGL Dn	EGL Up	EGL Dn	n-val Pipe	
			(in)	(in)	(ft)	(%)	(cfs)	(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		
24	38	SDMH-20	24	24	128.432	0.88	4.50	21.22	4.79	5171.22	5170.09	5171.97	5170.72	5172.24	5170.99	0.013	
25	20	SDMH-09	24	24	128.432	0.74	4.50	19.45	4.63	5172.37	5171.42	5173.12	5172.07	5173.39	5172.35	0.013	
26	39	SDMH-21	24	24	166.807	1.01	4.50	22.70	4.92	5174.25	5172.57	5175.00	5173.17	5175.27	5173.45	0.013	
27	60	SDI-23	18	18	5.025	6.17	2.60	26.08	6.63	5175.06	5174.75	5175.67	5175.07	5175.90	5175.30	0.013	
28	59	SDI-22	18	18	27.077	1.15	1.90	11.24	4.12	5175.06	5174.75	5175.58	5175.17	5175.77	5175.36	0.013	
29	51	SDMH-25	24	24	92.610	0.59	4.30	17.32	4.37	5171.26	5170.72	5171.99	5171.40	5172.26	5171.67	0.013	
30	52	SDMH-26	18	18	132.441	1.61	2.40	13.31	4.73	5173.89	5171.76	5174.48	5172.19	5174.70	5172.41	0.013	
31	53	SDI-27	18	18	7.557	0.53	2.40	7.64	3.79	5174.13	5174.09	5174.72	5174.67	5174.94	5174.89	0.013	
32	50	SDI-15	18	18	27.777	1.01	1.70	10.54	3.88	5173.86	5173.58	5174.35	5173.99	5174.53	5174.17	0.013	
33	54	SDI-16	18	18	27.777	0.50	1.90	7.46	3.51	5171.90	5171.76	5172.42	5172.28	5172.61	5172.47	0.013	
34	27	SDI-10	18	18	7.558	18.26	2.40	44.88	8.62	5172.47	5171.09	5173.06	5171.33	5173.28	5171.55	0.013	
35	56	SDI-18	18	18	27.777	1.26	2.20	11.78	4.38	5170.78	5170.43	5171.34	5170.87	5171.55	5171.08	0.013	
36	55	SDI-17	18	18	7.557	4.63	2.40	22.59	6.03	5170.78	5170.43	5171.37	5170.76	5171.59	5170.98	0.013	
37	26	SDI-08	18	18	7.570	8.46	1.70	30.54	3.14	5170.54	5169.90	5171.03 j	5170.45	5171.21	5170.63	0.013	
38	25	SDI-09	18	18	28.041	2.82	1.90	17.63	3.36	5170.69	5169.90	5171.21 j	5170.45	5171.40	5170.64	0.013	
39	57	SDI-19	18	18	7.557	2.64	2.60	17.07	5.41	5170.01	5169.81	5170.62	5170.21	5170.85	5170.44	0.013	
40	58	SDI-21	18	18	27.777	0.72	2.00	8.90	3.81	5170.01	5169.81	5170.54	5170.29	5170.74	5170.49	0.013	
41	98	SDI-04	18	18	4.925	2.03	2.40	14.97	4.98	5168.00	5167.90	5168.59	5168.31	5168.81	5168.53	0.013	
42	99	SDI-05	18	18	7.560	1.98	0.50	14.79	3.15	5167.64	5167.49	5167.90	5167.68	5167.99	5167.77	0.013	
43	22	SDI-06	18	18	29.771	2.01	1.10	14.90	3.97	5168.09	5167.49	5168.48	5167.77	5168.62	5167.91	0.013	
44	111	SDMH-54	24	24	62.559	0.50	3.90	15.92	1.24	5162.08	5161.77	5164.90	<u>5164.88</u>	5164.92	5164.90	0.013	
45	110	SDI-20	24	24	54.820	0.51	3.90	16.16	1.24	5162.38	5162.10	5164.93	5164.92	5164.96	5164.94	0.013	
46	02	SDI-01	24	24	59.634	0.50	2.30	16.04	0.73	5162.07	5161.77	5164.89	<u>5164.88</u>	5164.90	5164.89	0.013	
Projec	t File: 11	104_5YrHGL_SystemA			e the deter]					Number of lir	nes: 50		Date	: 11/24/20	020
NOTE	S: ** Cri	itical depth	th p	nan the n ipe. So tl	ormal depti he program lefined dete	h of the honors					I			1	5-YEAR DE WSE	TENTION (5164.88	I POND ')
					tailwater e												Storm Sewers

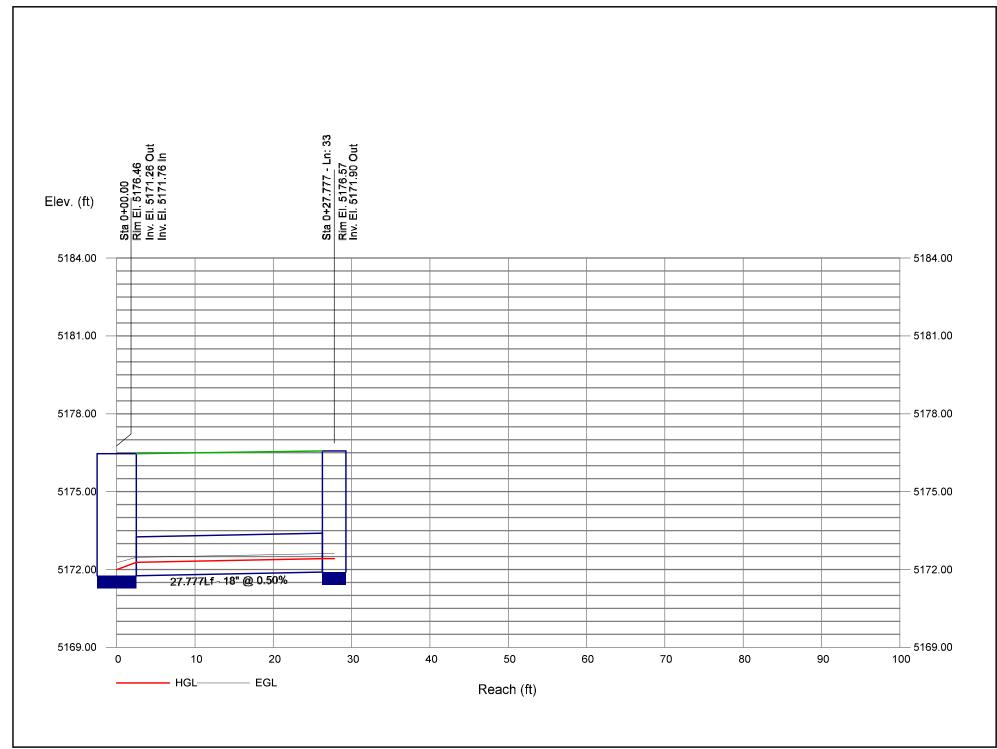

Line No.	Line ID	Inlet ID	Line Rise	Line Span	Line Length	Line Slope	Flow Rate	Capac Full	Vel Ave	Invert Up	Invert Dn	HGL Up	HGL Dn	EGL Up	EGL Dn	n-val Pipe
			(in)	(in)	(ft)	(%)	(cfs)	(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
47	04	SDI-02	24	24	38.334	0.50	1.10	15.92	0.35	5162.28	5162.09	5164.89	5164.89	5164.89	5164.89	0.013
48	01	POND OUTFALL-1	48	48	45.588	0.48	13.70	99.73	5.27	5159.94	5159.72	5161.02	5160.72	5161.41	5161.11	0.013
49	106	SDMH-47	18	18	28.360	0.50	0.90	7.42	1.84	5159.09	5158.95	5159.52	5159.51	5159.59	5159.54	0.013
50	94	SDI-49	18	18	47.530	0.50	0.90	7.46	2.84	5159.53	5159.29	5159.88	5159.64	5160.01	5159.77	0.013
rojec	t File: 1′	104_5YrHGL_SystemA	.stm		<u> </u>							Number of lin	Date	Date: 11/24/2020		
IOTE	S: ** Cri	tical depth													I	

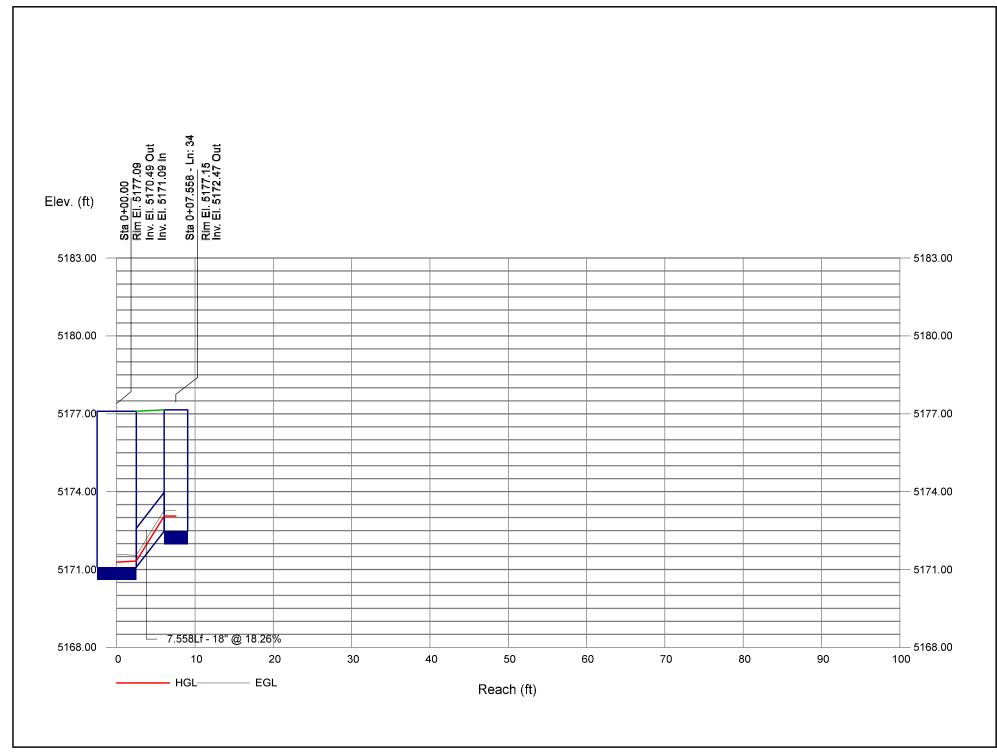


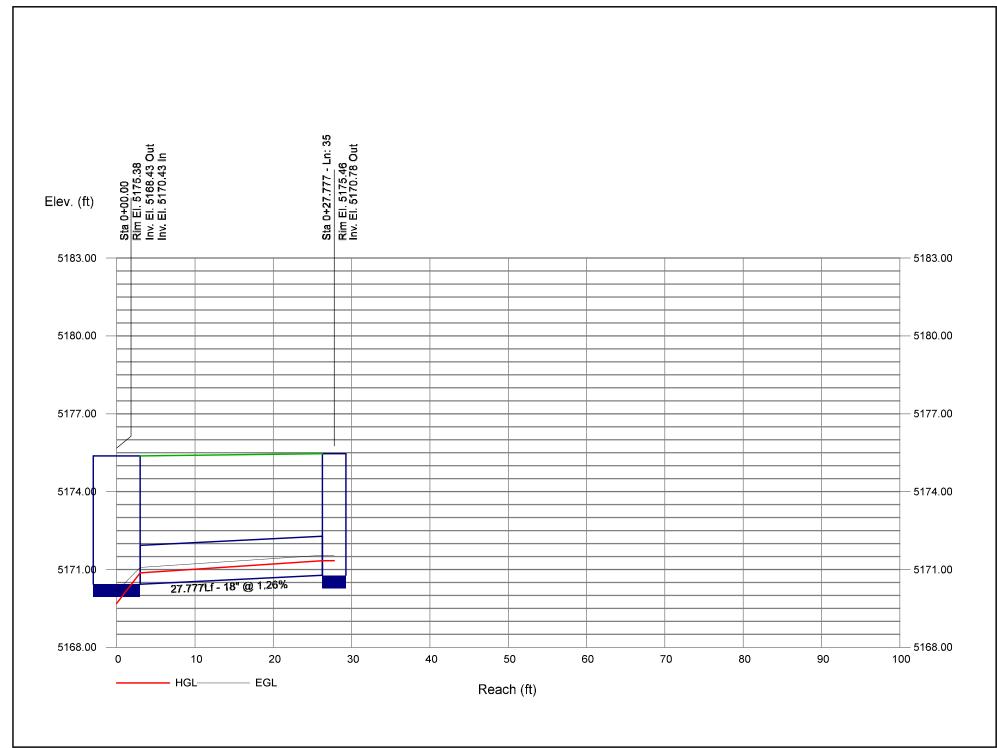

Sta 12+00.964 - Ln: 14 Rim El. 5186.00 Inv. El. 5181.59 Out Sta 10+03.509 - Ln: 12 Rim El. 5184.53 Inv. El. 5180.20 Out Inv. El. 5180.40 In Sta 11+17.843 - Ln: 13 Rim El. 5186.00 Inv. El. 5180.97 Out Inv. El. 5181.17 In Sta 9+95.952 - Ln: 11 Rim El. 5184.47 Inv. El. 5179.92 Out Inv. El. 5180.12 In 5207.00 - 5197.00 - 5187.00 - 5177.00 83.121Lf - 24" @ 0.51% 114.334Lf - 24" @ 0|50% 7.557Lf - 24" @ 1.06% 43.133Lf - 24" @ 2.99% - 5167.00 - 5157.00 1100 1200 1300

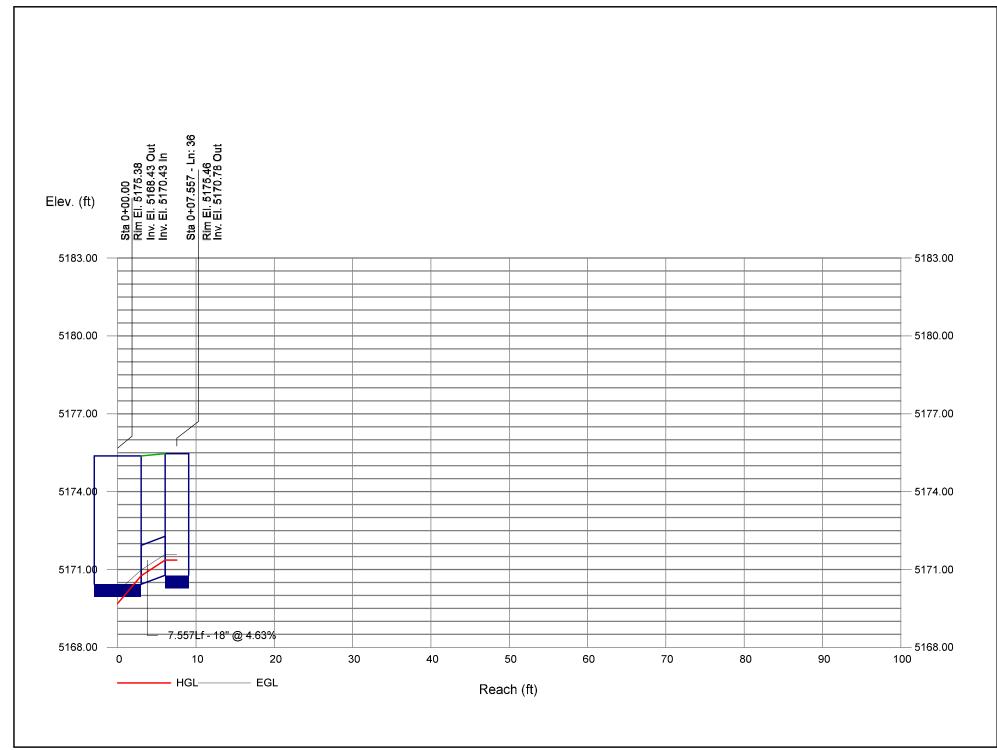

Proj. file 1104_5YrHGL_SystemA.stm

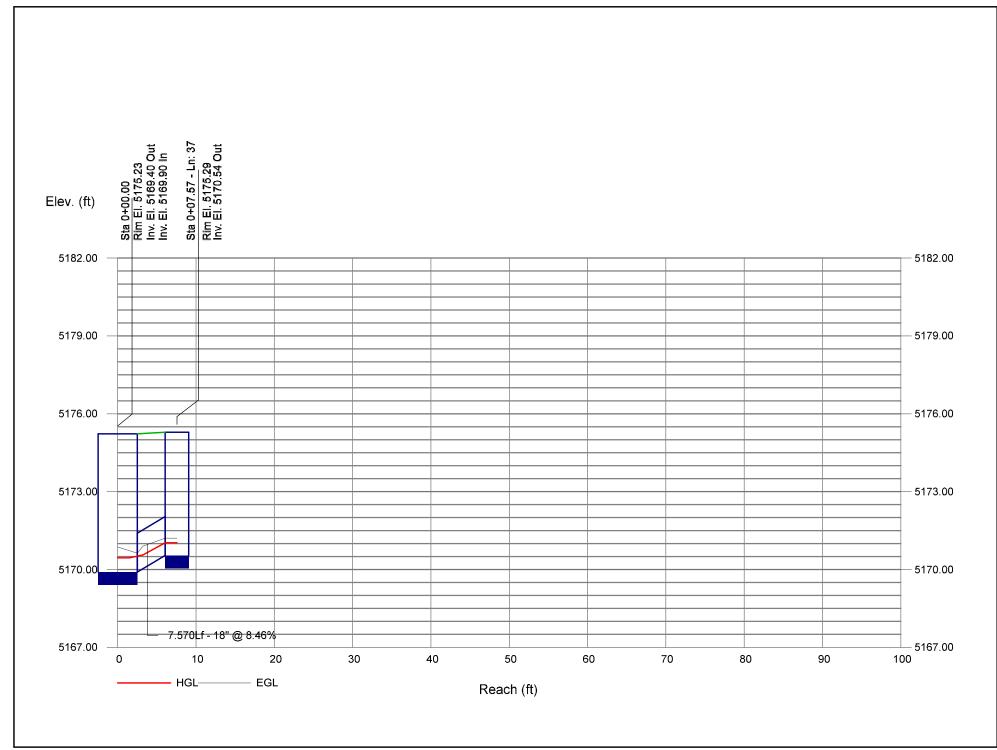


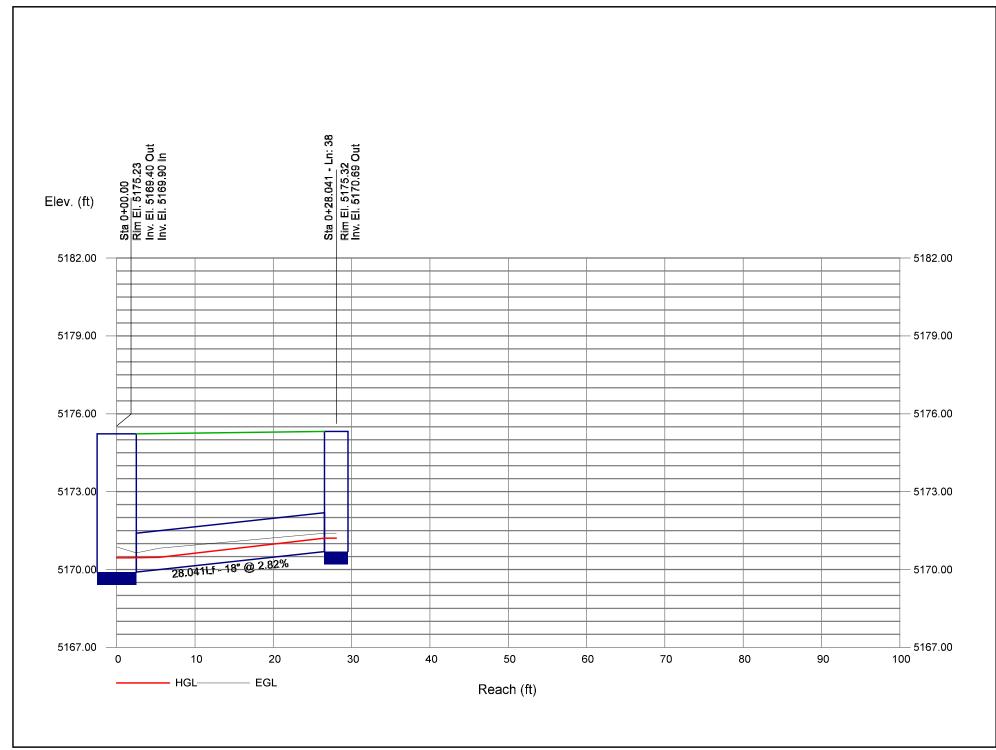


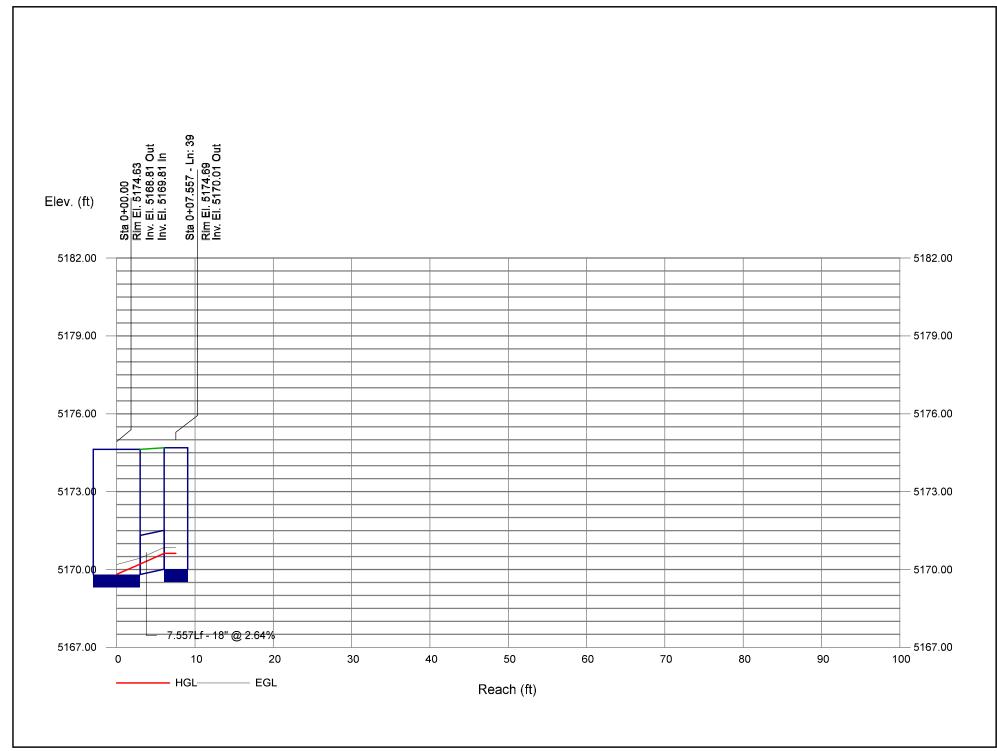


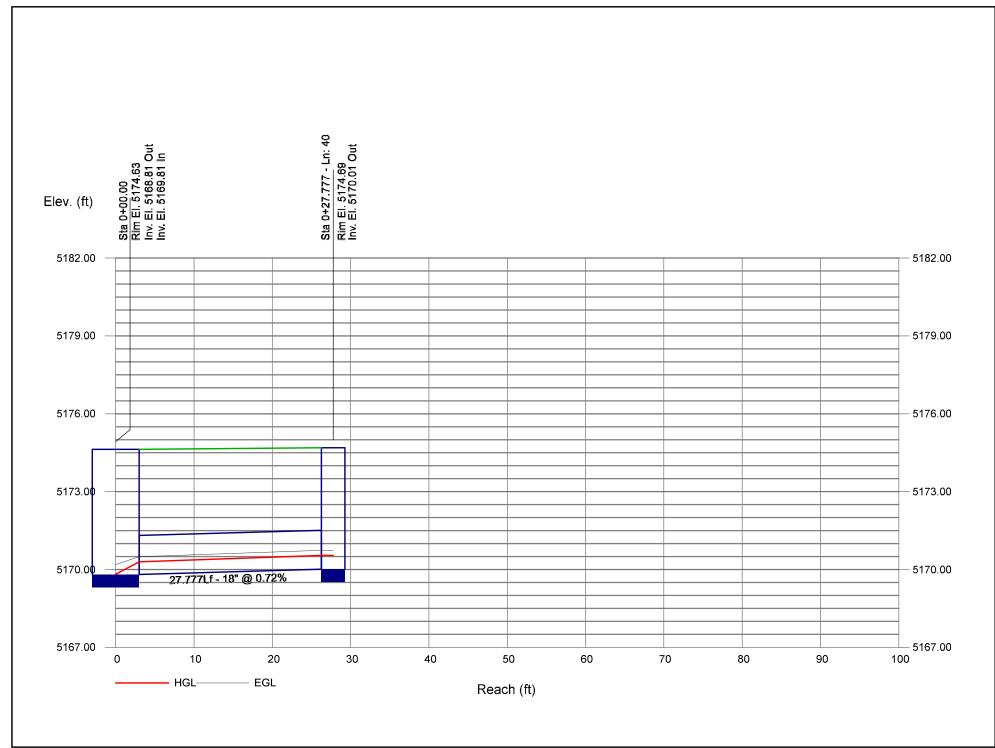


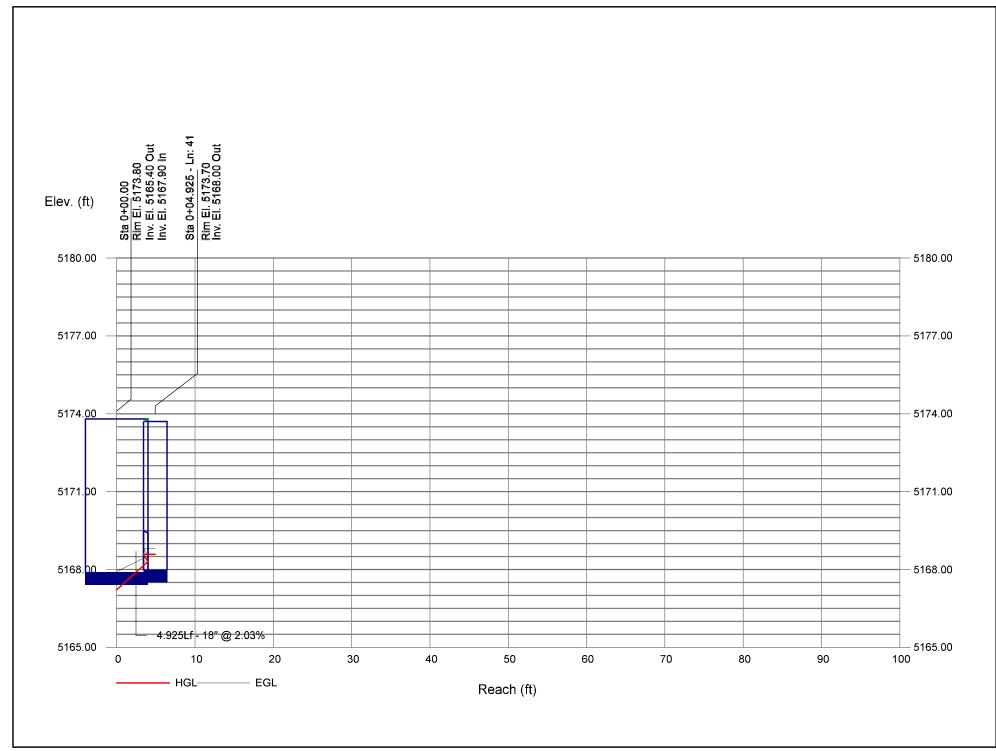


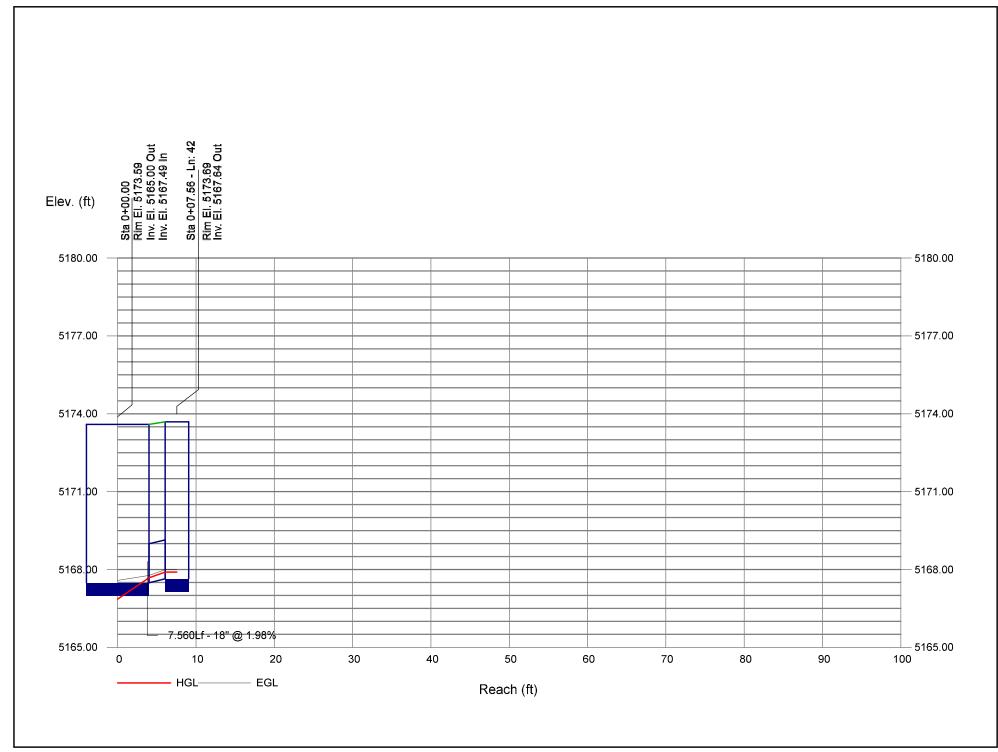


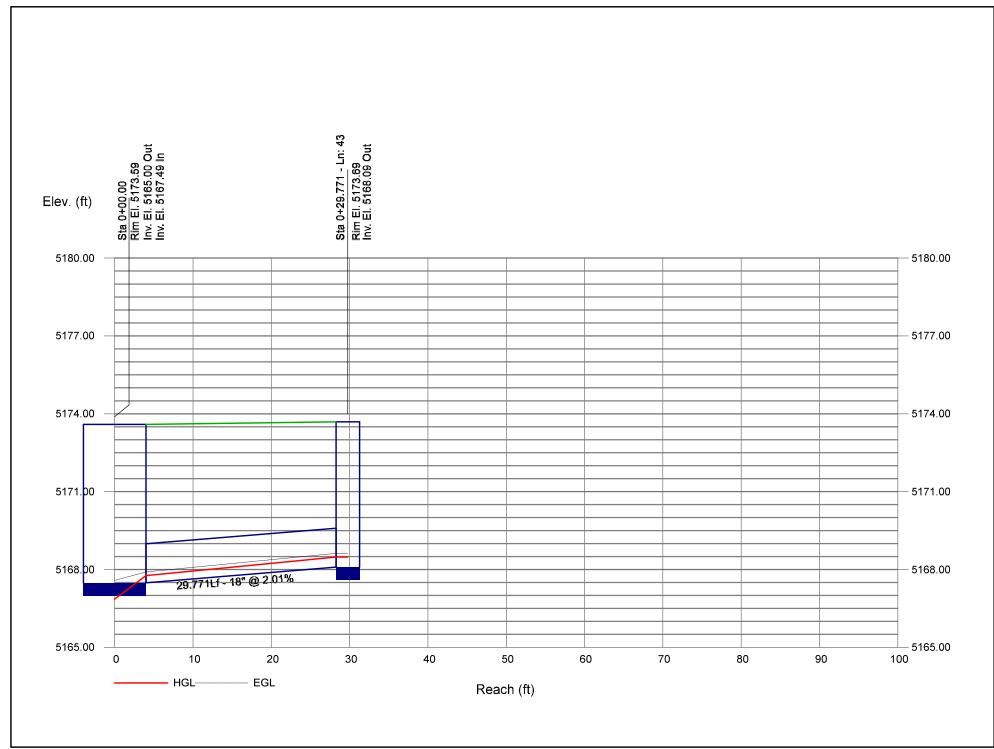


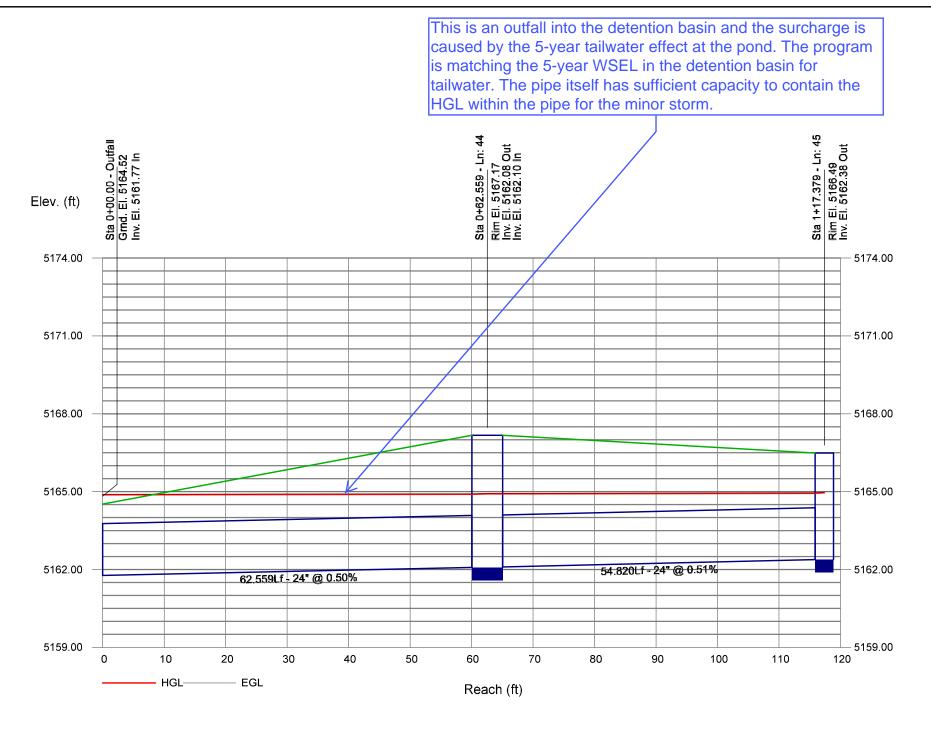


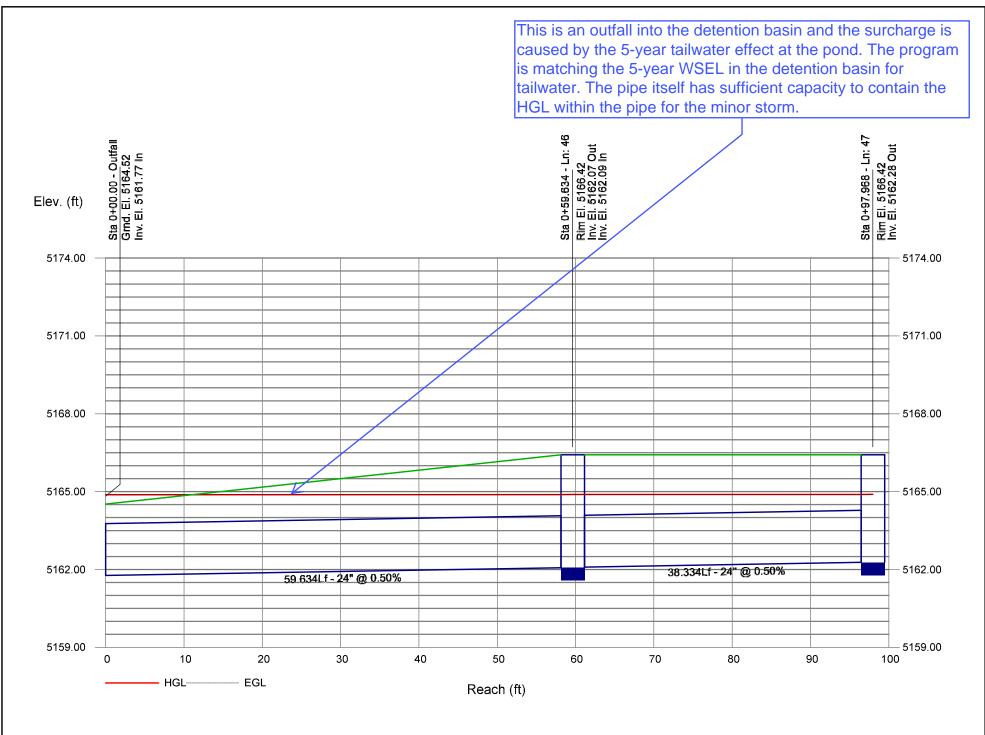


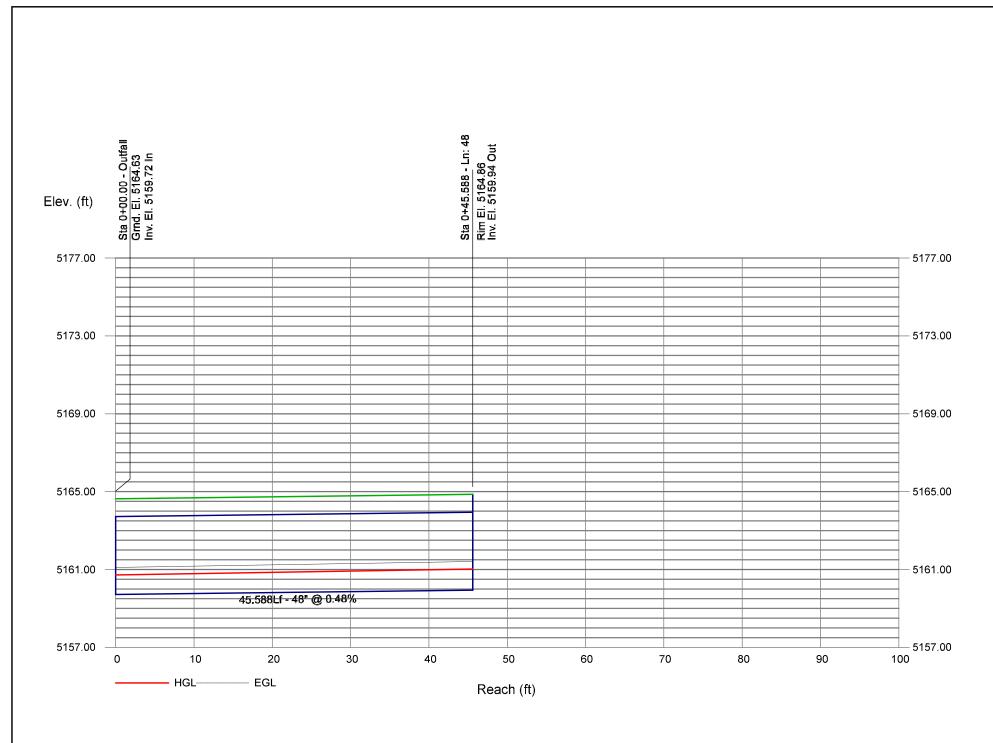


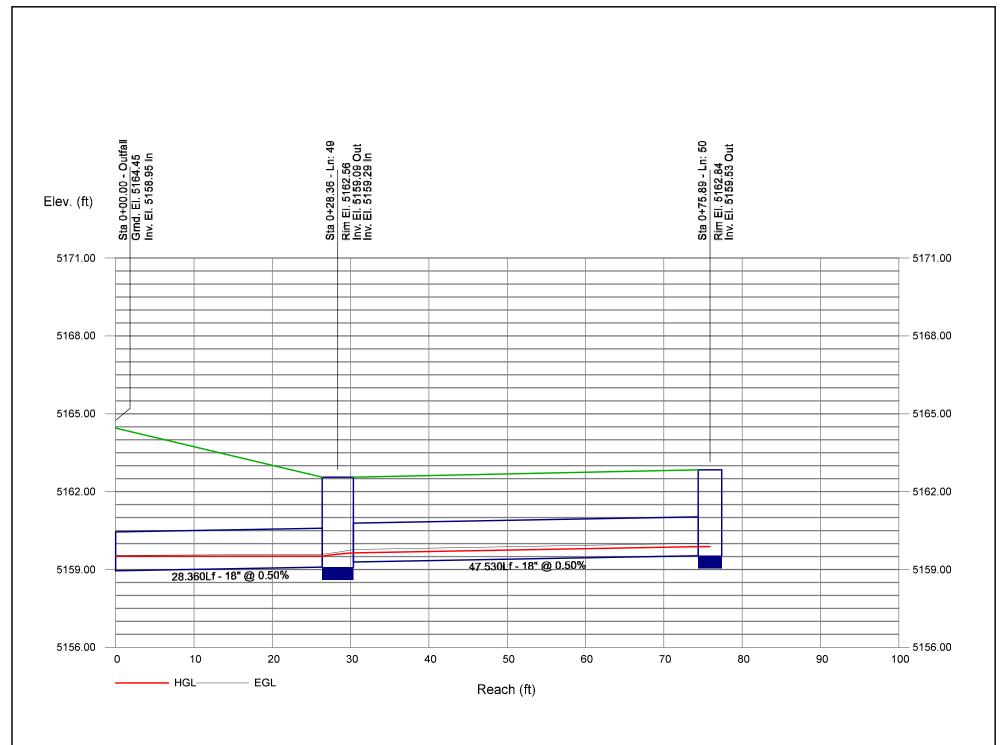


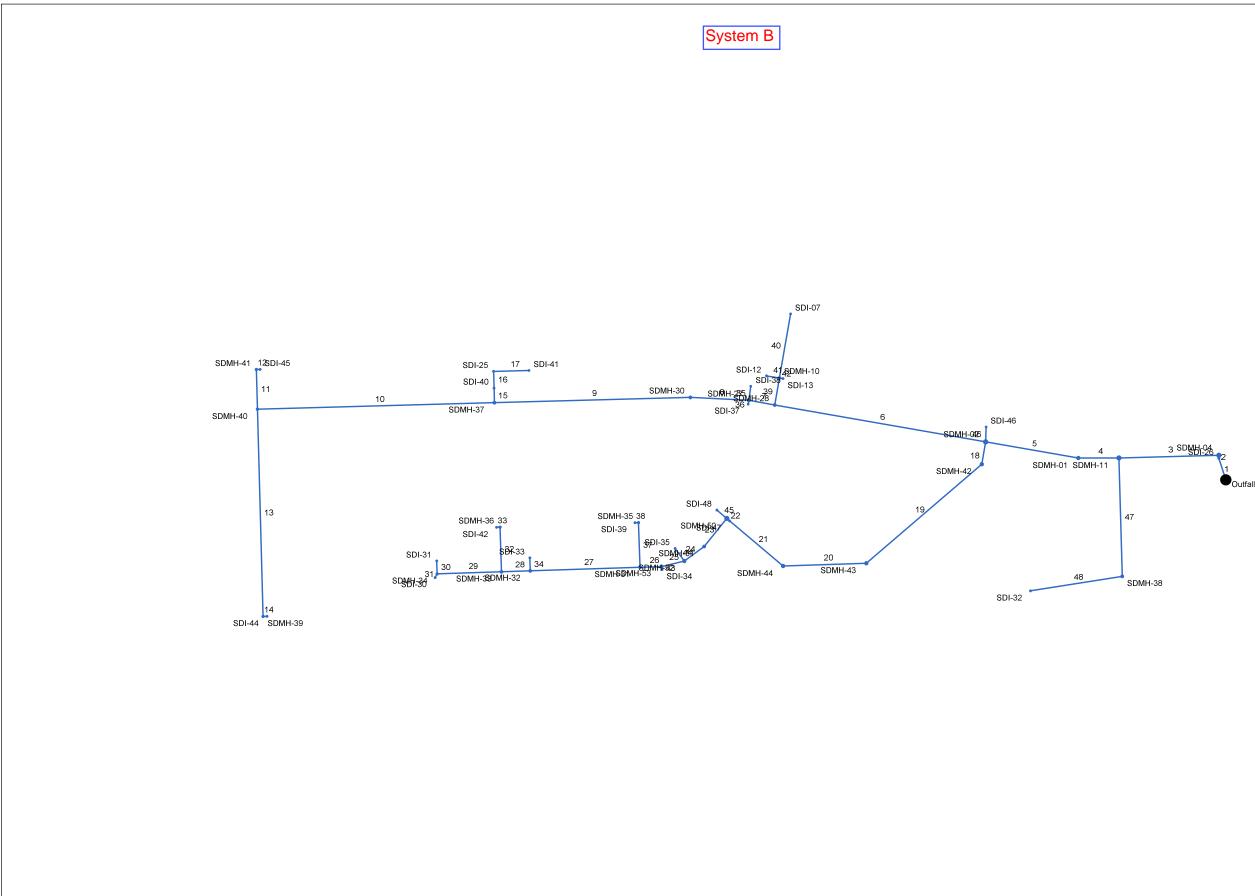








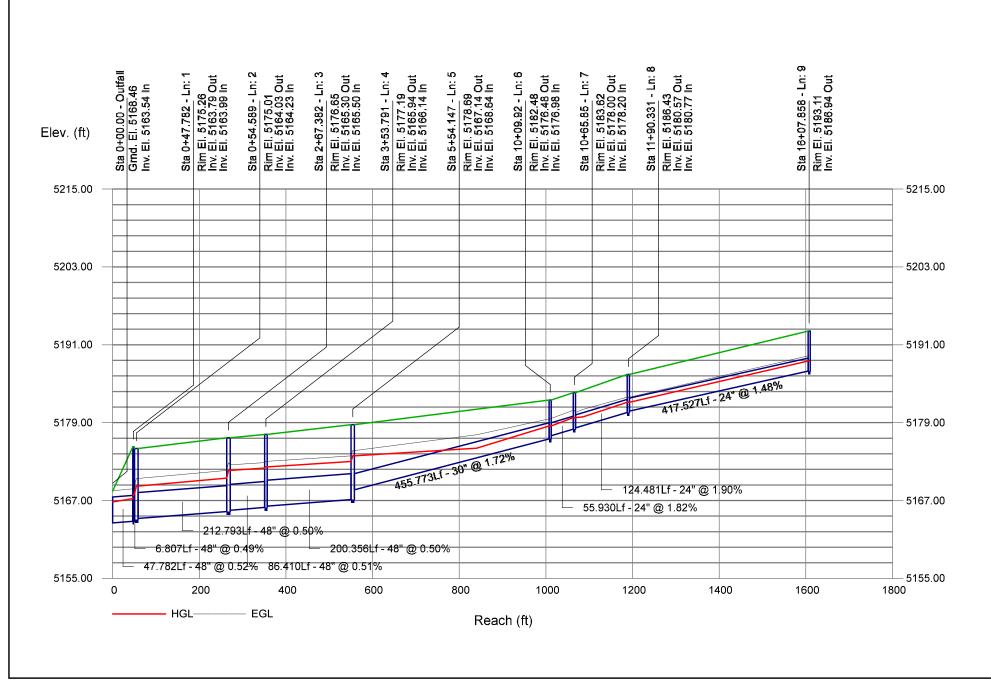


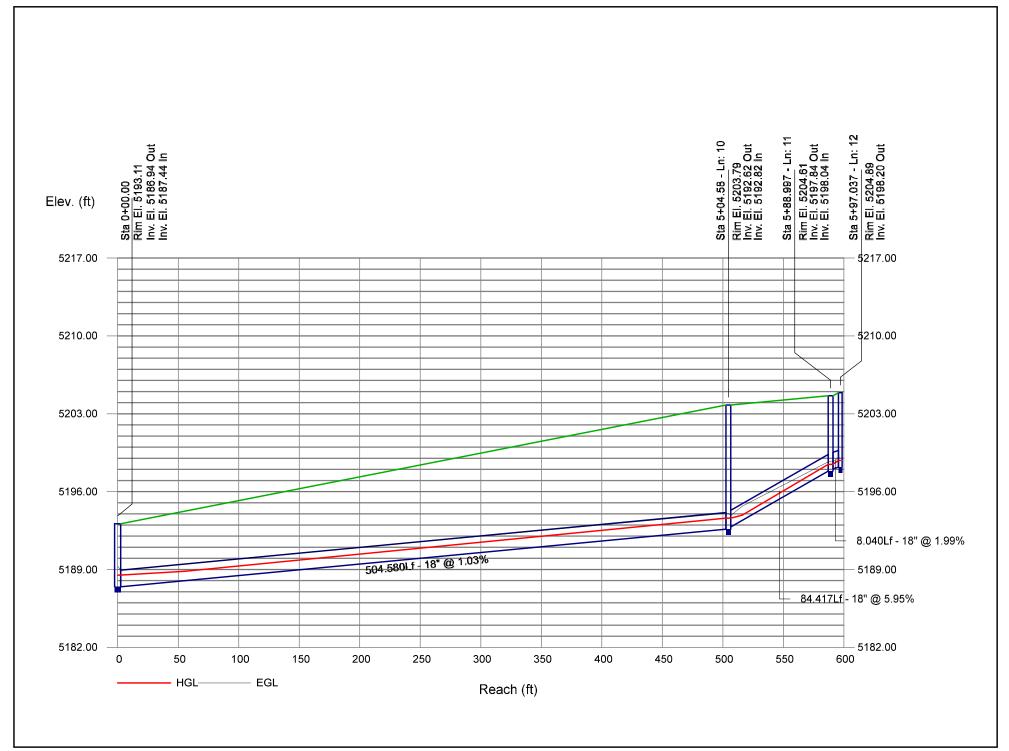


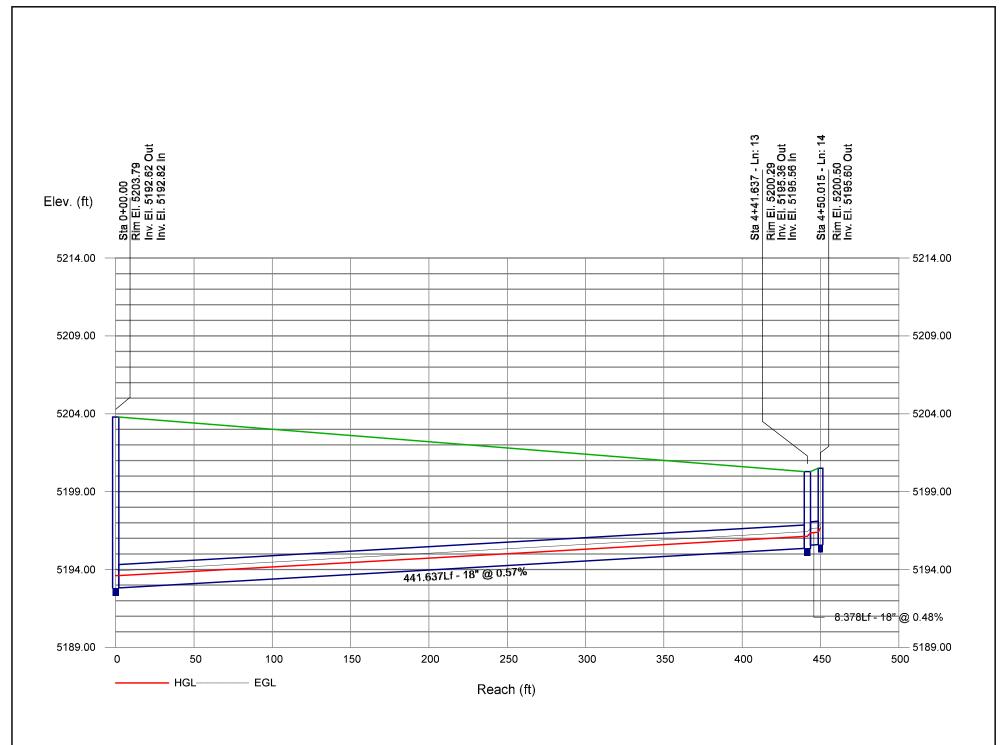
Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan

|--|

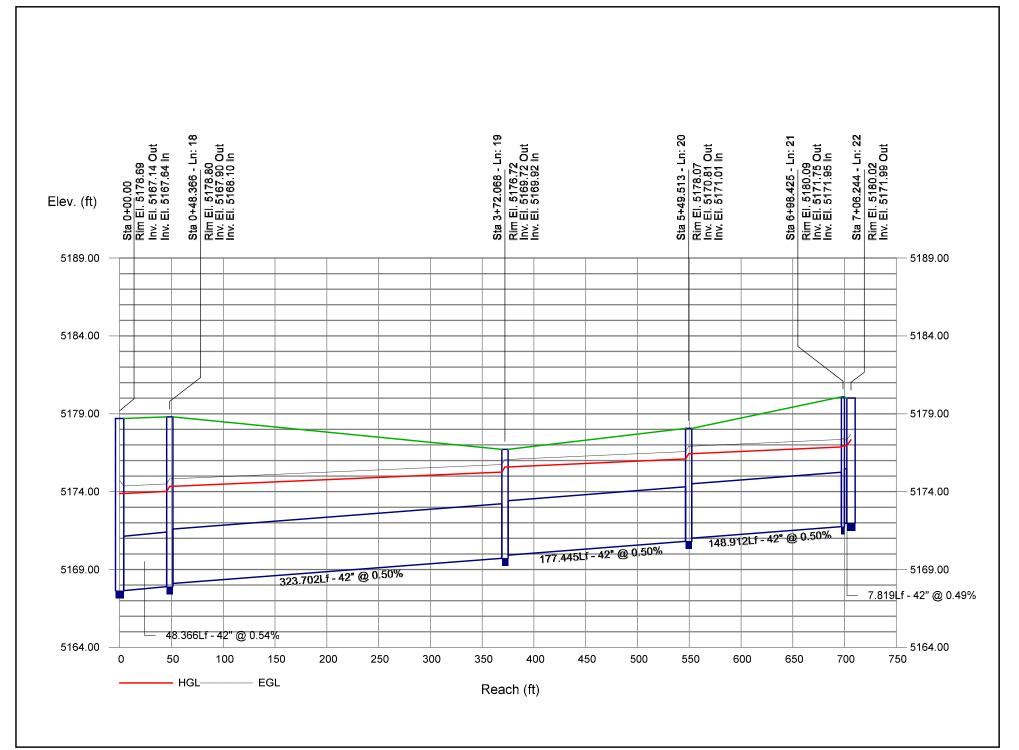
CustomRep

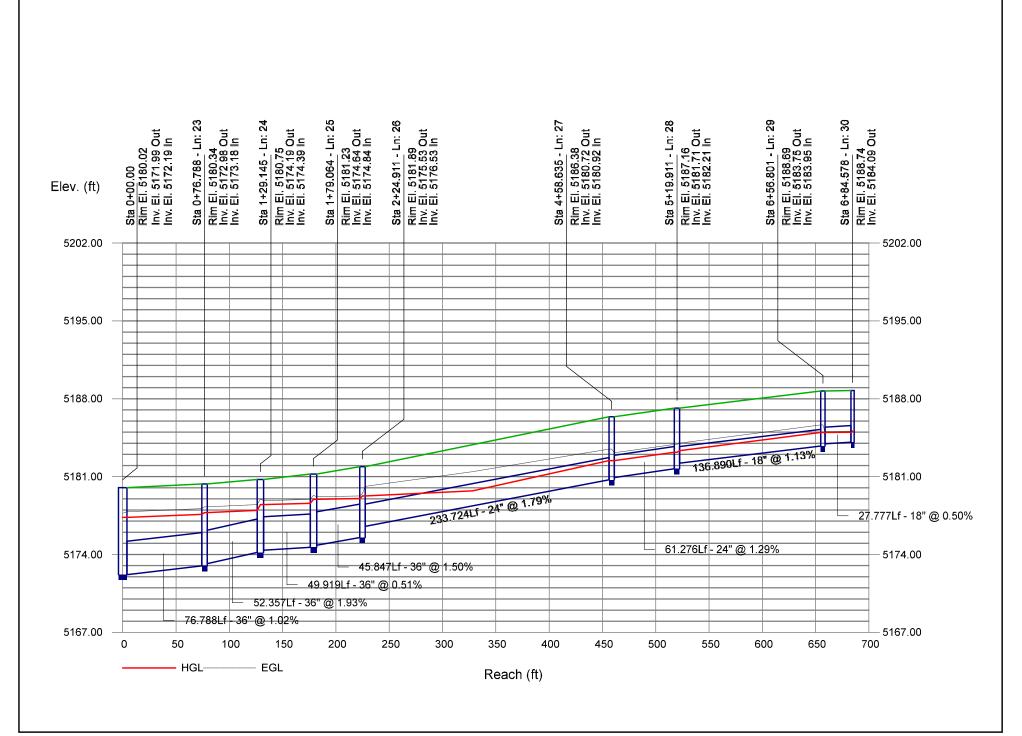

Line No.	Line ID	Inlet ID	Line Rise	Line Span	Line Length	Line Slope	Flow Rate	Capac Full	Vel Ave	Invert Up	Invert Dn	HGL Up	HGL Dn	EGL Up	EGL Dn	n-val Pipe	
			(in)	(in)	(ft)	(%)	(cfs)	(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		
1	06	SDI-26	48	48	47.782	0.52	115.10	103.90	10.21	5163.79	5163.54	5167.30	5166.77	5168.81	5168.51	0.013	- TW = 5166.77' = NORMAL DEPTH >
2	05	SDMH-04	48	48	6.807	0.49	109.60	101.06	8.72	5164.03	5163.99	5168.03	5167.99	5169.21	5169.18	0.013	- 100-YEAR DETENTION POND
3	07	SDMH-11	48	48	212.793	0.50	109.60	101.90	8.72	5165.30	5164.23	5170.45	5169.21	5171.63	5170.39	0.013	WSE (5165.93')
4	23	SDMH-01	48	48	86.410	0.51	93.20	102.72	7.42	5165.94	5165.50	5172.00	5171.63	5172.85	5172.49	0.013	
5	08	SDMH-02	48	48	200.356	0.50	93.20	101.48	7.42	5167.14	5166.14	5173.02	5172.18	5173.88	5173.03	0.013	
6	62	SDMH-28	30	30	455.773	1.72	35.40	53.79	7.78	5176.48	5168.64	5178.50 j	5173.88	5179.58	5174.69	0.013	
7	61	SDMH-27	24	24	55.930	1.82	25.20	30.54	9.22	5178.00	5176.98	5179.77	5178.50	5180.91	5179.64	0.013	etention basin 100-year
8	64	SDMH-30	24	24	124.481	1.90	18.80	31.21	7.14	5180.57	5178.20	5182.13 j	5179.77	5182.93	5180.56	0.013 <mark>/</mark>	/SE was given as user nput. However, in this
9	79	SDMH-37	24	24	417.527	1.48	18.80	27.49	7.71	5186.94	5180.77	5188.50	5182.13	5189.30	5182.93	0.013 <mark>p</mark>	articular case normal depth
10	84	SDMH-40	18	18	504.580	1.03	6.60	10.64	5.13	5192.62	5187.44	5193.61 j	5188.50	5194.05	5188.94	0.013	f pipe is higher than the 00-year WSEL in the
11	87	SDMH-41	18	18	84.417	5.95	2.60	25.61	3.29	5197.84	5192.82	5198.45 j	5193.61	5198.68	5193.84	0.013 p	etention basin. So the rogram defaults to using
12	88	SDI-45	18	18	8.040	1.99	2.60	14.82	5.07	5198.20	5198.04	5198.81	5198.47	5199.04	5198.70	ta	ormal depth of pipe as ailwater as opposed to using
13	85	SDMH-39	18	18	441.637	0.57	4.00	7.96	4.32	5195.36	5192.82	5196.12 j	5193.61	5196.43	5193.92	0.013 N	he 100-year detention pond /SEL. This results in a more
14	86	SDI-44	18	18	8.378	0.48	4.00	7.26	4.21	5195.60	5195.56	5196.40	5196.36	5196.67	5196.63	T	onservative HGL estimation. he user defined tailwater is
15	80	SDI-40	24	24	30.917	1.03	12.20	23.00	5.62	5187.46	5187.14	5188.71 j	5188.50	5189.25	5189.04	y	ever lower than the 100- ear WSE at the pond
16	81	SDI-25	24	24	35.763	0.50	9.90	16.05	5.38	5187.83	5187.65	5188.97 j	5188.79	5189.42	5189.24	0.013	
17	82	SDI-41	24	24	75.390	0.50	1.50	16.07	1.87	5188.41	5188.03	5188.83	5189.42	5188.98	5189.56	0.013	
18	09	SDMH-42	42	42	48.366	0.54	53.60	73.73	5.57	5167.90	5167.64	5174.01	5173.88	5174.50	5174.36	0.013	
19	10	SDMH-43	42	42	323.702	0.50	53.60	71.18	5.57	5169.72	5168.10	5175.26	5174.34	5175.74	5174.83	0.013	
20	11	SDMH-44	42	42	177.445	0.50	53.60	71.26	5.57	5170.81	5169.92	5176.09	5175.59	5176.58	5176.07	0.013	
21	12	SDI-47	42	42	148.912	0.50	53.60	70.93	5.57	5171.75	5171.01	5176.87	5176.44	5177.35	5176.92	0.013	
22	109	SDMH-50	42	42	7.819	0.49	47.20	70.67	4.91	5171.99	5171.95	5176.96	5176.94	5177.33	5177.31	0.013	
23	101	SDMH-51	36	36	76.788	1.02	40.70	67.44	5.76	5172.98	5172.19	5177.62	5177.33	5178.13	5177.84	0.013	
		104_100YrHGL_Syste	mB.stm			I						Number of li	nes: 48	I	Date	e: 11/23/	2020

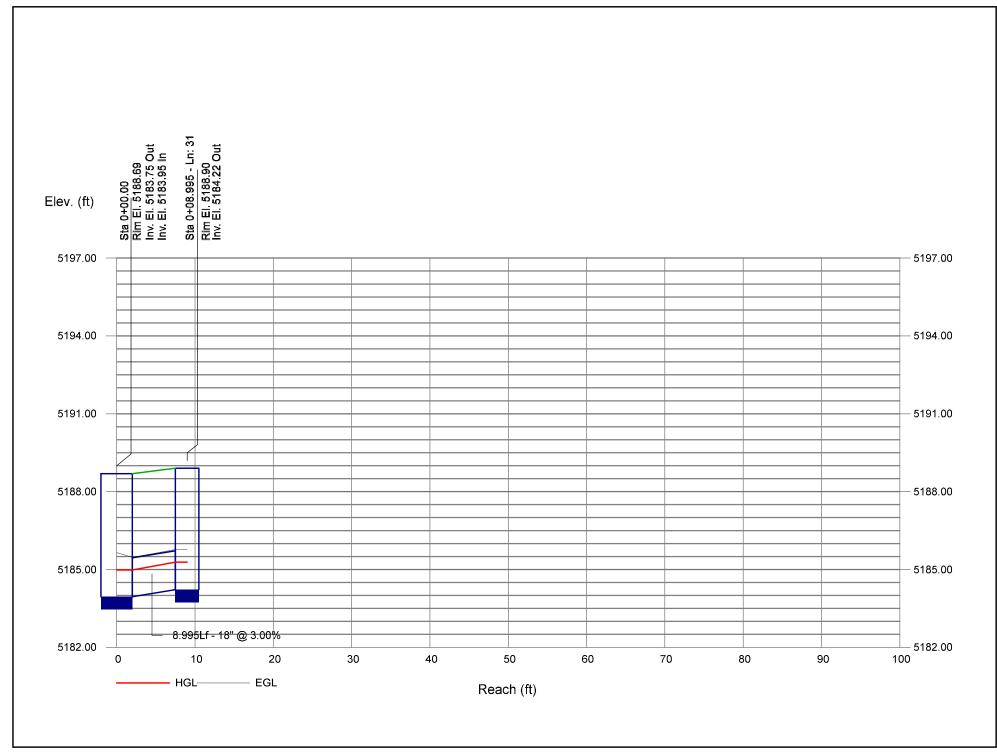

CustomRep

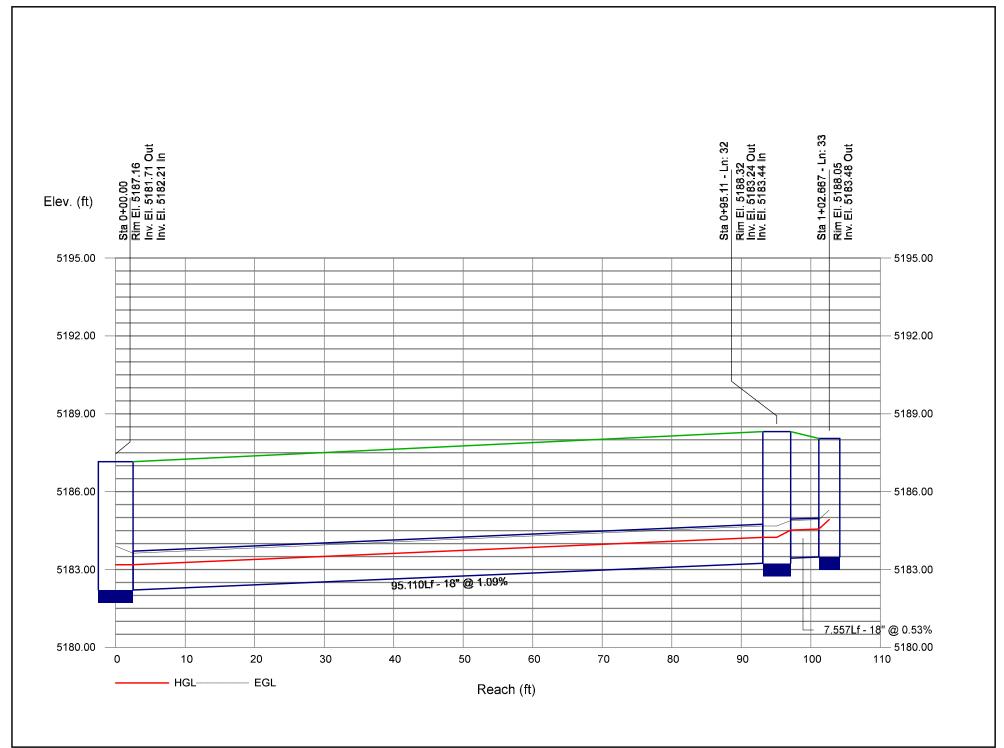

Line No.	Line ID	Inlet ID	Line Rise	Line Span	Line Length	Line Slope	Flow Rate	Capac Full	Vel Ave	Invert Up	Invert Dn	HGL Up	HGL Dn	EGL Up	EGL Dn	n-val Pipe	
			(in)	(in)	(ft)	(%)	(cfs)	(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		
24	65	SDMH-52	36	36	52.357	1.93	40.70	92.62	5.76	5174.19	5173.18	5177.96	5177.77	5178.48	5178.29	0.013	
25	108	SDMH-53	36	36	49.919	0.51	33.80	47.47	4.78	5174.64	5174.39	5178.61	5178.48	5178.96	5178.84	0.013	
26	66	SDMH-31	36	36	45.847	1.50	26.70	81.82	3.78	5175.53	5174.84	5179.04	5178.96	5179.26	5179.19	0.013	
27	67	SDMH-32	24	24	233.724	1.79	23.50	30.28	7.83	5180.72	5176.53	5182.44 j	5179.26	5183.48	5180.13	0.013	
28	68	SDMH-33	24	24	61.276	1.29	16.80	25.68	6.66	5181.71	5180.92	5183.19	5182.44	5183.90	5183.15	0.013	
29	69	SDMH-34	18	18	136.890	1.13	10.20	11.14	6.87	5183.75	5182.21	5184.98	5183.34	5185.65	5184.01	0.013	
30	71	SDI-31	18	18	27.777	0.50	2.70	7.45	2.27	5184.09	5183.95	5184.99	5184.98	5185.08	5185.05	0.013	
31	70	SDI-30	18	18	8.995	3.00	7.50	18.19	5.71	5184.22	5183.95	5185.28	5184.98	5185.77	5185.47	0.013	
32	78	SDMH-36	18	18	95.110	1.09	6.60	10.94	5.37	5183.24	5182.21	5184.24	5183.19	5184.67	5183.63	0.013	
33	83	SDI-42	18	18	7.557	0.53	6.60	7.64	4.86	5183.48	5183.44	5184.56	5184.52	5184.92	5184.88	0.013	
34	77	SDI-33	18	18	27.777	2.05	6.70	15.04	4.85	5181.79	5181.22	5182.79 j	5182.44	5183.24	5182.89	0.013	
35	73	SDI-38	18	18	30.055	1.86	4.00	14.33	3.47	5179.06	5178.50	5179.83 j	5179.77	5180.13	5180.07	0.013	
36	72	SDI-37	18	18	8.278	2.18	2.40	15.49	2.63	5178.68	5178.50	5179.27	5179.77	5179.49	5179.99	0.013	
37	75	SDMH-35	18	18	95.110	0.96	3.20	10.27	1.81	5177.84	5176.93	5179.34	5179.26	5179.39	5179.31	0.013	
38	76	SDI-39	18	18	7.557	1.32	3.20	12.09	3.01	5178.14	5178.04	5178.82	5179.39	5179.08	5179.65	0.013	
39	29	SDMH-10	18	18	58.370	0.50	10.20	7.40	5.77	5177.77	5177.48	5179.53	5178.98	5180.05	5179.50	0.013	
40	42	SDI-07	18	18	138.548	1.62	3.60	13.38	3.15	5180.22	5177.97	5180.94 j	5180.05	5181.23	5180.11	0.013	
41	40	SDI-12	18	18	27.757	1.80	5.90	14.09	3.34	5178.47	5177.97	5180.14	5180.05	5180.31	5180.22	0.013	
42	41	SDI-13	18	18	7.575	1.32	0.70	12.04	0.40	5178.07	5177.97	5180.05	5180.05	5180.05	5180.05	0.013	
43	107	SDI-34	18	18	6.518	7.82	7.10	29.37	4.02	5176.65	5176.14	5178.99	5178.96	5179.25	5179.22	0.013	
44	74	SDI-35	18	18	32.950	0.70	6.90	8.77	3.90	5175.92	5175.69	5178.62	5178.48	5178.86	5178.72	0.013	
45	13	SDI-48	18	18	27.613	5.29	6.50	24.15	3.68	5175.45	5173.99	5177.44	5177.33	5177.65	5177.54	0.013	
46	14	SDI-46	18	18	31.646	13.43	4.20	38.48	3.43	5173.89	5169.64	5174.68 j	5173.88	5174.99	5173.96	0.013	
		104_100YrHGL_Syste	mB.stm									Number of li	nes: 48		Date) e: 11/23/	2020
NOTE	S: ** Cri	NOTES: ** Critical depth															

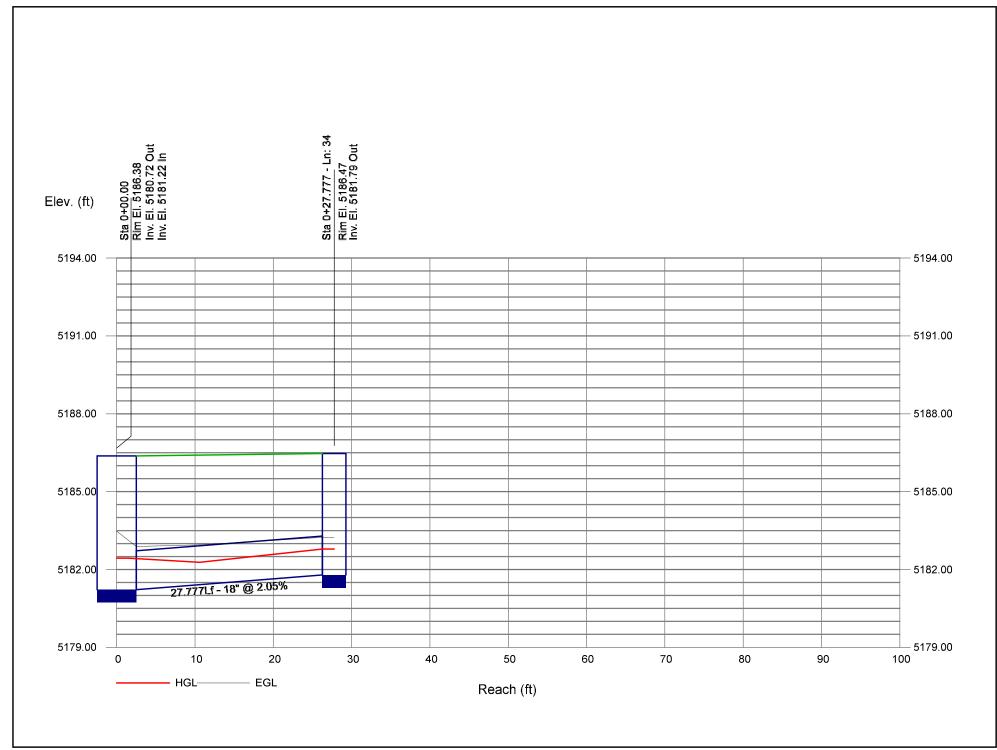
CustomRep

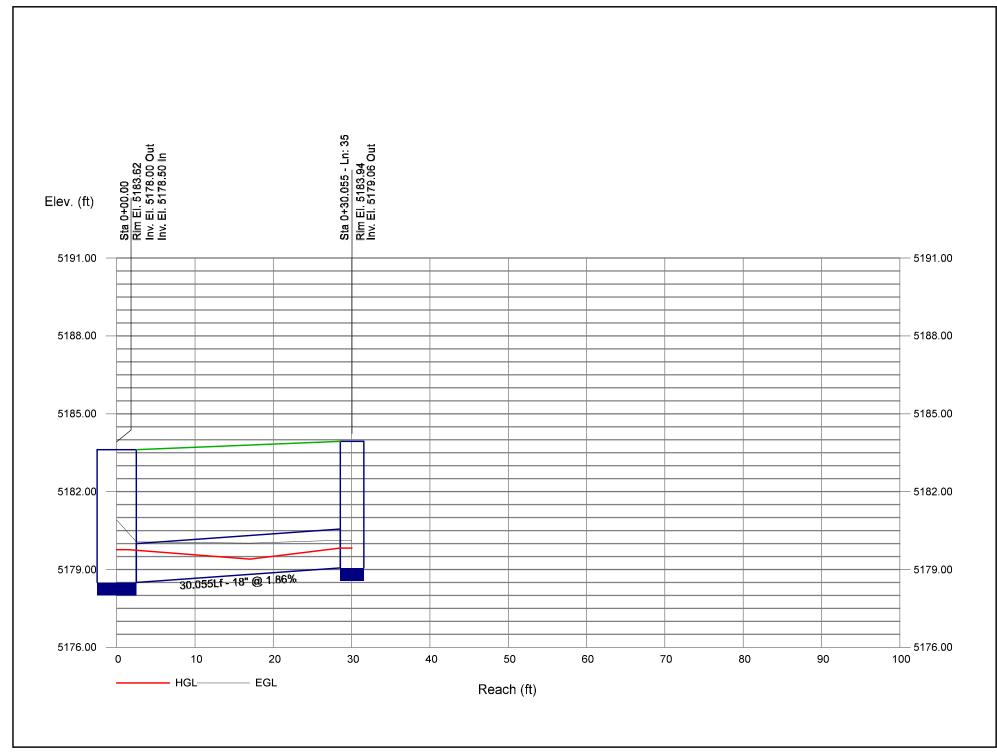

Line No.	Line ID	Inlet ID	Line Rise	Line Span	Line Length	Line Slope	Flow Rate	Capac Full	Vel Ave	Invert Up	Invert Dn	HGL Up	HGL Dn	EGL Up	EGL Dn	n-val Pipe	
			(in)	(in)	(ft)	(%)	(cfs)	(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		
47	97	SDMH-38	36	36	252.311	0.50	16.40	47.39	2.32	5166.77	5165.50	5171.79	5171.63	5171.87	5171.72	0.013	
48	96	SDI-32	36	36	197.717	0.50	16.40	47.19	2.32	5167.96	5166.97	5171.99	5171.87	5172.07	5171.95	0.013	
		1															
		1															
		1															
		1															
		1															
		1															
		1															
		1															
Projec	t File: 1'	104_100YrHGL_Syste	mB.stm									Number of li	nes: 48		Date	e: 11/23/:	2020
NOTE	S: ** Cri	itical depth		_											I		

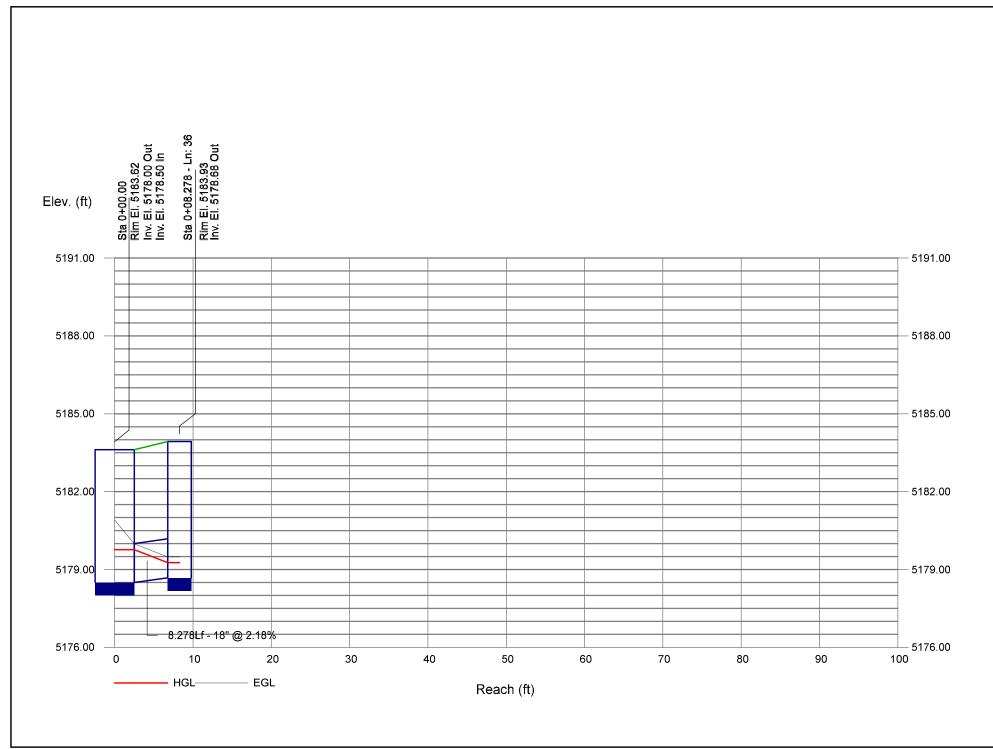


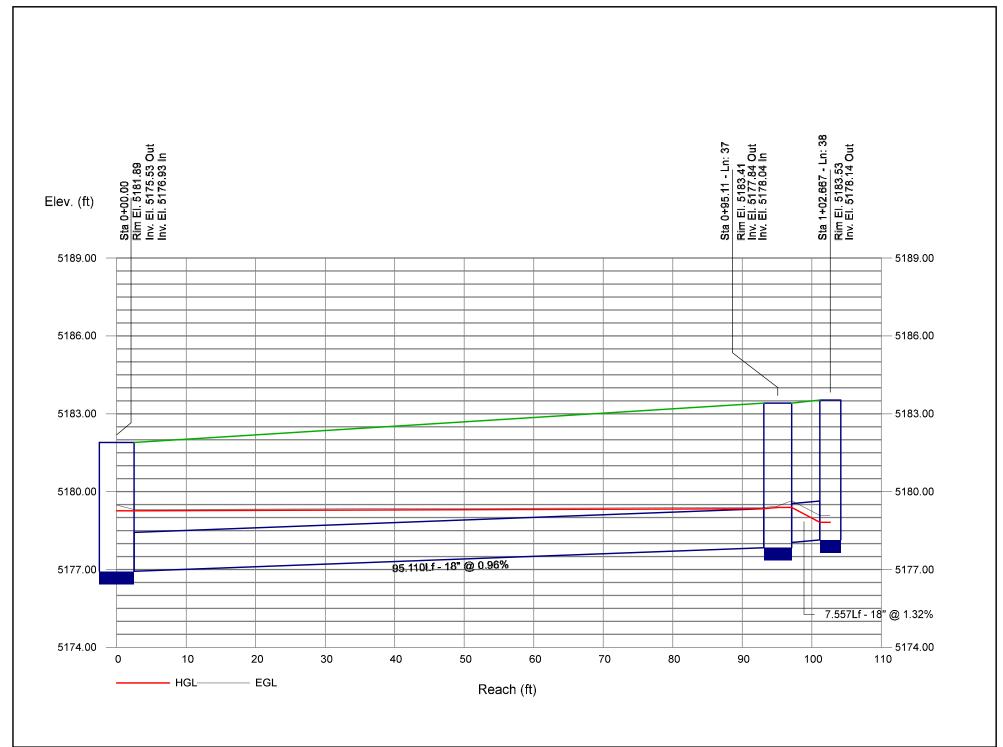


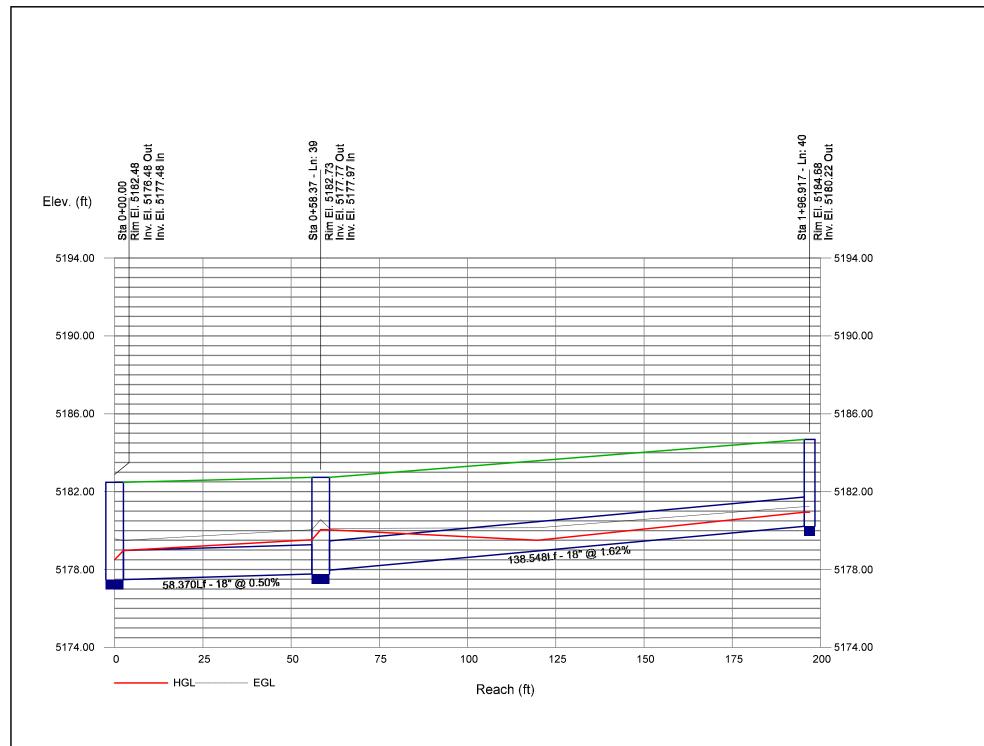


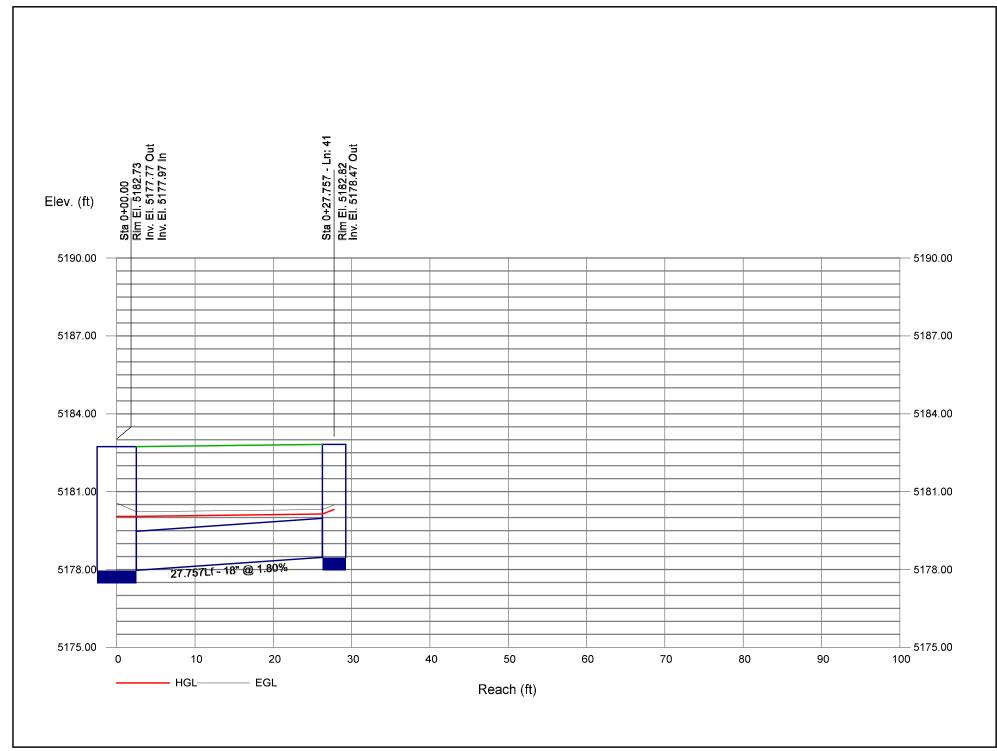


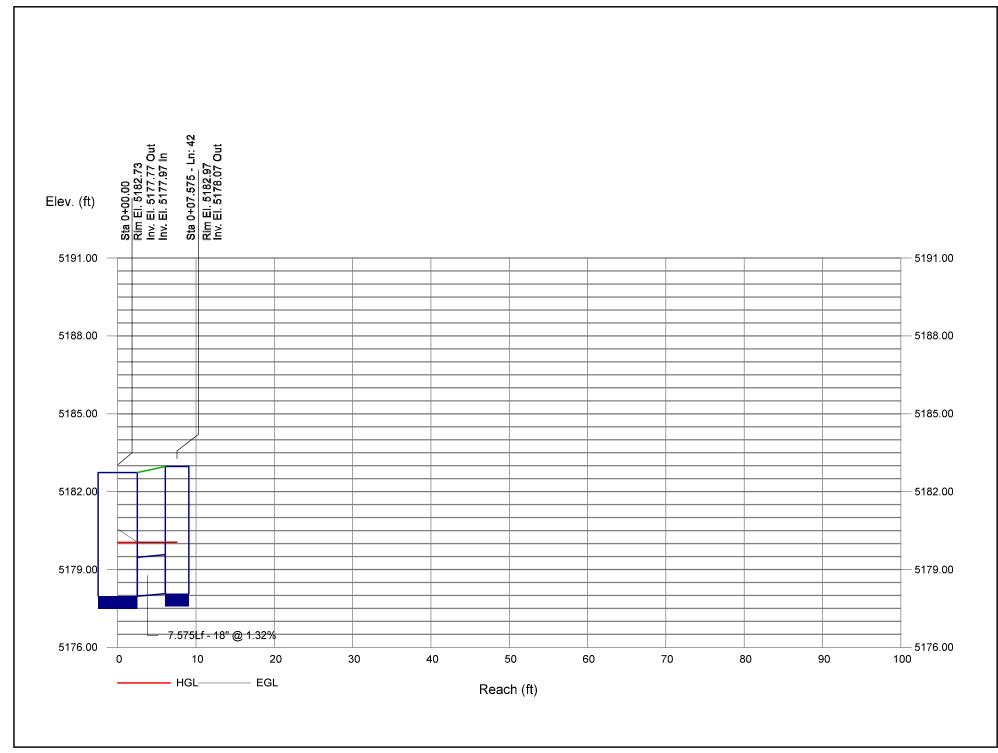


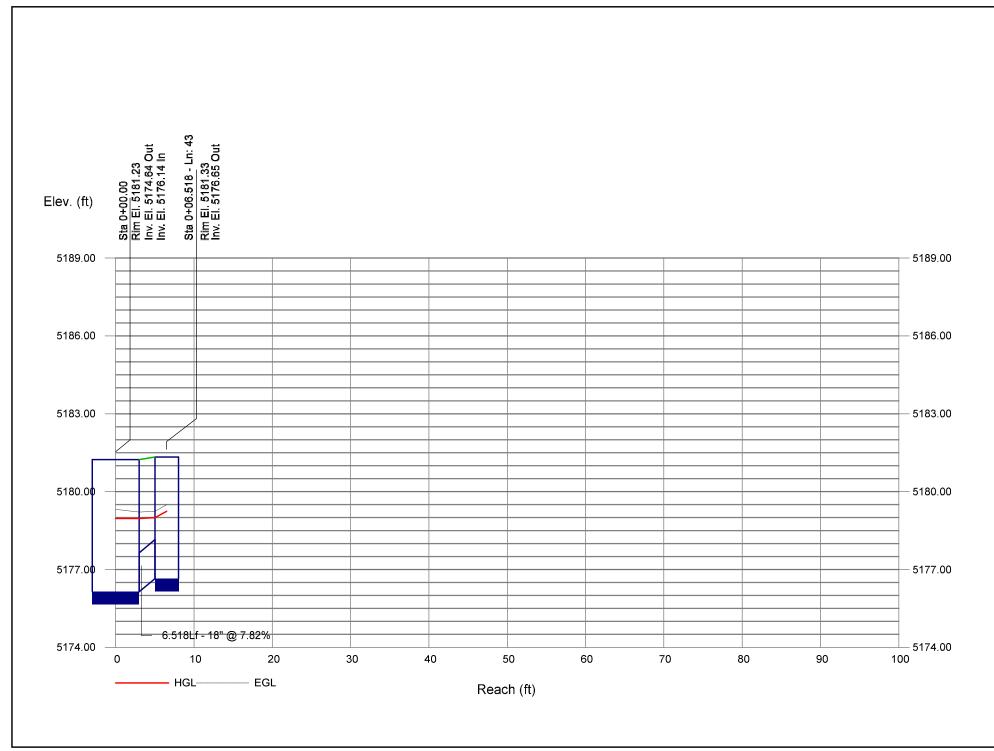


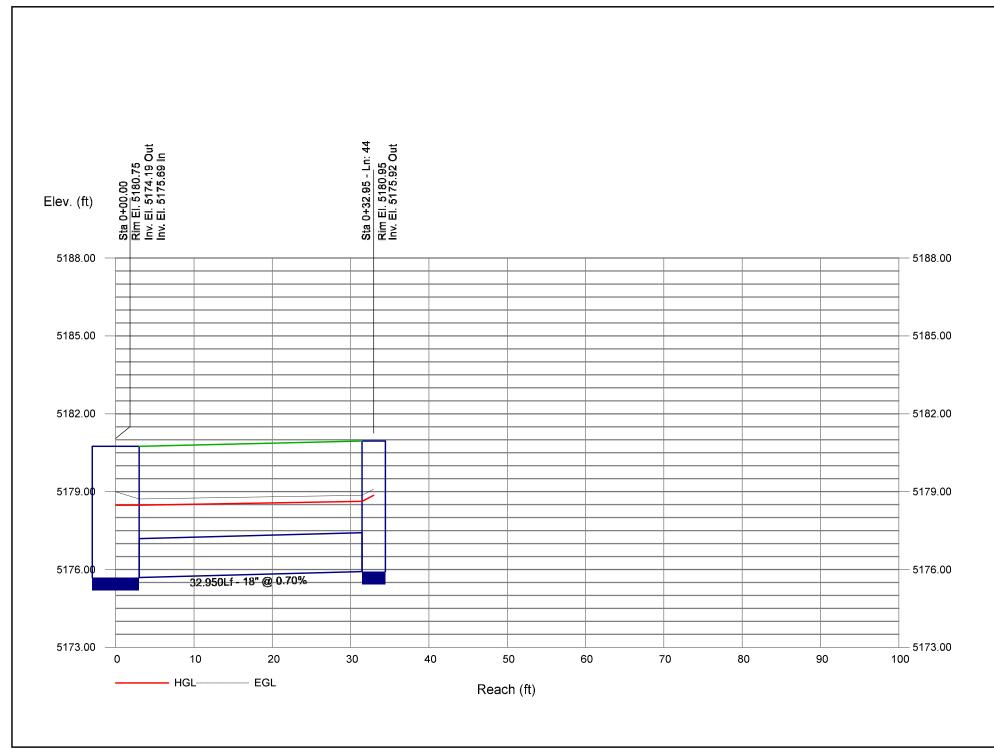


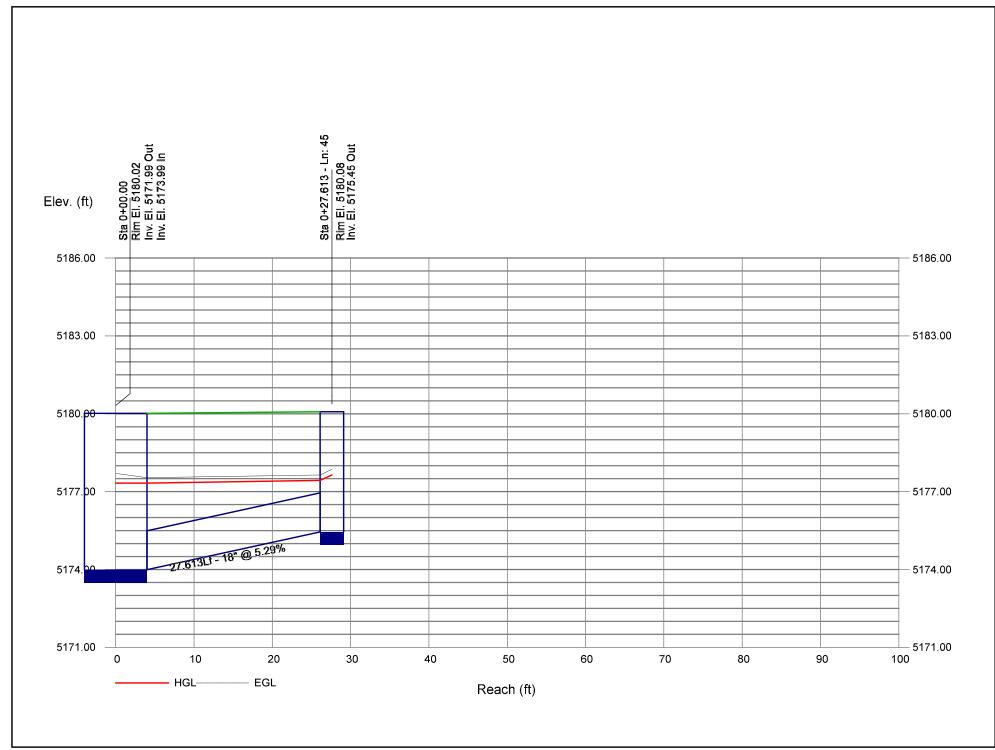


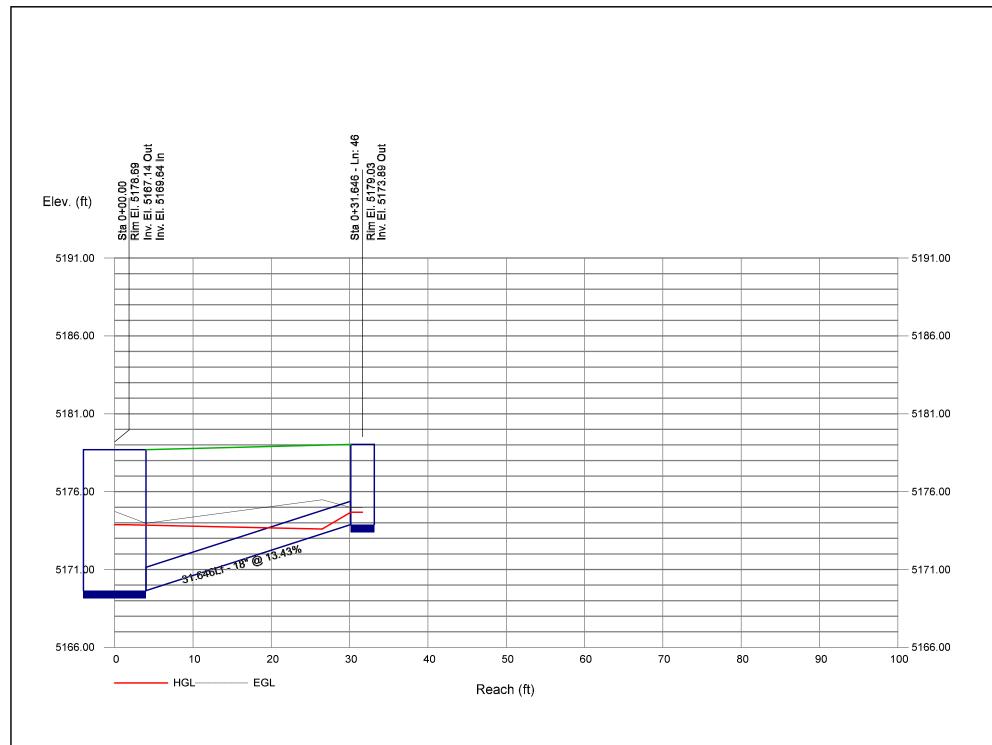


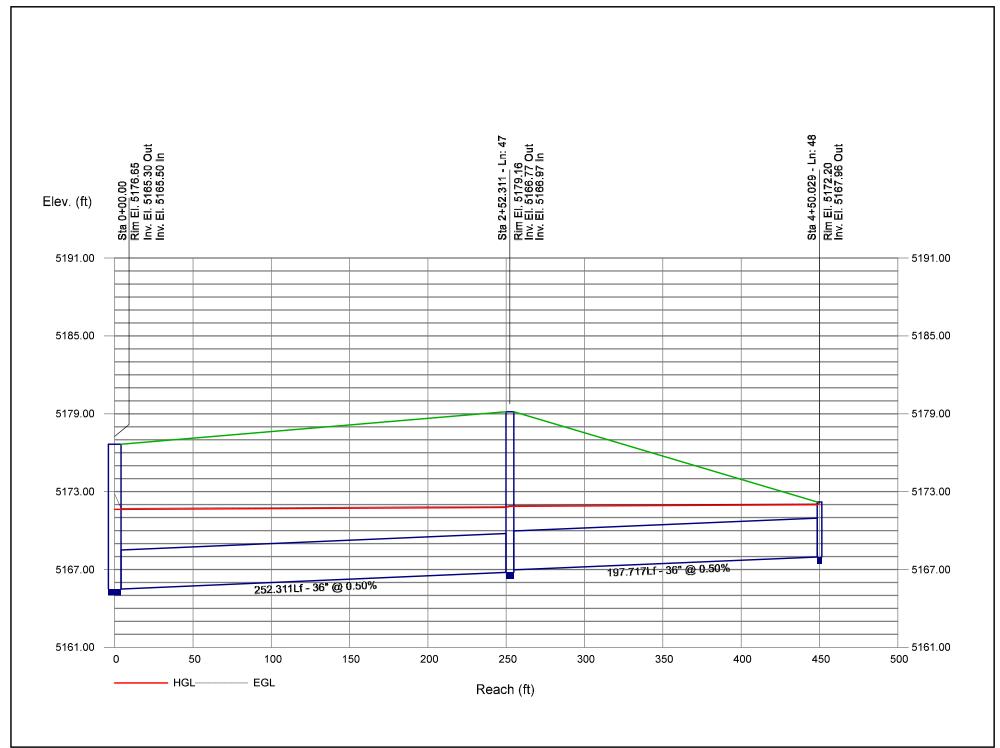




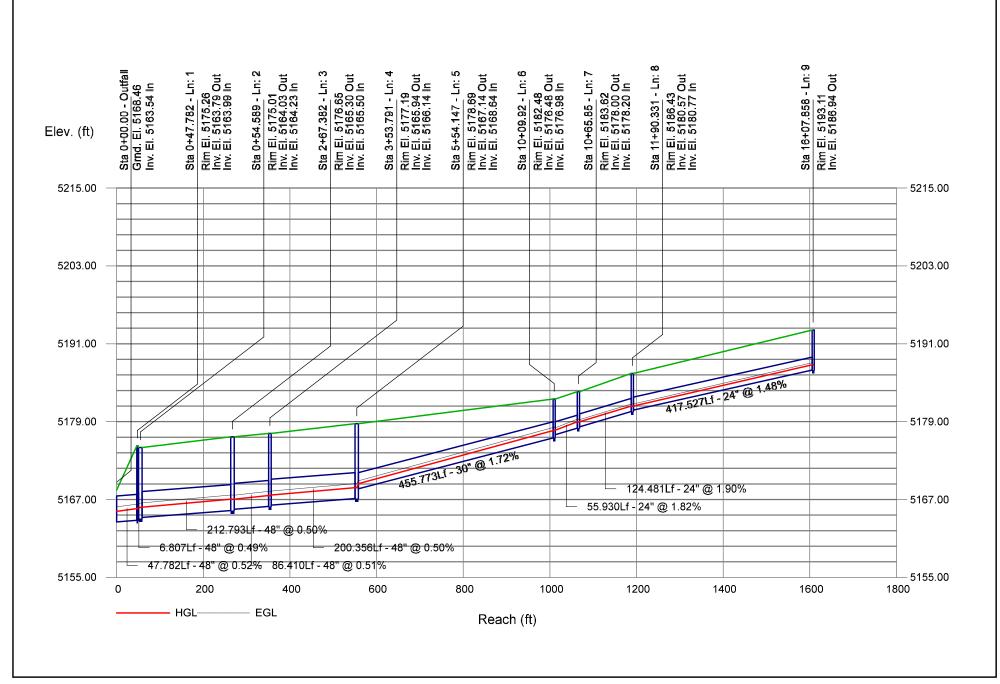


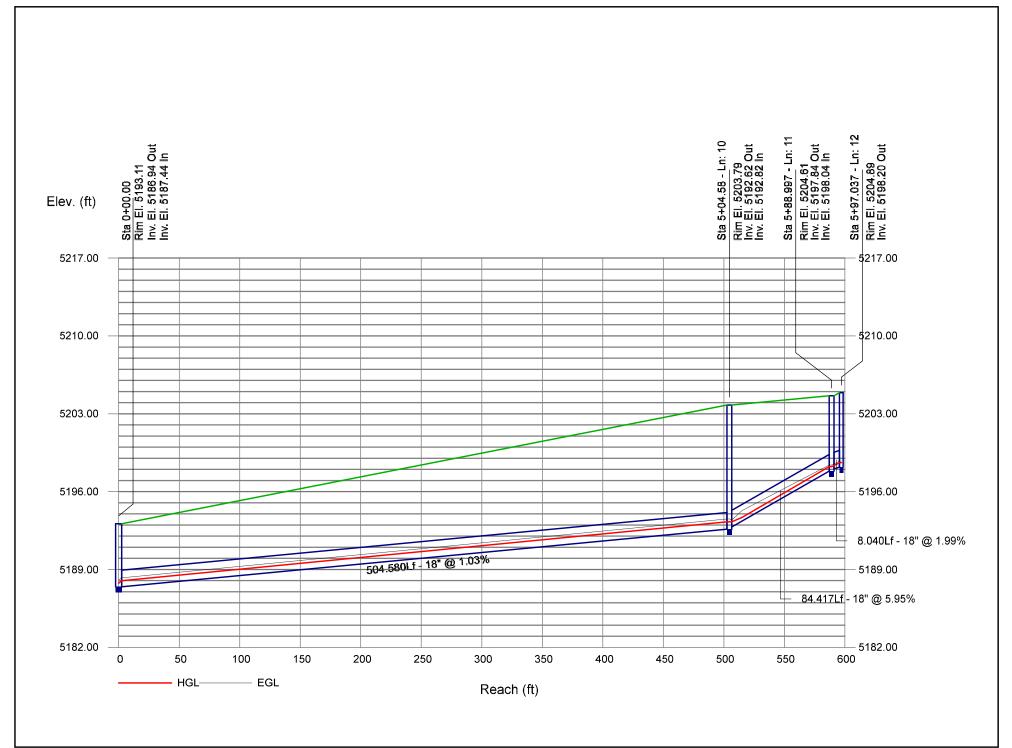


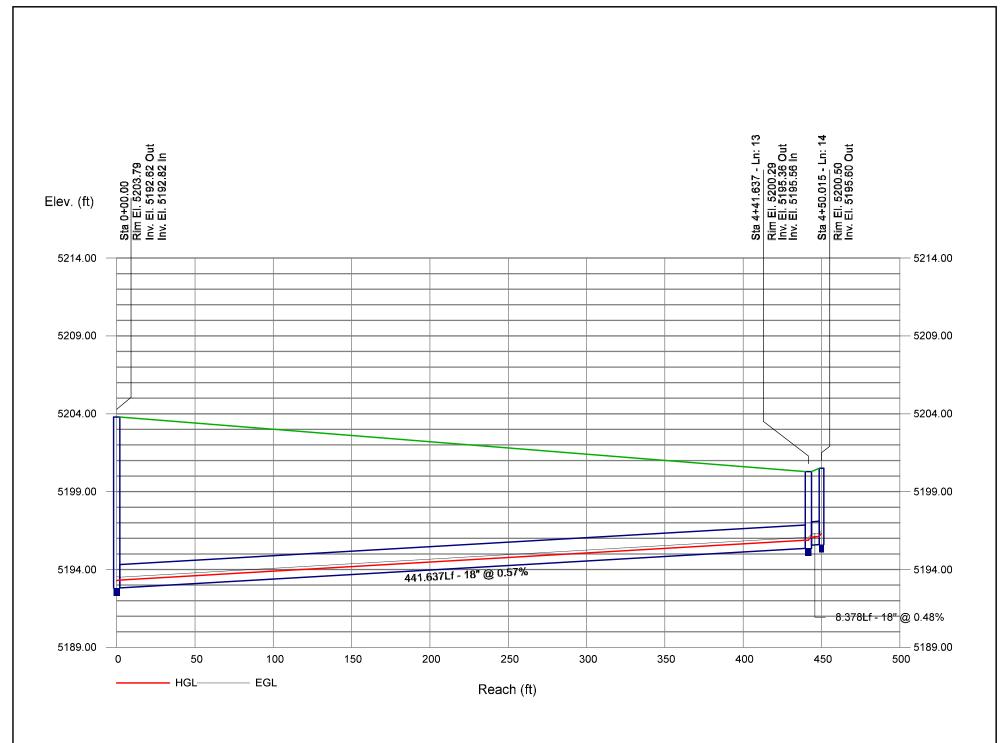


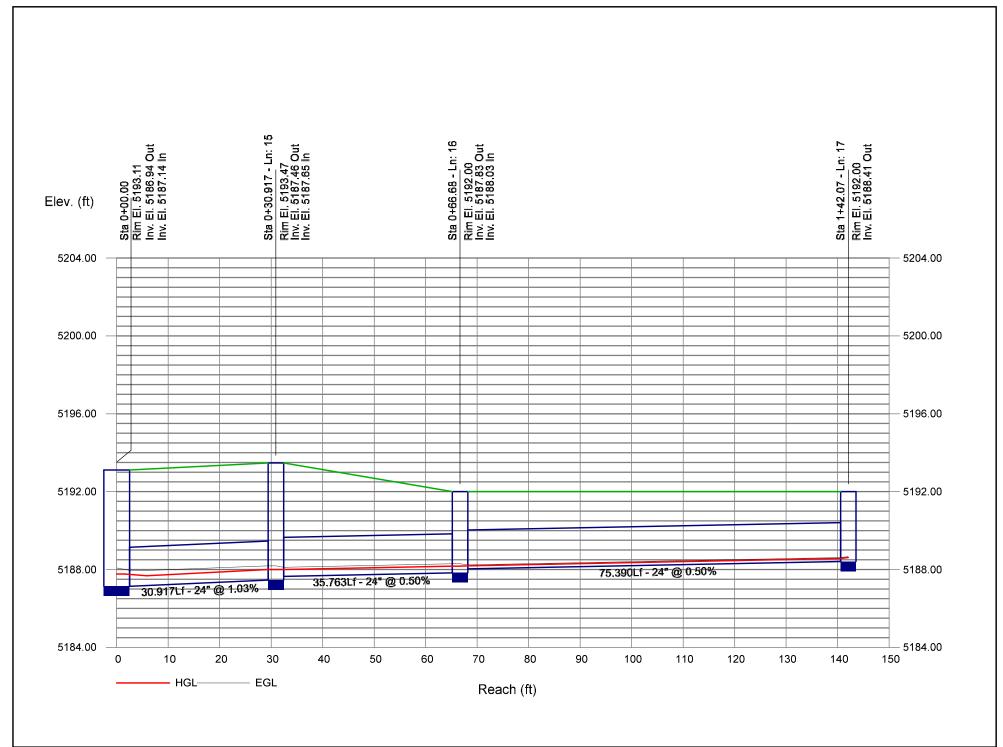


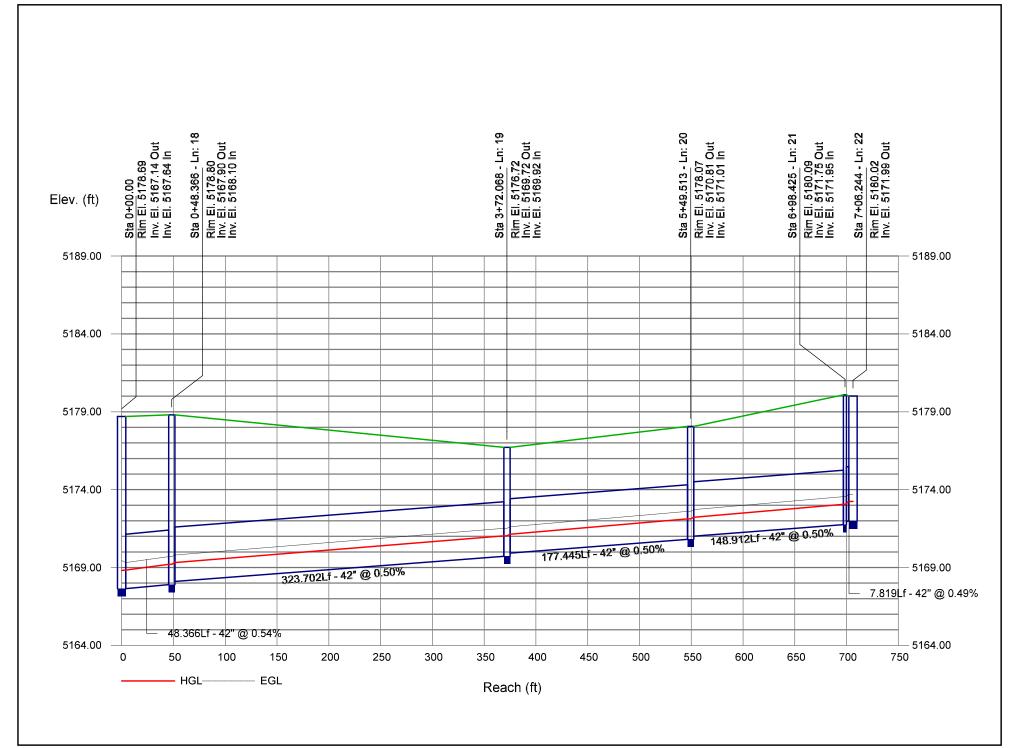
CustomRep

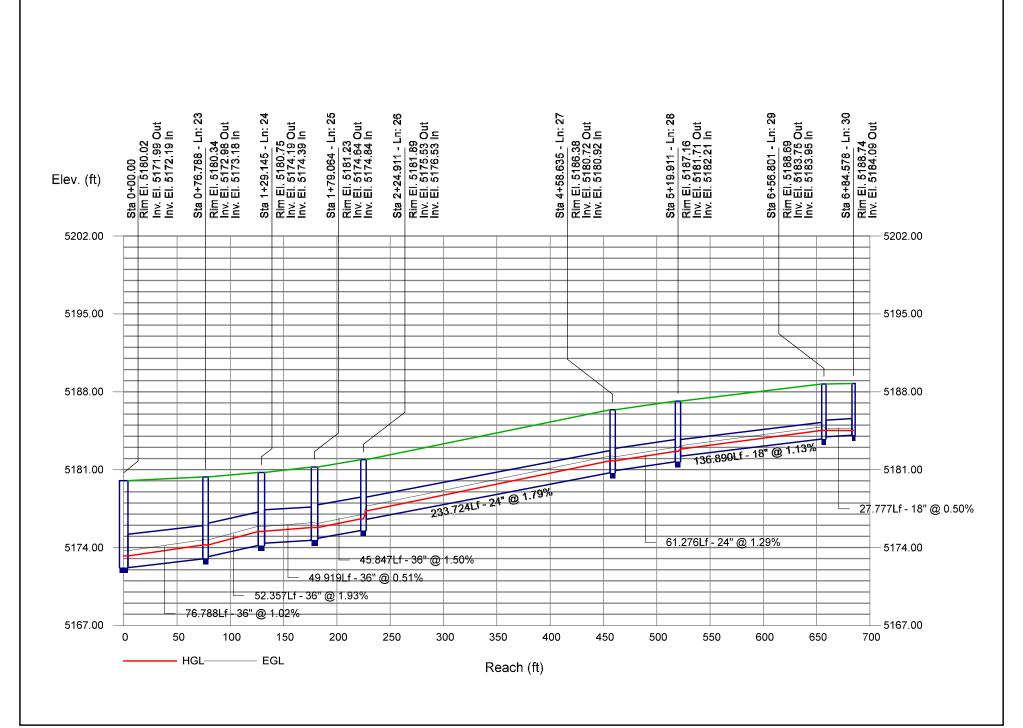

Line No.	Line ID	Inlet ID	Line Rise	Line Span	Line Length	Line Slope	Flow Rate	Capac Full	Vel Ave	Invert Up	Invert Dn	HGL Up	HGL Dn	EGL Up	EGL Dn	n-val Pipe	
			(in)	(in)	(ft)	(%)	(cfs)	(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		
1	06	SDI-26	48	48	47.782	0.52	36.60	103.90	7.11	5163.79	5163.54	5165.59	5165.18	5166.28	5165.87	0.013	TW = 5165.18' = NORMAL DEPTH >
2	05	SDMH-04	48	48	6.807	0.49	34.10	101.06	6.89	5164.03	5163.99	5165.76	5165.60	5166.43	5166.26	0.013	5-YEAR DETENTION POND
3	07	SDMH-11	48	48	212.793	0.50	34.10	101.90	6.91	5165.30	5164.23	5167.04	5165.82	5167.70	5166.49	0.013	WSE (5164.88')
4	23	SDMH-01	48	48	86.410	0.51	31.80	102.72	6.77	5165.94	5165.50	5167.62	5167.04	5168.25	5167.67	0.013	
5	08	SDMH-02	48	48	200.356	0.50	31.80	101.48	6.76	5167.14	5166.14	5168.81	5167.68	5169.45	5168.31	0.013	
6	62	SDMH-28	30	30	455.773	1.72	11.90	53.79	7.08	5176.48	5168.64	5177.64	5169.44	5178.08	5169.89	0.013	
7	61	SDMH-27	24	24	55.930	1.82	7.70	30.54	6.54	5178.00	5176.98	5178.99	5177.67	5179.37	5178.05	0.013	
8	64	SDMH-30	24	24	124.481	1.90	5.50	31.21	4.64	5180.57	5178.20	5181.40	5178.99	5181.71	5179.30		In this particular case normal depth of pipe is higher than
9	79	SDMH-37	24	24	417.527	1.48	5.50	27.49	5.51	5186.94	5180.77	5187.77	5181.40	5188.08	5181.71	0.013	the 5-year WSEL in the detention basin. So the
10	84	SDMH-40	18	18	504.580	1.03	3.10	10.64	4.64	5192.62	5187.44	5193.29	5188.00	5193.55	5188.25	0.013	program defaults to using normal depth of pipe as
11	87	SDMH-41	18	18	84.417	5.95	1.20	25.61	2.80	5197.84	5192.82	5198.25 j	5193.29	5198.40	5193.44		tailwater as opposed to using the 5-year detention pond
12	88	SDI-45	18	18	8.040	1.99	1.20	14.82	4.06	5198.20	5198.04	5198.61	5198.33	5198.76	5198.48	0.013	WSEL. This results in a more conservative HGL
13	85	SDMH-39	18	18	441.637	0.57	1.90	7.96	3.60	5195.36	5192.82	5195.88	5193.32	5196.07	5193.51	0.013	estimation.
14	86	SDI-44	18	18	8.378	0.48	1.90	7.26	3.46	5195.60	5195.56	5196.12 j	5196.08	5196.31	5196.27	0.013	
15	80	SDI-40	24	24	30.917	1.03	2.40	23.00	3.18	5187.46	5187.14	5188.00 j	5187.77	5188.19	5187.96	0.013	
16	81	SDI-25	24	24	35.763	0.50	1.00	16.05	2.75	5187.83	5187.65	5188.17	5188.00	5188.29	5188.12	0.013	
17	82	SDI-41	24	24	75.390	0.50	0.20	16.07	1.76	5188.41	5188.03	5188.57	5188.19	5188.62	5188.23	0.013	
18	09	SDMH-42	42	42	48.366	0.54	18.40	73.73	5.98	5167.90	5167.64	5169.21	5168.83	5169.70	5169.32	0.013	
19	10	SDMH-43	42	42	323.702	0.50	18.40	71.18	5.90	5169.72	5168.10	5171.03	5169.32	5171.52	5169.80	0.013	
20	11	SDMH-44	42	42	177.445	0.50	18.40	71.26	5.90	5170.81	5169.92	5172.12	5171.13	5172.61	5171.62	0.013	
21	12	SDI-47	42	42	148.912	0.50	18.40	70.93	5.90	5171.75	5171.01	5173.06	5172.23	5173.55	5172.71	0.013	
22	109	SDMH-50	42	42	7.819	0.49	16.80	70.67	5.73	5171.99	5171.95	5173.24	5173.11	5173.70	5173.57	0.013	
23	101	SDMH-51	36	36	76.788	1.02	15.30	67.44	6.23	5172.98	5172.19	5174.22	5173.24	5174.69	5173.71	0.013	
Projec	t File: 11	104_5YrHGL_SystemE	3.stm									Number of li	nes: 48		Date	e: 11/23/	2020
NOTE	S: ** Cri	tical depth															

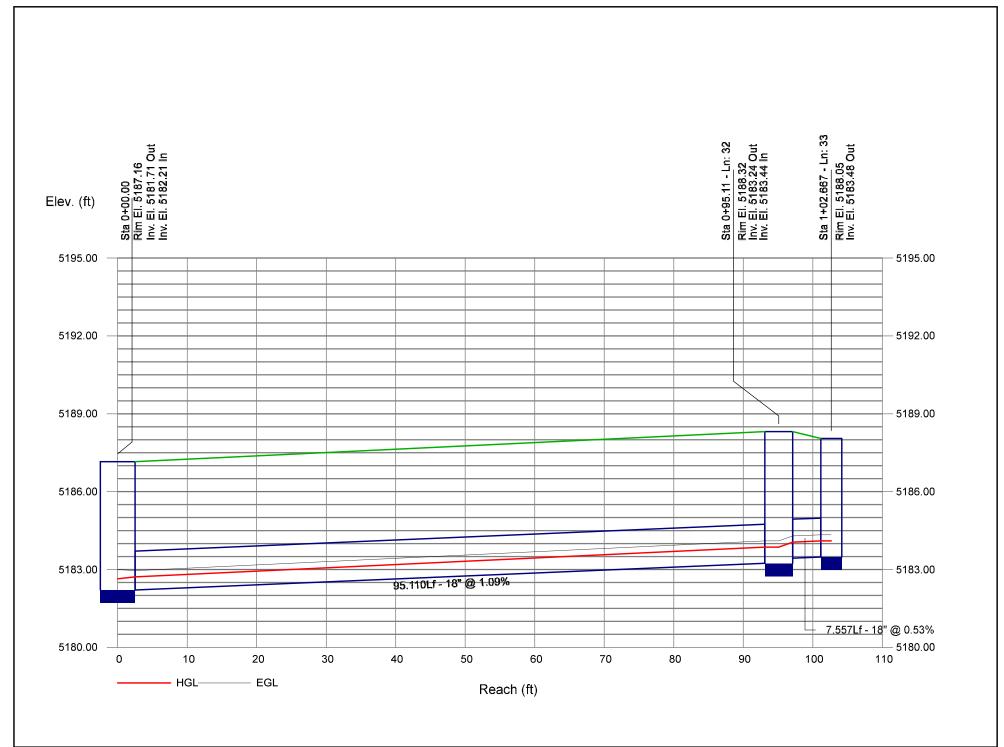

CustomRep

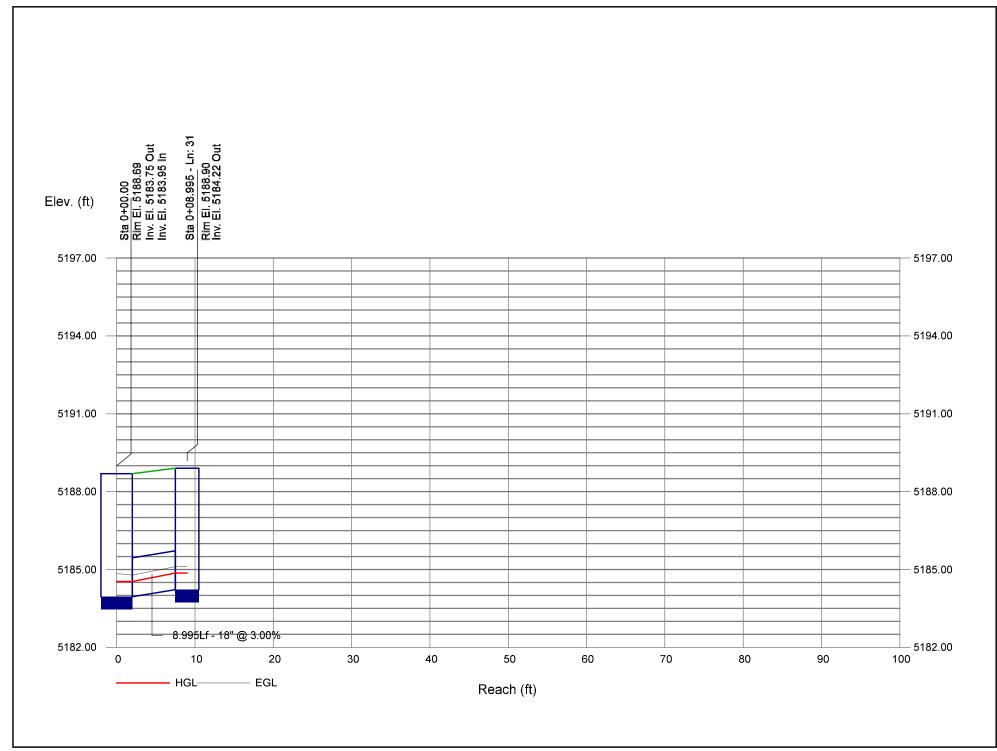

Line No.	Line ID	Inlet ID	Line Rise	Line Span	Line Length	Line Slope	Flow Rate	Capac Full	Vel Ave	Invert Up	Invert Dn	HGL Up	HGL Dn	EGL Up	EGL Dn	n-val Pipe	
			(in)	(in)	(ft)	(%)	(cfs)	(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		
24	65	SDMH-52	36	36	52.357	1.93	15.30	92.62	6.26	5174.19	5173.18	5175.44	5174.22	5175.91	5174.69	0.013	
25	108	SDMH-53	36	36	49.919	0.51	13.20	47.47	5.51	5174.64	5174.39	5175.80	5175.47	5176.23	5175.90	0.013	
26	66	SDMH-31	36	36	45.847	1.50	10.80	81.82	5.27	5175.53	5174.84	5176.57	5175.80	5176.95	5176.18	0.013	
27	67	SDMH-32	24	24	233.724	1.79	9.10	30.28	6.85	5180.72	5176.53	5181.80	5177.28	5182.23	5177.72	0.013	
28	68	SDMH-33	24	24	61.276	1.29	6.90	25.68	5.01	5181.71	5180.92	5182.64	5181.80	5183.00	5182.16	0.013	
29	69	SDMH-34	18	18	136.890	1.13	4.20	11.14	5.17	5183.75	5182.21	5184.54	5182.85	5184.85	5183.16	0.013	
30	71	SDI-31	18	18	27.777	0.50	1.30	7.45	2.59	5184.09	5183.95	5184.52	5184.54	5184.67	5184.69	0.013	
31	70	SDI-30	18	18	8.995	3.00	2.90	18.19	4.26	5184.22	5183.95	5184.87	5184.54	5185.11	5184.78	0.013	
32	78	SDMH-36	18	18	95.110	1.09	2.70	10.94	4.51	5183.24	5182.21	5183.87	5182.72	5184.10	5182.95	0.013	
33	83	SDI-42	18	18	7.557	0.53	2.70	7.64	3.92	5183.48	5183.44	5184.10	5184.06	5184.34	5184.29	0.013	
34	77	SDI-33	18	18	27.777	2.05	2.20	15.04	3.59	5181.79	5181.22	5182.35 j	5181.80	5182.56	5182.00	0.013	
35	73	SDI-38	18	18	30.055	1.86	1.20	14.33	2.75	5179.06	5178.50	5179.47 j	5178.99	5179.62	5179.13	0.013	
36	72	SDI-37	18	18	8.278	2.18	1.00	15.49	2.47	5178.68	5178.50	5179.05 j	5178.99	5179.19	5179.12	0.013	
37	75	SDMH-35	18	18	95.110	0.96	1.70	10.27	3.84	5177.84	5176.93	5178.33	5177.34	5178.51	5177.52	0.013	
38	76	SDI-39	18	18	7.557	1.32	1.70	12.09	4.11	5178.14	5178.04	5178.63	5178.42	5178.81	5178.60	0.013	
39	29	SDMH-10	18	18	58.370	0.50	4.20	7.40	4.33	5177.77	5177.48	5178.58	5178.29	5178.87	5178.58	0.013	
40	42	SDI-07	18	18	138.548	1.62	1.90	13.38	2.61	5180.22	5177.97	5180.74 j	5178.87	5180.93	5179.06	0.013	
41	40	SDI-12	18	18	27.757	1.80	2.00	14.09	2.68	5178.47	5177.97	5179.00 j	5178.87	5179.20	5179.07	0.013	
42	41	SDI-13	18	18	7.575	1.32	0.30	12.04	1.19	5178.07	5177.97	5178.27	5178.87	5178.34	5178.94	0.013	
43	107	SDI-34	18	18	6.518	7.82	2.40	29.37	6.88	5176.65	5176.14	5177.24	5176.43	5177.46	5176.65	0.013	
44	74	SDI-35	18	18	32.950	0.70	2.10	8.77	3.84	5175.92	5175.69	5176.47	5176.19	5176.67	5176.39	0.013	
45	13	SDI-48	18	18	27.613	5.29	1.50	24.15	5.44	5175.45	5173.99	5175.91	5174.24	5176.08	5174.41	0.013	
46	14	SDI-46	18	18	31.646	13.43	1.50	38.48	6.89	5173.89	5169.64	5174.35	5169.84	5174.52	5170.01	0.013	
Projec	t File: 1	104_5YrHGL_SystemE	3.stm									Number of li	nes: 48		Date	e: 11/23/	2020
NOTE	S: ** Cri	itical depth															

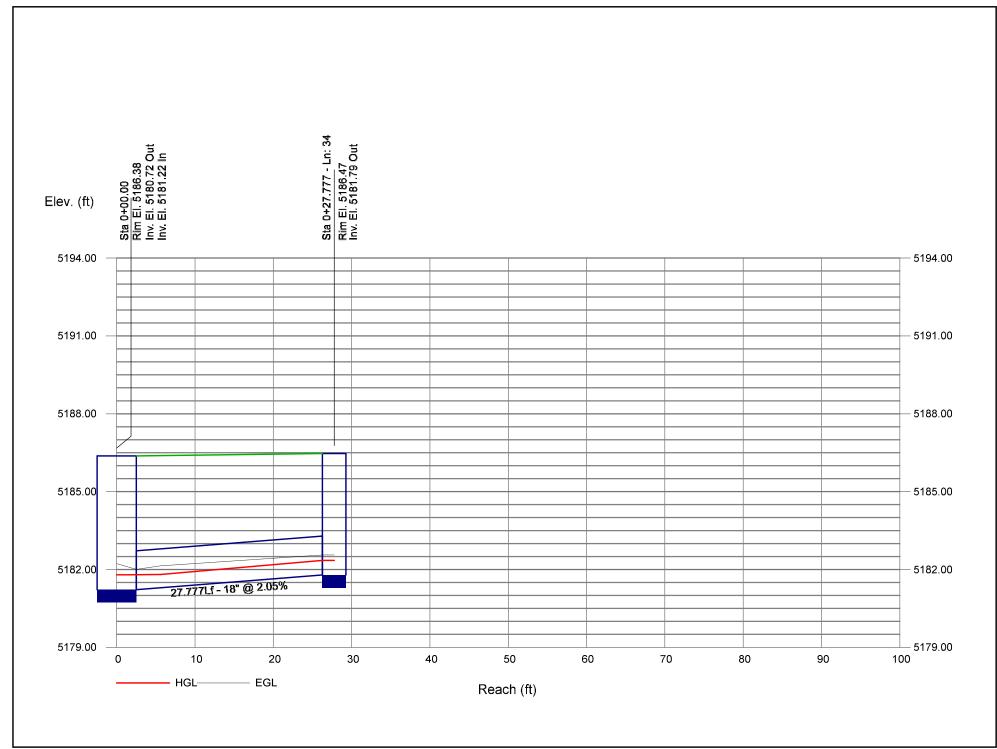

CustomRep

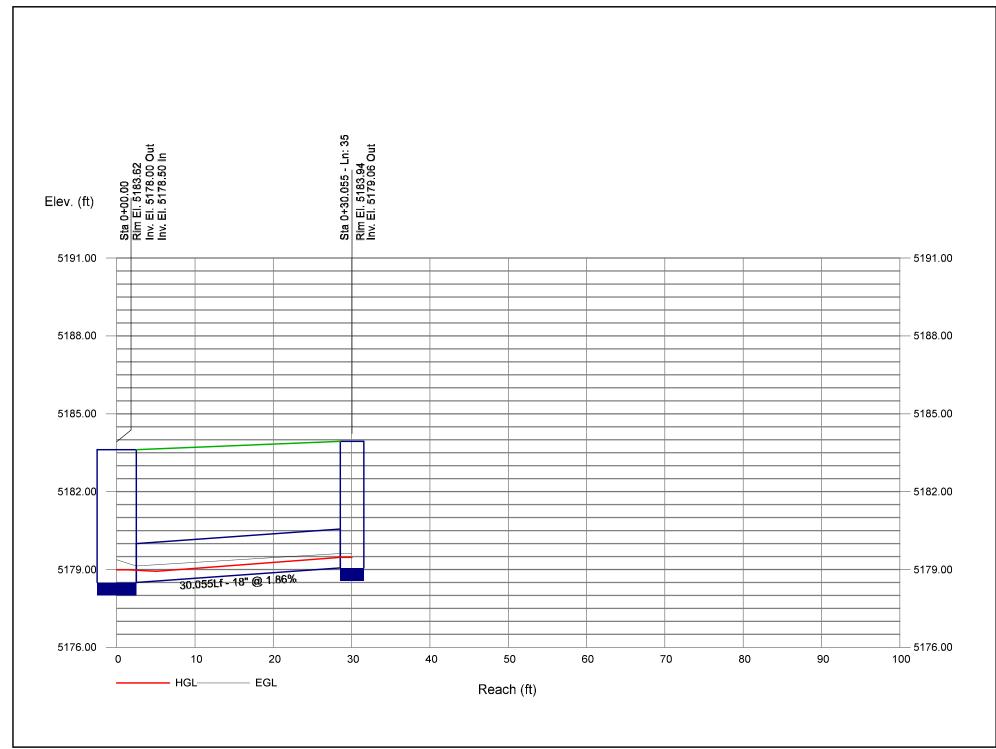

Line No.	Line ID	Inlet ID	Line Rise	Line Span	Line Length	Line Slope	Flow Rate	Capac Full	Vel Ave	Invert Up	Invert Dn	HGL Up	HGL Dn	EGL Up	EGL Dn	n-val Pipe	
			(in)	(in)	(ft)	(%)	(cfs)	(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		
47	97	SDMH-38	36	36	252.311	0.50	2.30	47.39	1.94	5166.77	5165.50	5167.25 j	5167.04	5167.41	5167.20	0.013	
48	96	SDI-32	36	36	197.717	0.50	2.30	47.19	3.34	5167.96	5166.97	5168.43	5167.42	5168.59	5167.58	0.013	
Projec	t File: 1	104_5YrHGL_SystemE	3.stm									Number of li	nes: 48		Date	: 11/23/2	
		tical depth															

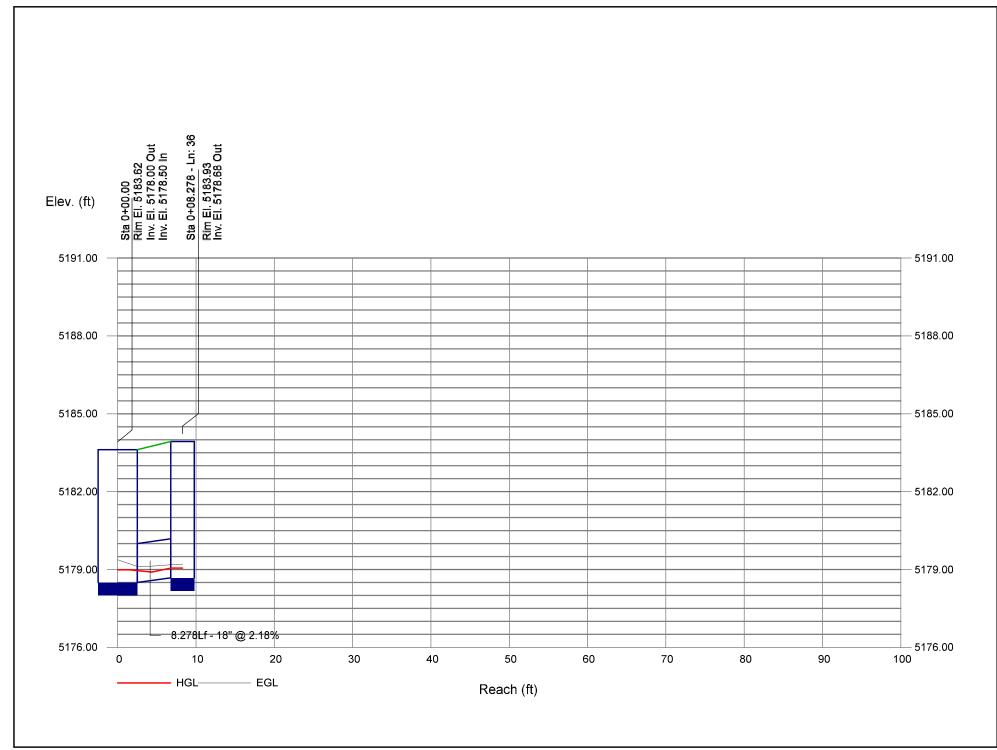


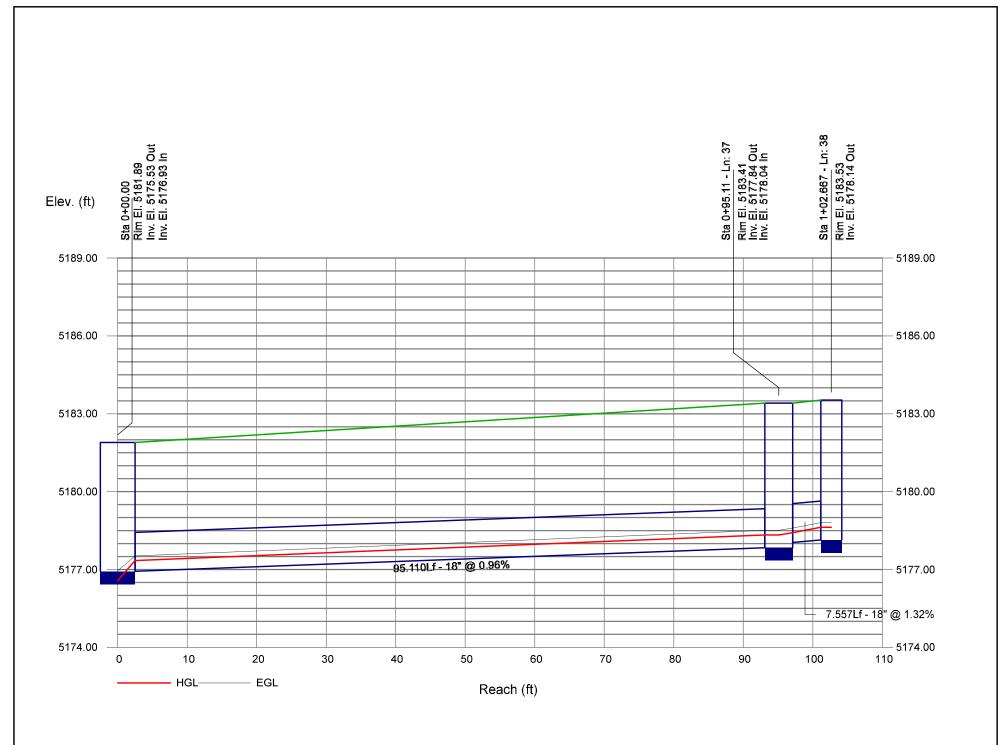


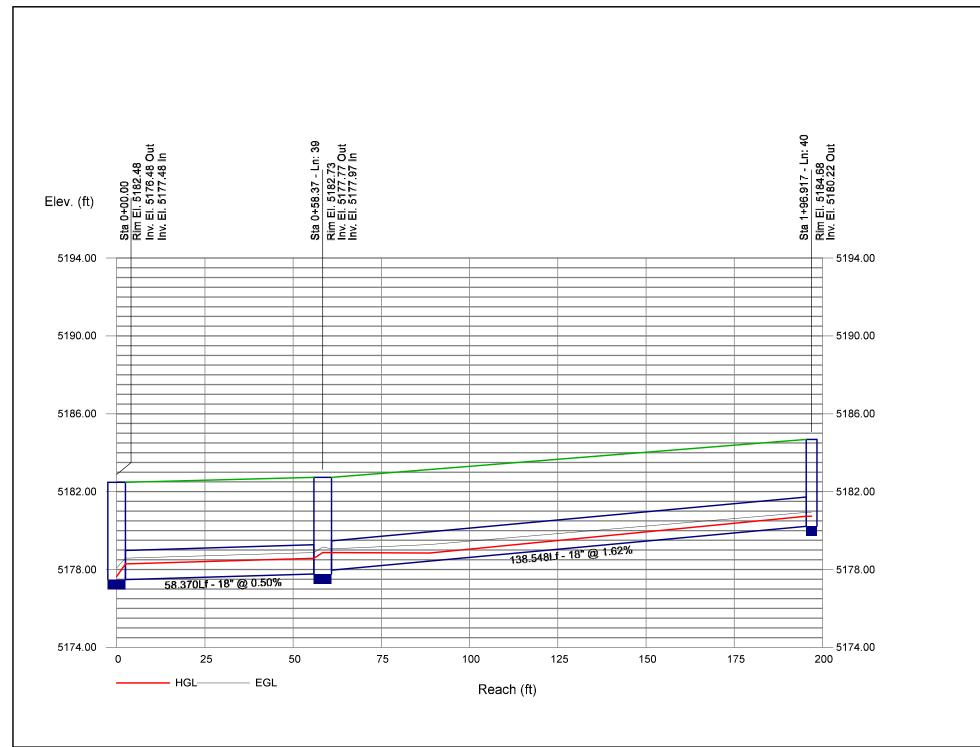


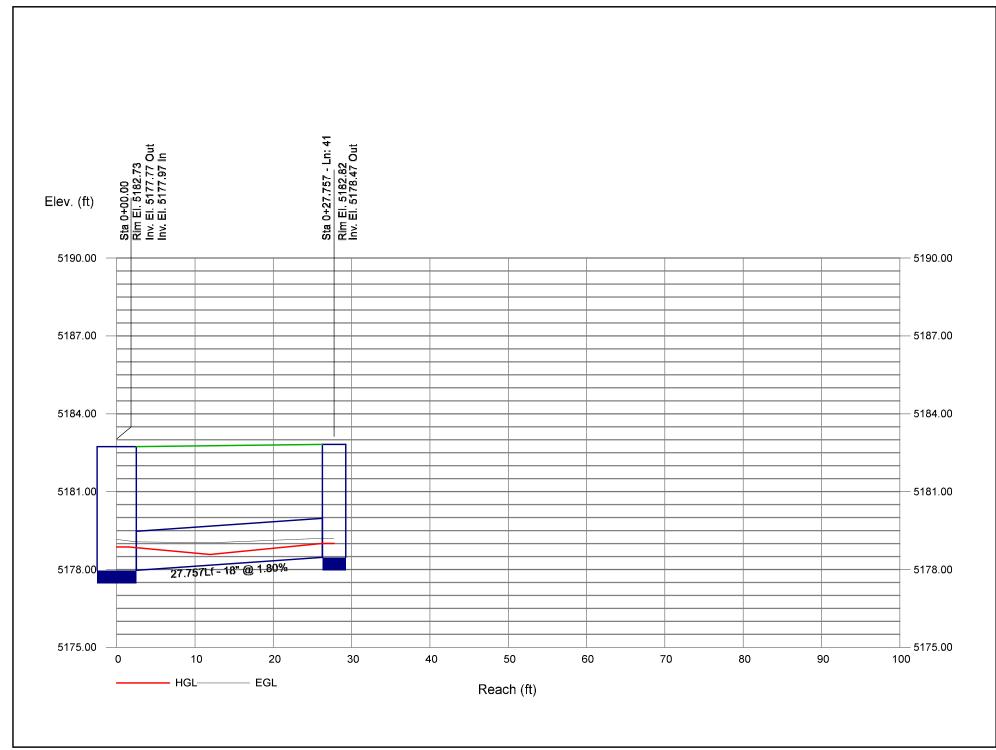


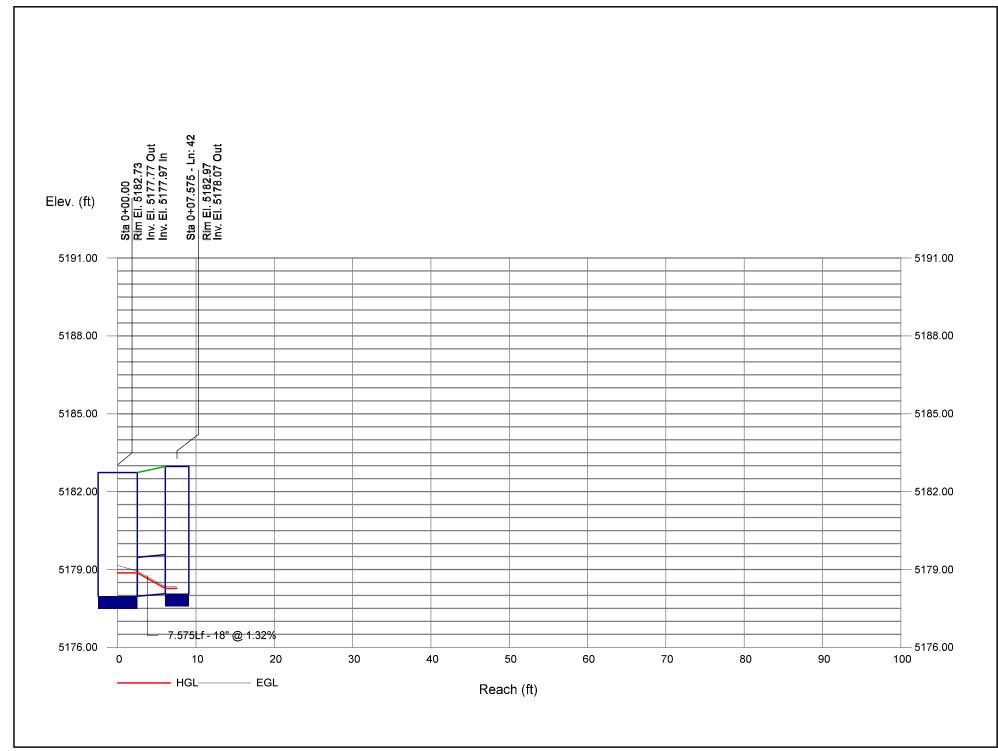


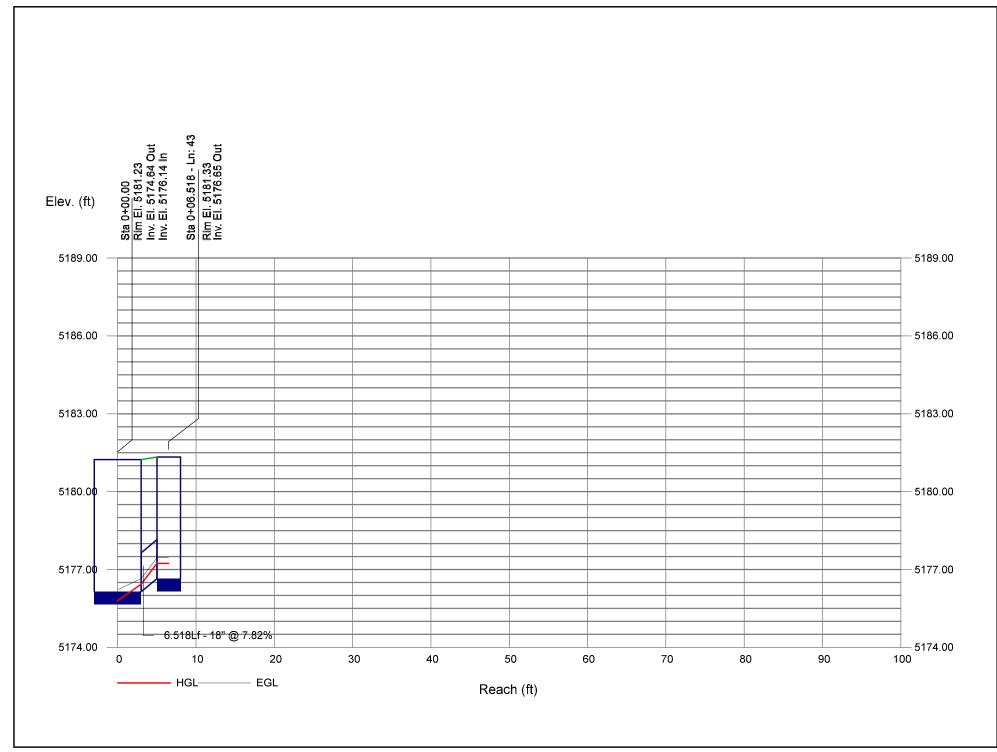


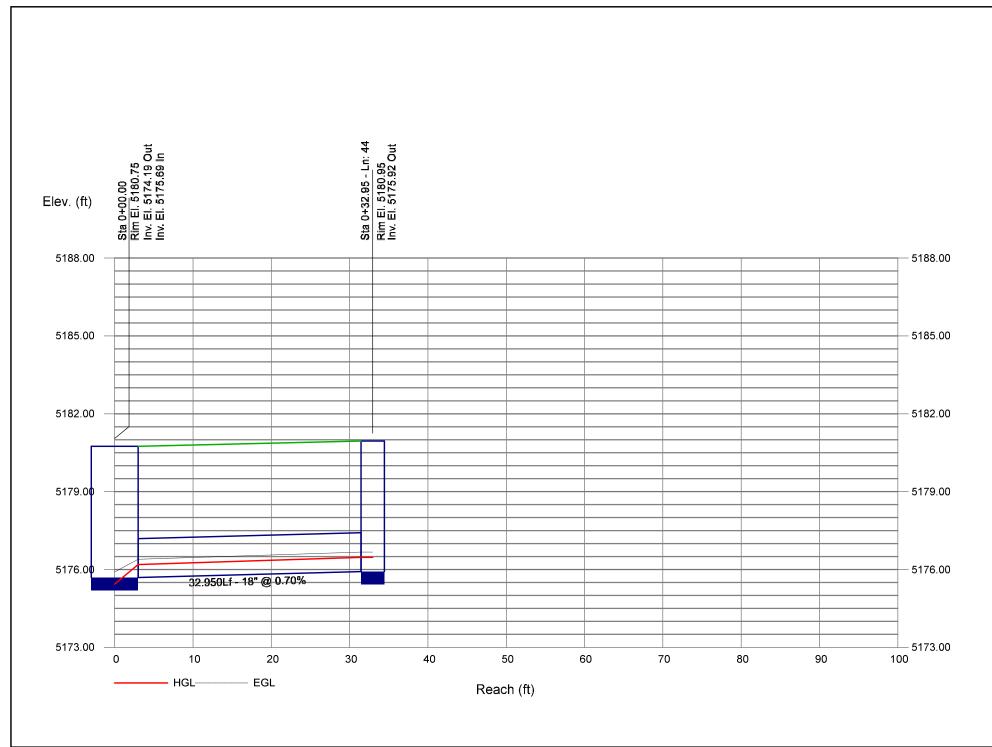


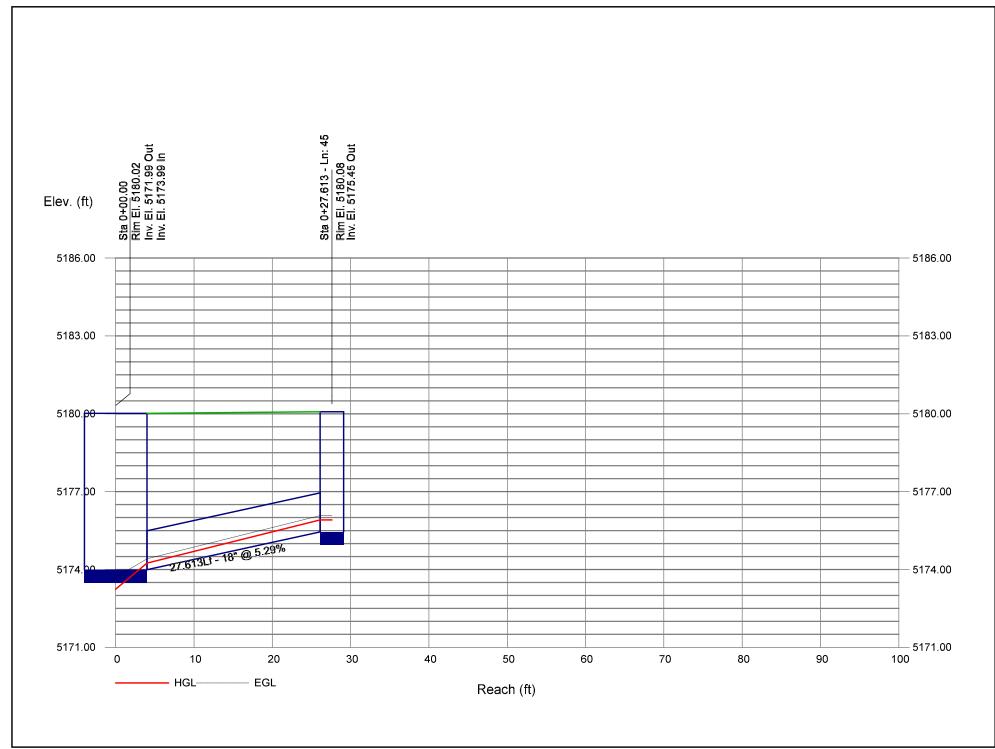


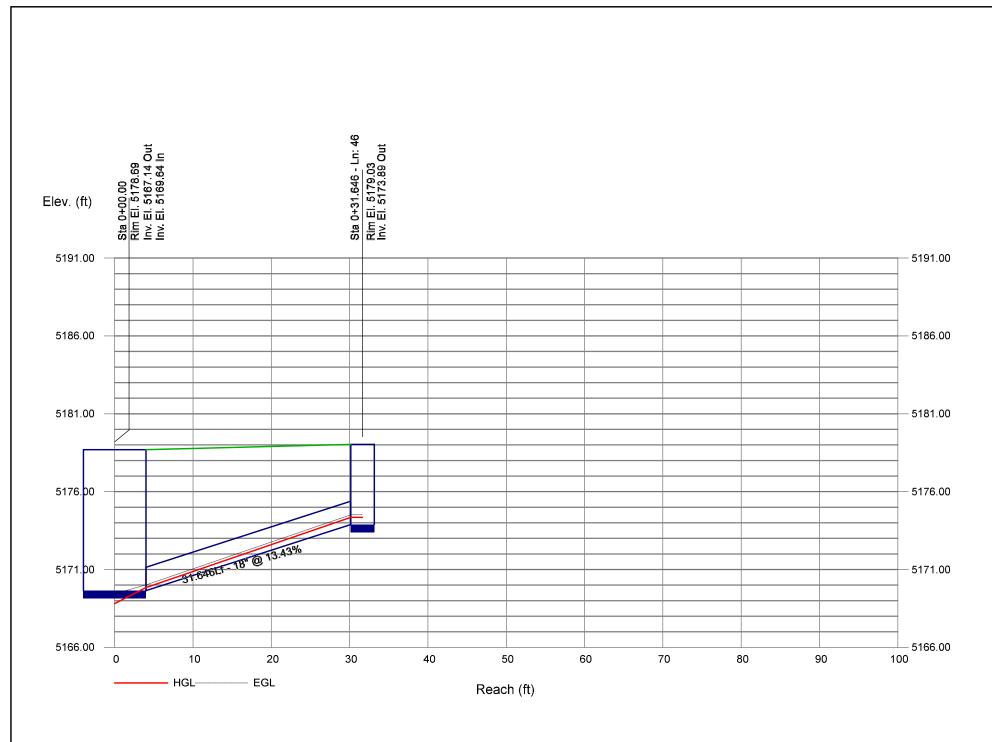


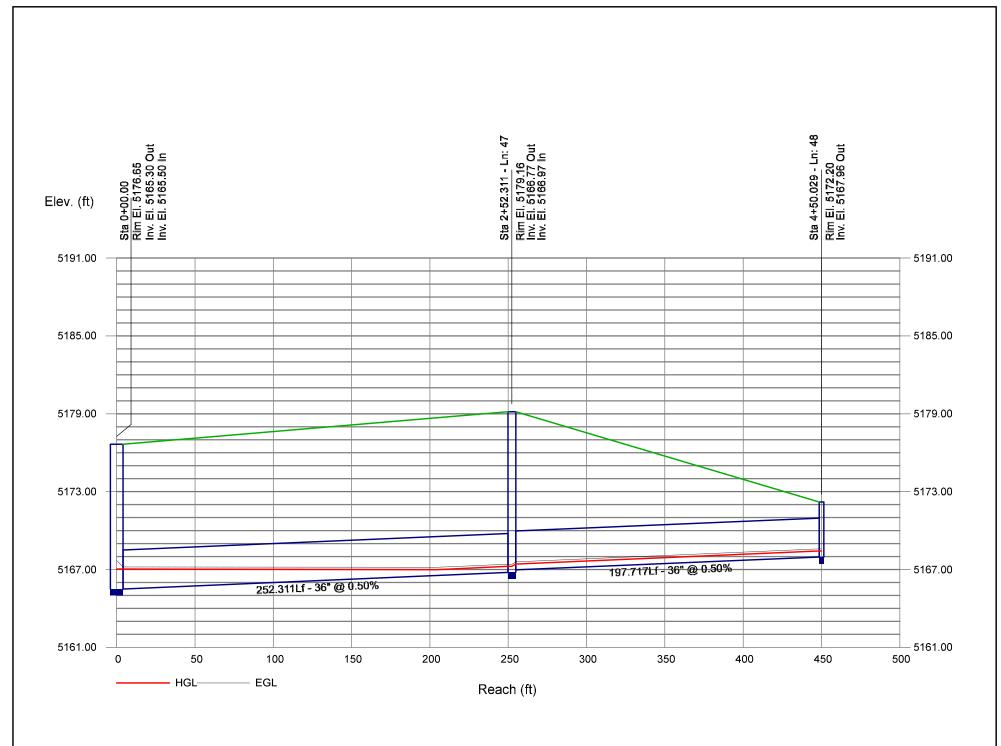












Appendix B – Hydraulic Computations Rip-Rap Apron Design

ENGINEERING COMPANY																						Number:	Westwood 1104 11/24/202	
Pipe Outfall ID	Pipe Diameter/ Equivalent Conduit Diameter (in)	100-Year Flow (cfs)	Flow Source	Outlet Invert (ft)	Tailwater Elevation ⁵ (ft)	Trailwater	Allowable Non- Eroding Velocity ¹ (fps)	A,	Y _t /D	Q/D^2.5	Expansion Factor ⁶	θ7	Minimum L _P ¹¹ (ft)	Maximum L _P ¹¹ (ft)	Calculated L_P^2 (ft)	Riprap		Lov D ⁹ (ft)	w Tailwat		d_{50}^{-} (ft)	Riprap Class ¹⁰	Class D ₅₀ ¹⁰ (in)	Riprap Thickness ^{3,9} (ft)
System A Line No. 1 (CD Line ID: 15, Inlet ID: SDI-05)	48	128.9	Hydraflow Storm Sewer	5163.54	5165.93	2.4	5	25.8		4.0	6.0	0.08	12.0	40.0	40.7	40.0	10.7	-	-	-	0.69	L	9	1.5
System B Line No. 1 (CD Line ID: 06, Inlet ID: SDI-26)	48	115.1	Hydraflow Storm Sewer	5163.54	5165.93	2.4	5	23.0	0.6	3.6	6.7	0.07	12.0	40.0	37.7	37.7	9.6	-	-	-	0.61	L	9	1.5
System A Line No. 44 (CD Line ID: 111, Inlet ID: SDI-20)	24	7.9	Hydraflow Storm Sewer	5161.77	5165.93	4.2	5	1.6	2.1	1.4	6.7	0.07	6.0	20.0	-10.9	6.0	2.9	-	-	-	0.03	L	9	1.5
System A Line No. 46 (CD Line ID: 02, Inlet ID: SDI-01)	24	11.2	Hydraflow Storm Sewer	5161.77	5165.93	4.2	5	2.2	2.1	2.0	6.7	0.07	6.0	20.0	-9.8	6.0	2.9	-	-	-	0.04	L	9	1.5
System A Line No. 48 (CD Line ID: 01, Inlet ID: POND OUTFALL-1)	48	110.3	MHFD Detention Spreadsheet	5159.72	5163.72	4.0	5	22.1	1.0	3.4	6.7	0.07	12.0	40.0	10.2	12.0	5.8	-	-	-	0.32	L	9	1.5

1 - USDCM Volume 2: 5 ft/sec for non-cohesive soils and at 7 ft/sec for erosion resistant soils.

2 - USDCM Volume 2: Equation 9-11

3 - USDCM Volume 2: Figure 9-34

4 - USDCM Volume 2: Equation 9-12

5 - Based on MHFD Detention Spreadsheet Basin 100-Year WSE

6 - USDCM Volume 2: Figure 9-35

7 - USDCM Volume 2: Equation 9-14

8 - USDCM Volume 2: Equation 9-16

9 - USDCM Volume 2: Figure 9-37

10 - USDCM Volume 1: Figure 8-34 11 - USDCM Volume 2: Min L_p = 3D, Max L_p = 10D.

$$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t} - W\right)$$

Where:

 L_p = length of protection (ft)

W = width of the conduit (ft, use diameter for circular conduits)

 Y_t = tailwater depth (ft)

 θ = the expansion angle of the culvert flow

and:

 $A_t = \frac{Q}{V}$

Where:

Q =design discharge (cfs)

V = the allowable non-eroding velocity in the downstream channel (ft/sec)

 A_t = required area of flow at allowable velocity (ft²)

 $\theta = \tan^{-1} \left(\frac{1}{2(\text{ExpansionFactor})} \right)$

Where:

Expansion Factor = determined using Figure 9-35 or 9-36

T is then calculated using the following equation:

 $T=2(L_{\rm P}\tan\theta)+W$

Circular culvert:

$$d_{50} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$$

 D_c = diameter of circular culvert (ft)

Equation 9-11

Circular Conduit Outlet Riprap Pad Calculations

Job Name⁻ Westwood

Equation 9-13

Equation 9-14

Equation 9-16

Pipe Outfall ID	Width of Rectangular Conduit, W (in)	Height of Rectangular Conduit, H (in)	100-Year Flow (cfs)	Flow Source	Outlet Invert (ft)	Tailwater Elevation⁵ (ft)	Allowable Non- Eroding Velocity ¹ (fps)	Trailwater Depth, Y _t (ft)	A _t ⁴ (sqft)	Y _t /H	Q/WH^1.5	Expansion Factor ⁶	Θ^7	Minimum L _P ¹¹ (ft)	Maximum L _P ¹¹ (ft)	Calculated L_{p}^{2} (ft)	Recom Riprap L ^{3,11} (ft)	Apron ³	Low D ⁹ (ft)	Tailwater ⁹ N ⁹ (ft) L ⁹ (ft)	d ₅₀ ⁸ (ft)	Riprap Class ¹⁰	Class D ₅₀ ¹⁰ (in)	Riprap Thickness ^{3,9} (ft)
N. Monaco St. Crossing	420	24	184.4	MHFD Detention Spreadsheet	5158.95	5159.74	5	0.79	36.9	0.4	1.9	6.3	0.08	6.0	20.0	74.4	20.0	38.2	-		0.13	L	9	1.5

1 - USDCM Volume 2: 5 ft/sec for non-cohesive soils and at 7 ft/sec for erosion resistant soils.

2 - USDCM Volume 2: Equation 9-11

3 - USDCM Volume 2: Figure 9-34

4 - USDCM Volume 2: Equation 9-12 5 - HY-8 Culvert Analysis Tailwater WSE

6 - USDCM Volume 2: Figure 9-36

7 - USDCM Volume 2: Equation 9-14

8 - USDCM Volume 2: Equation 9-17

9 - USDCM Volume 2: Figure 9-37

10 - USDCM Volume 1: Figure 8-34

11 - USDCM Volume 2: Min L_p = 3H, Max L_p = 10H.

$$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t} - W\right)$$

Where:

 L_p = length of protection (ft)

W = width of the conduit (ft, use diameter for circular conduits)

 Y_t = tailwater depth (ft)

 θ = the expansion angle of the culvert flow

and:

 $A_t = \frac{Q}{V}$

Where:

Q =design discharge (cfs)

V = the allowable non-eroding velocity in the downstream channel (ft/sec)

 A_t = required area of flow at allowable velocity (ft²)

 $\theta = \tan^{-1} \left(\frac{1}{2(\text{ExpansionFactor})} \right)$

Where:

Equation 9-11

Equation 9-12

Expansion Factor = determined using Figure 9-35 or 9-36

T is then calculated using the following equation:

 $T=2(L_{\rm P}\tan\theta)+W$

Circular culvert:

$$d_{50} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$$

 D_c = diameter of circular culvert (ft)

Rectangular Conduit Outlet Riprap Pad Calculations

Job Name: Westwood Job Number: 1104 Date: 11/24/2020

Equation 9-13

0

Equation 9-14

Equation 9-16

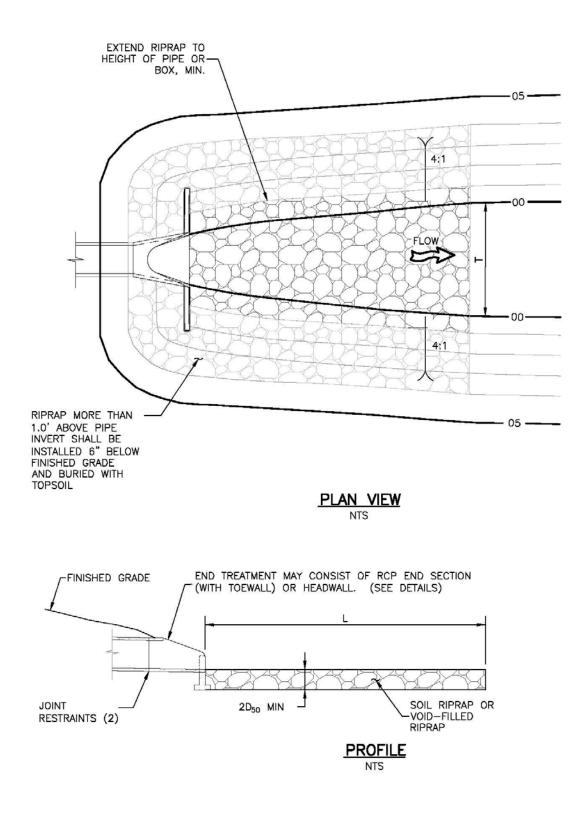


Figure 9-34. Riprap apron detail for culverts in-line with the channel

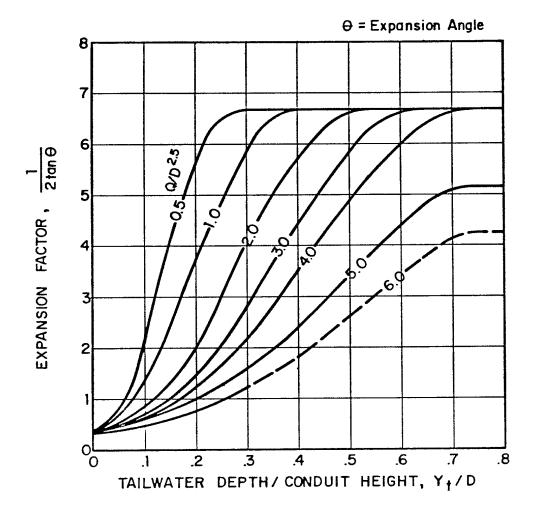


Figure 9-35. Expansion factor for circular conduits

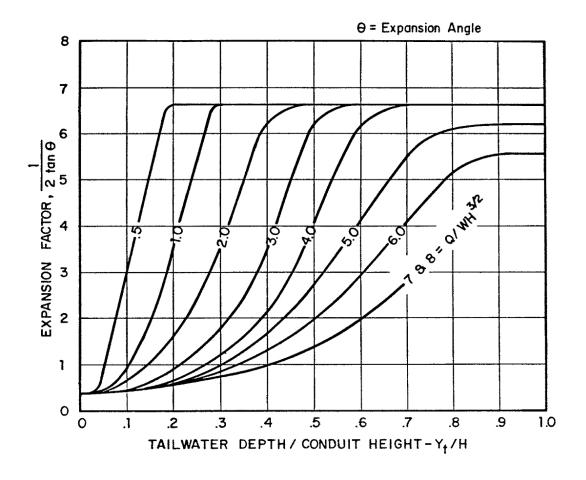


Figure 9-36. Expansion factor for rectangular conduits

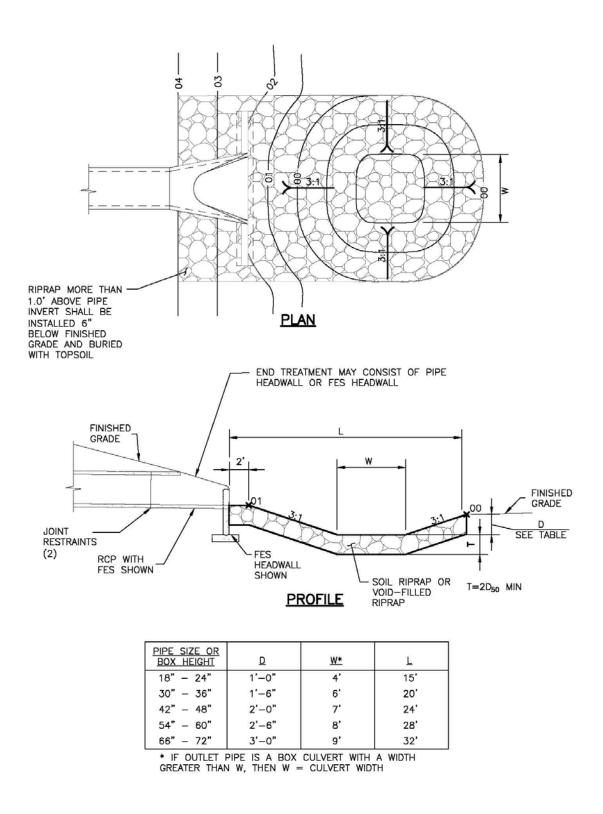
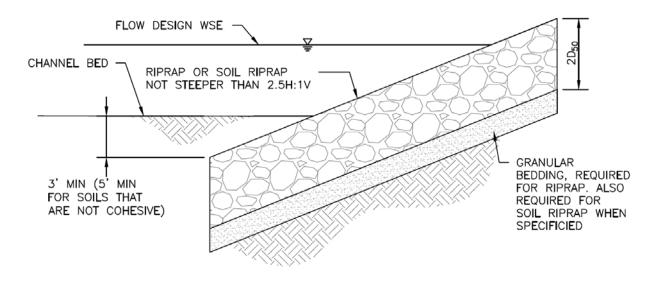



Figure 9-37. Low tailwater riprap basin

RIPRAP DESIGNATION	% SMALLER THAN GIVEN SIZE BY WEIGHT	INTERMEDIATE ROCK DIMENSION (INCHES)	D ₅₀ * (INCHES)
TYPE VL	70 - 100 50 - 70 35 - 50 2 - 10	12 9 6 2	6
TYPE L	$70 - 100 \\ 50 - 70 \\ 35 - 50 \\ 2 - 10$	15 12 9 3	9
TYPE M	70 - 100 50 - 70 35 - 50 2 - 10	21 18 12 4	12
TYPE H	70 - 100 50 - 70 35 - 50 2 - 10	30 24 18 6	18
*D ₅₀ = MEAN ROCK SIZ	Έ		

Figure 8-34. Riprap and soil riprap placement and gradation (part 1 of 3)

SOIL RIPRAP NOTES:

- 1. ELEVATION TOLERANCES FOR THE SOIL RIPRAP SHALL BE 0.10 FEET. THICKNESS OF SOIL RIPRAP SHALL BE NO LESS THAN THICKNESS SHOWN AND NO MORE THAN 2-INCHES GREATER THAN THE THICKNESS SHOWN.
- 2. WHERE "SOIL RIPRAP" IS DESIGNATED ON THE CONTRACT DRAWINGS, RIPRAP VOIDS ARE TO BE FILLED WITH NATIVE SOIL. THE RIPRAP SHALL BE PRE-MIXED WITH THE NATIVE SOIL AT THE FOLLOWING PROPORTIONS BY VOLUME: 65PERCENT RIPRAP AND 35 PERCENT SOIL. THE SOIL USED FOR MIXING SHALL BE NATIVE TOPSOIL AND SHALL HAVE A MINIMUM FINES CONTENT OF 15 PERCENT. THE SOIL RIPRAP SHALL BE INSTALLED IN A MANNER THAT RESULTS IN A DENSE, INTERLOCKED LAYER OF RIPRAP WITH RIPRAP VOIDS FILLED COMPLETELY WITH SOIL. SEGREGATION OF MATERIALS SHALL BE AVOIDED AND IN NO CASE SHALL THE COMBINED MATERIAL CONSIST PRIMARILY OF SOIL; THE DENSITY AND INTERLOCKING NATURE OF RIPRAP IN THE MIXED MATERIAL SHALL ESSENTIALLY BE THE SAME AS IF THE RIPRAP WAS PLACED WITHOUT SOIL.
- 3. WHERE SPECIFIED (TYPICALLY AS "BURIED SOIL RIPRAP"), A SURFACE LAYER OF TOPSOIL SHALL BE PLACED OVER THE SOIL RIPRAP ACCORDING TO THE THICKNESS SPECIFIED ON THE CONTRACT DRAWINGS. THE TOPSOIL SURFACE LAYER SHALL BE COMPACTED TO APPROXIMATELY 85% OF MAXIMUM DENSITY AND WITHIN TWO PERCENTAGE POINTS OF OPTIMUM MOISTURE IN ACCORDANCE WITH ASTM D698. TOPSOIL SHALL BE ADDED TO ANY AREAS THAT SETTLE.

4.	ALL	. SOI	L RIPRAP	THAT IS	BURIED	WITH	TOPSOIL	SHALL	ΒE	REVIEWED	AND	APPROVED
	ΒY	THE	ENGINEER	PRIOR	TO ANY	TOPSC	IL PLACE	EMENT.				

	GRADATION FOR GRANULAR BEDDING								
	PERCENT	PASSING BY WEIGHT							
U.S. STANDARD SIEVE SIZE	TYPE I CDOT SECT. 703.01	TYPE II CDOT SECT. 703.09 CLASS A							
3 INCHES	-	90 - 100							
1½ INCHES	-	_							
34 INCHES	-	20 — 90							
⅔ INCHES	100	_							
#4	95 — 100	0 – 20							
#16	45 — 80	_							
# 50	10 — 30	_							
#100	2 - 10	_							
#200	0 - 2	0 - 3							

RIPRAP BEDDING

Figure 8-34. Riprap and soil riprap placement and gradation (part 2 of 3)

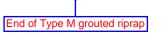
	THICKNESS REQUIREMENTS FOR GRANULAR BEDDING									
	MININ	IUM BEDDING THICKNESS	(INCHES)							
RIPRAP DESIGNATION	FINE-GRAIN	FINE-GRAINED SOILS 1 C								
	TYPE I (LOWER LAYER)	TYPE II (UPPER LAYER)	TYPE II							
$VL (D_{50} = 6 IN)$	4	4	6							
$L (D_{50} = 9 \text{ IN})$	4	4	6							
$M (D_{50} = 12 \text{ IN})$	4	4	6							
H ($D_{50} = 18$ IN)	8									
$VH (D_{50} = 24 IN)$	4	6	8							

NOTES:

1. MAY SUBSTITUTE ONE 12-INCH LAYER OF TYPE II BEDDING. THE SUBSTITUTION OF ONE LAYER OF TYPE II BEDDING SHALL NOT BE PERMITTED AT DROP STRUCTURES. THE USE OF A COMBINATION OF FILTER FABRIC AND TYPE II BEDDING AT DROP STRUCTURES IS ACCEPTABLE. 2. FIFTY PERCENT OR MORE BY WEIGHT RETAINED ON THE #40 SIEVE.

Figure 8-34. Riprap and soil riprap placement and gradation (part 3 of 3)

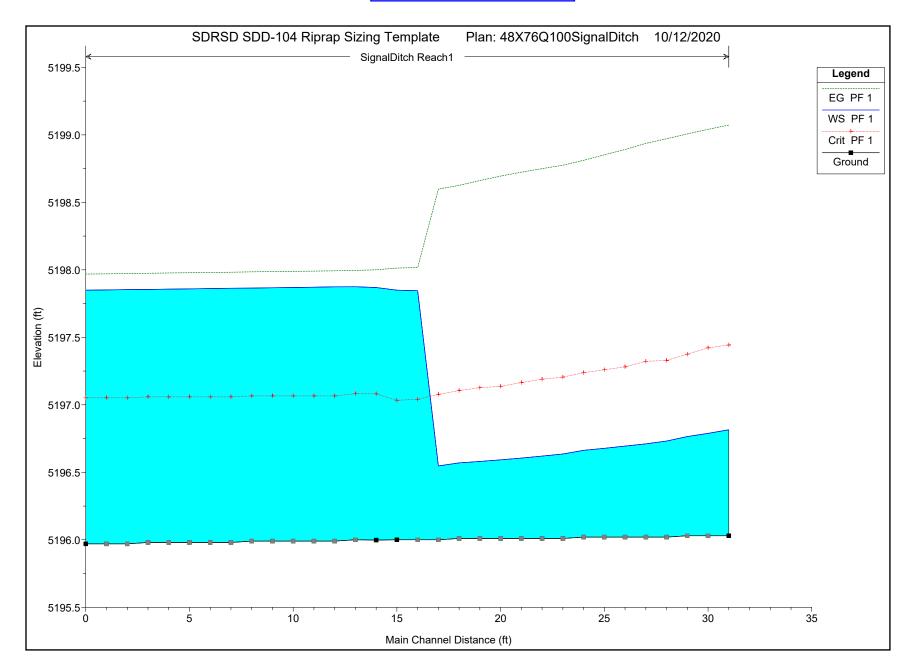
Signal Irrigation Ditch Culvert - 48" X 76" Elliptical RCP Riprap Sizing

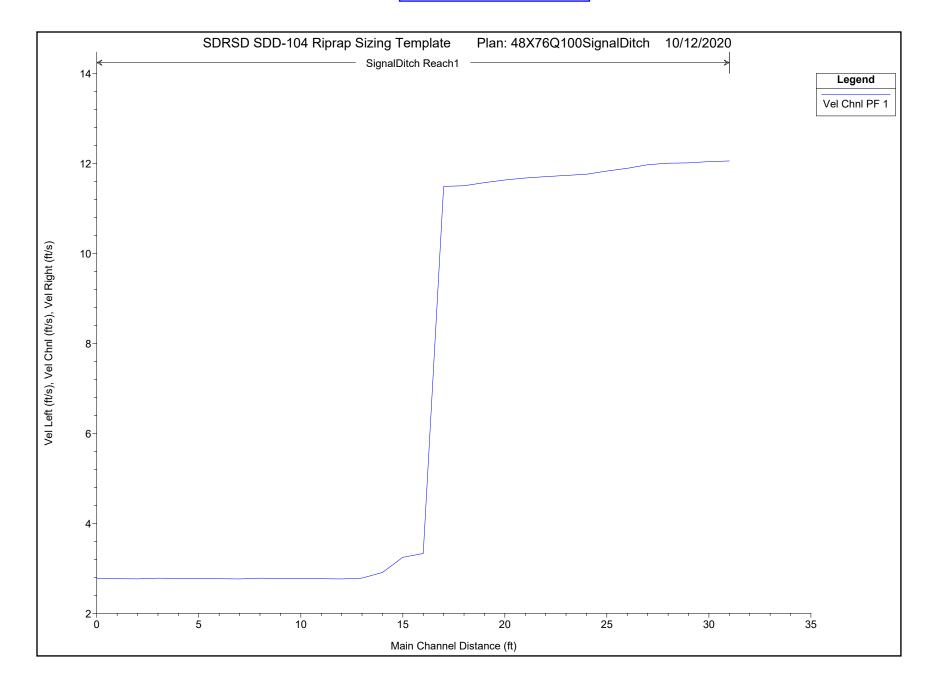

Start of wing wall concrete apron

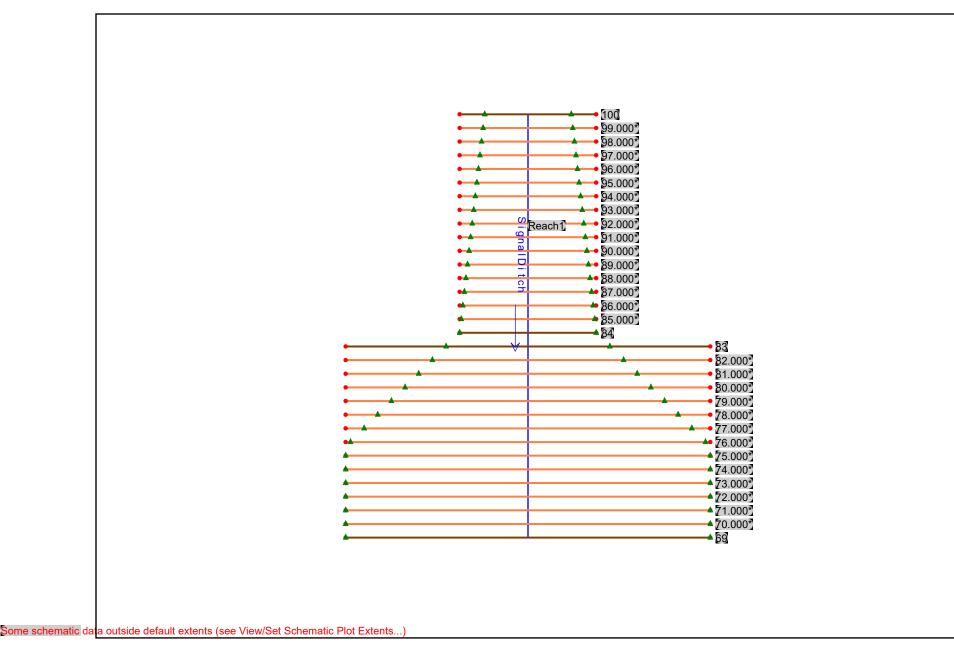
HEC-RAS Summary Output

Velocity matches outlet velocity of HY-8 culvert analysis

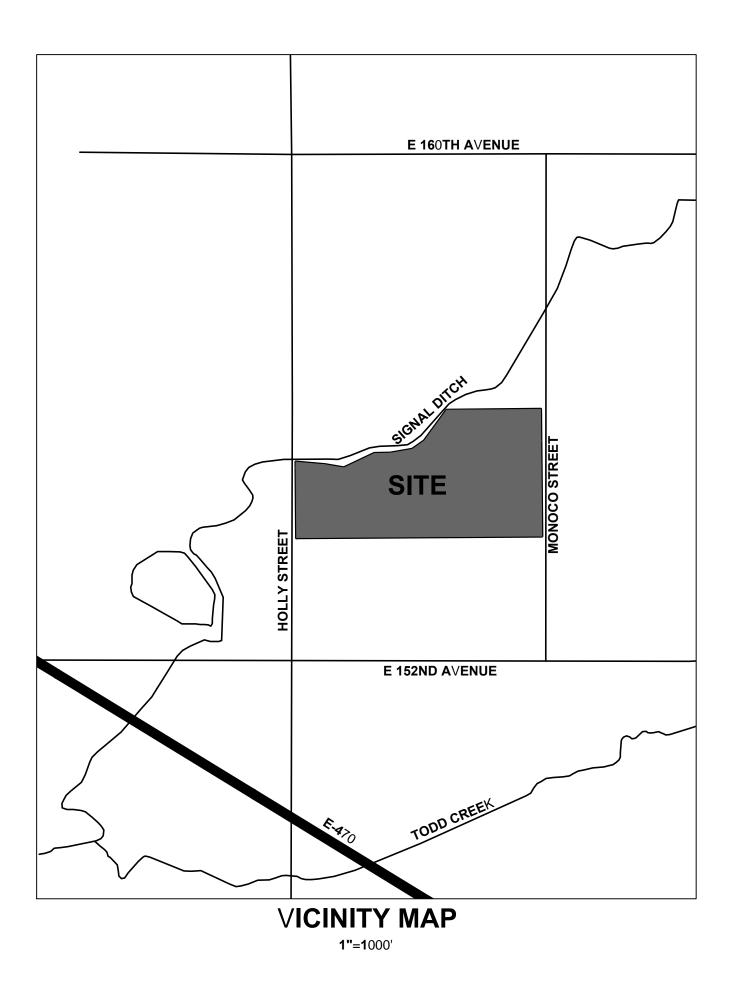
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
<u> </u>			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s) 🚺	(sq ft)	(ft)	
Reach1	100	PF 1	60.00	5196.03	5196.82	5197.44	5199.07	0.023255	12.05	4.98	10.00	2.4
Reach1	99.000*	PF 1	60.00	5196.03	5196.79	5197.42	5199.04	0.024279	12.04	4.98	10.00	2.4
Reach1	98.000*	PF 1	60.00	5196.03	5196.77	5197.38	5199.01	0.025224	12.01	5.00	10.00	2.4
Reach1	97.000*	PF 1	60.00	5196.02	5196.73	5197.33	5198.97	0.026304	12.00	5.00	10.00	2.5
Reach1	96.000*	PF 1	60.00	5196.02	5196.71	5197.32	5198.94	0.027193	11.97	5.01	10.00	2.5
Reach1	95.000*	PF 1	60.00	5196.02	5196.69	5197.28	5198.89	0.027717	11.89	5.05	10.00	2.5
Reach1	94.000*	PF 1	60.00	5196.02	5196.68	5197.26	5198.85	0.028361	11.83	5.07	10.00	2.5
Reach1	93.000*	PF 1	60.00	5196.02	5196.66	5197.24	5198.81	0.028906	11.76	5.10	10.00	2.5
Reach1	92.000*	PF 1	60.00	5196.01	5196.64	5197.21	5198.78	0.029802	11.73	5.11	10.00	2.6
Reach1	91.000*	PF 1	60.00	5196.01	5196.62	5197.19	5198.75	0.030684	11.71	5.13	10.00	2.6
Reach1	90.000*	PF 1	60.00	5196.01	5196.61	5197.17	5198.72	0.031525	11.67	5.14	10.00	2.6
Reach1	89.000*	PF 1	60.00	5196.01	5196.59	5197.14	5198.69	0.032238	11.63	5.16	10.00	2.6
Reach1	88.000*	PF 1	60.00	5196.01	5196.58	5197.13	5198.66	0.032785	11.57	5.19	10.00	2.7
Reach1	87.000*	PF 1	60.00	5196.01	5196.57	5197.11	5198.63	0.033228	11.50	5.22	10.00	2.7
Reach1	86.000*	PF 1	60.00	5196.00	5196.55	5197.08	5198.60	0.034172	11.49	5.22	10.00	2.7
Reach1	85.000*	PF 1	60.00	5196.00	5197.85	5197.04	5198.02	0.000567	3.33	18.03	10.00	0.4
Reach1	84	PF 1	60.00	5196.00	5197.85	5197.03	5198.01	0.002874	3.24	18.50	10.00	0.4
Reach1	83	PF 1	60.00	5196.00	5197.87	5197.08	5198.00	0.001797	2.91	20.64	14.31	0.3
Reach1	82.000*	PF 1	60.00	5196.00	5197.88	5197.08	5198.00	0.001956	2.78	21.57	14.32	0.4
Reach1	81.000*	PF 1	60.00	5195.99	5197.87	5197.07	5197.99	0.001985	2.76	21.71	14.35	0.4
Reach1	80.000*	PF 1	60.00	5195.99	5197.87	5197.07	5197.99	0.001994	2.77	21.68	14.34	0.4
Reach1	79.000*	PF 1	60.00	5195.99	5197.87	5197.07	5197.99	0.002003	2.77	21.64	14.34	0.4
Reach1	78.000*	PF 1	60.00	5195.99	5197.87	5197.07	5197.99	0.002011	2.78	21.61	14.33	0.4
Reach	77.000*	PF 1	60.00	5195.99	5197.87	5197.07	5197.99	0.002020	2.78	21.58	14.32	0.4
Reach1	76.000*	PF 1	60.00	5195.98	5197.86	5197.06	5197.98	0.001985	2.76	21.71	14.35	0.4
Reach1	75.000*	PF 1	60.00	5195.98	5197.86	5197.06	5197.98	0.001994	2.77	21.68	14.34	0.4
Reach1	74.000*	PF 1	60.00	5195.98	5197.86	5197.06	5197.98	0.002003	2.77	21.64	14.34	0.4
Reach1	73.000*	PF 1	60.00	5195.98	5197.86	5197.06	5197.98	0.002011	2.78	21.61	14.33	0.4
Reach1	72.000*	PF 1	60.00	5195.98	5197.85	5197.06	5197.98	0.002020	2.78	21.58	14.32	0.4
Reach1	71.000*	PF 1	60.00	5195.97	5197.85	5197.05	5197.97	0.001987	2.76	21.70	14.35	0.4
Reach1	70.000*	PF 1	60.00	5195.97	5197.85	5197.05	5197.97	0.001996	2.77	21.67	14.34	0.4
Reach1	69	PF 1	60.00	5195.97	5197.85	5197.05	5197.97	0.002003	2.77	21.64	14.34	0.4

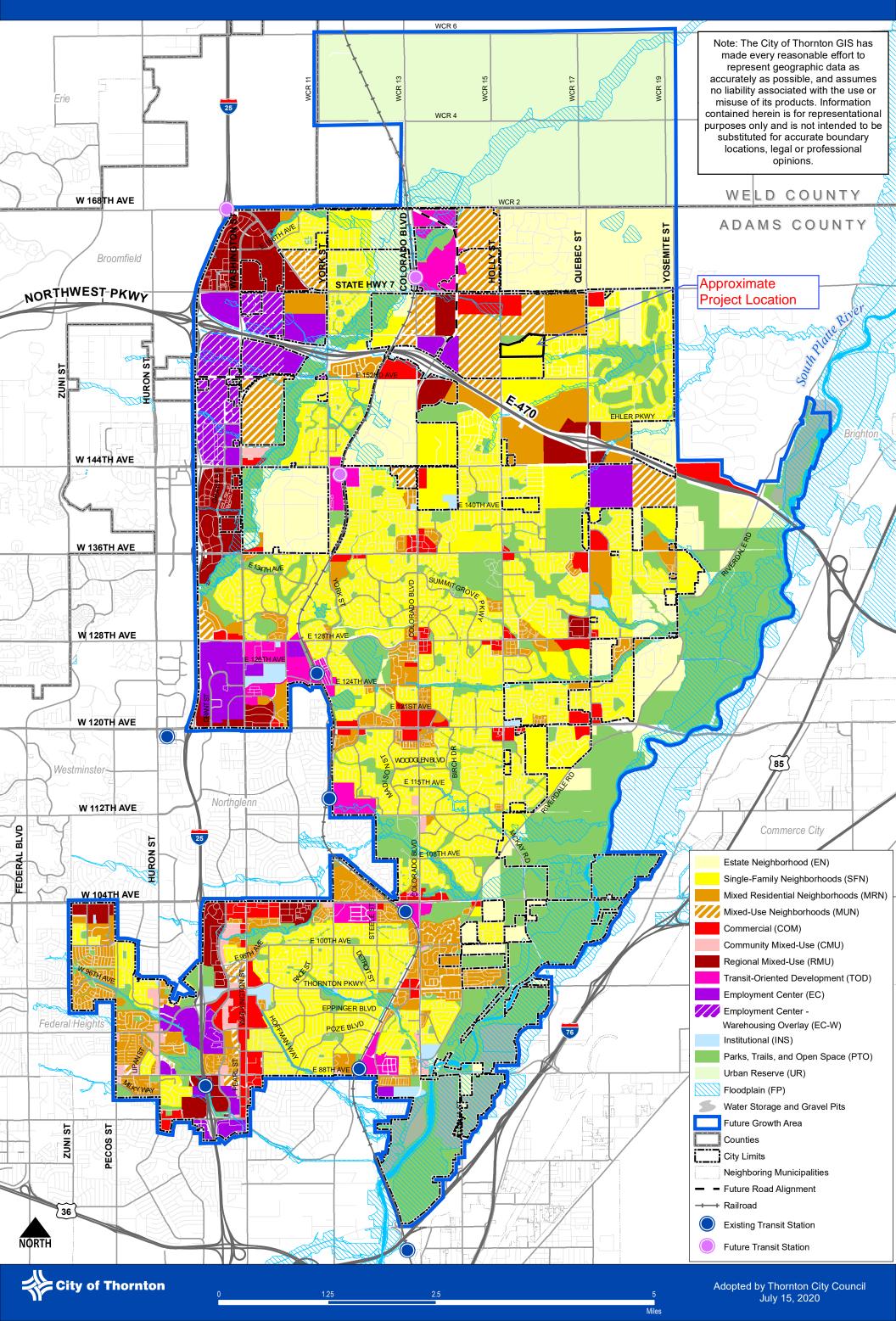

End of wing wall concrete apron

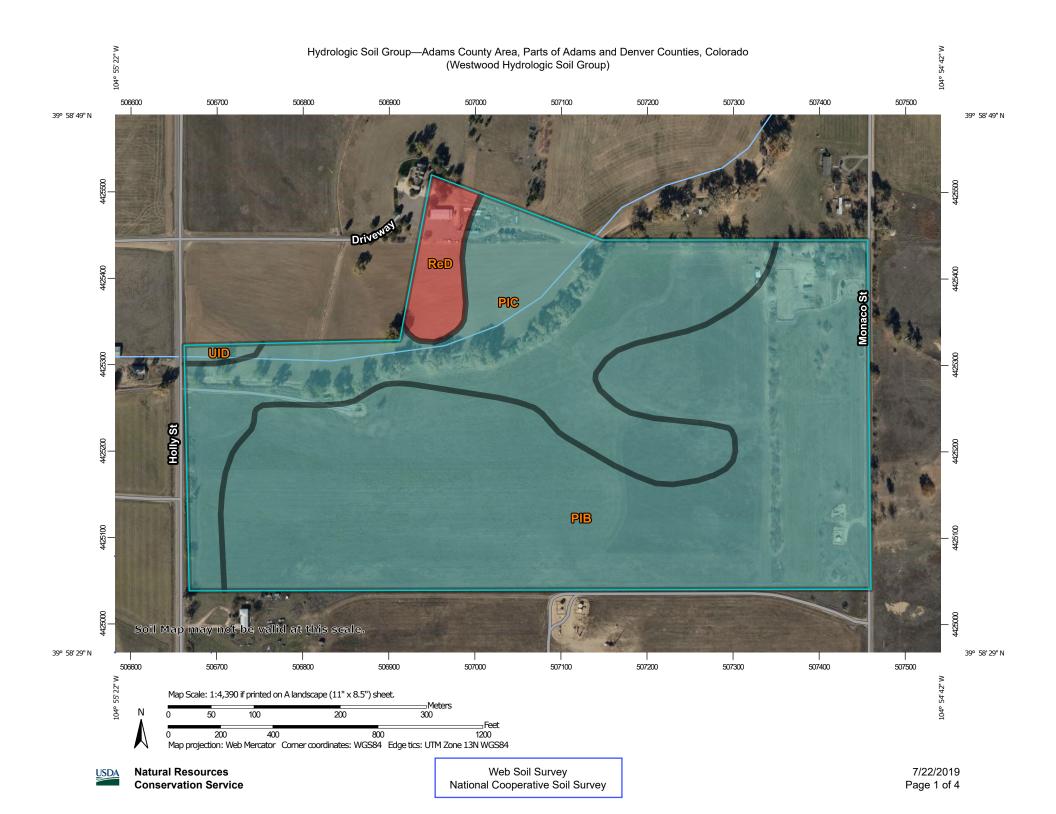

Hydraulic Jump

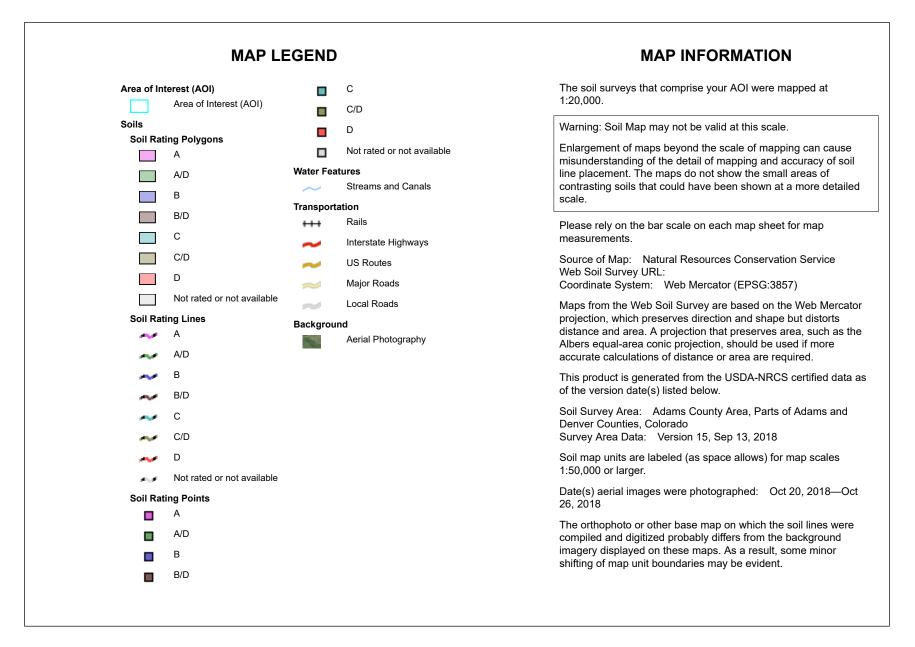

Start of Type M grouted riprap

HEC-RAS HGL EGL Profile


HEC-RAS Velocity Profile




Appendix C


References

Future Land Use Map

Hydrologic Soil Group

Map unit name	Rating	Acres in AOI	Percent of AOI
Platner loam, 0 to 3 percent slopes	С	46.9	63.3%
Platner loam, 3 to 5 percent slopes	С	24.1	32.6%
Renohill loam, 3 to 9 percent slopes	D	2.7	3.6%
Ulm loam, 5 to 9 percent slopes	С	0.4	0.6%
st		74.1	100.0%
	Platner loam, 0 to 3 percent slopes Platner loam, 3 to 5 percent slopes Renohill loam, 3 to 9 percent slopes Ulm loam, 5 to 9 percent slopes	Platner loam, 0 to 3 percent slopesCPlatner loam, 3 to 5 percent slopesCRenohill loam, 3 to 9 percent slopesDUlm loam, 5 to 9 percent slopesC	Platner loam, 0 to 3 percent slopesC46.9Platner loam, 3 to 5 percent slopesC24.1Renohill loam, 3 to 9 percent slopesD2.7Ulm loam, 5 to 9 percent slopesC0.4

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

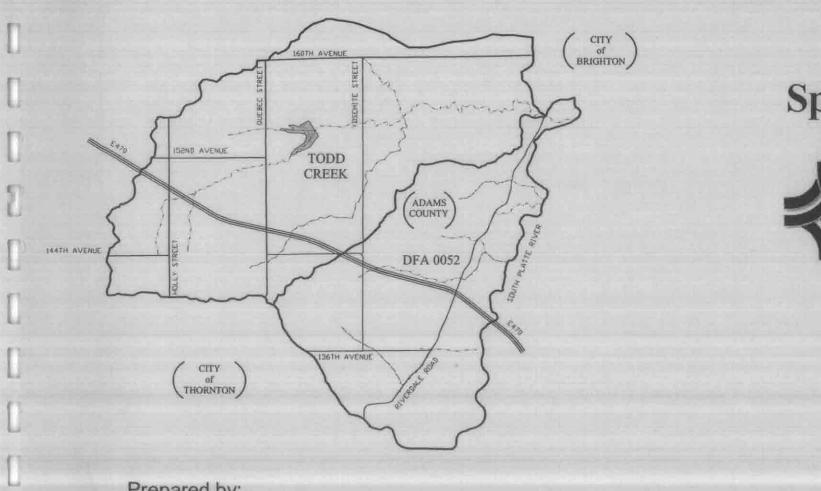
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

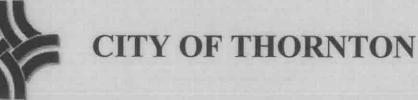


Land Use or	Percentage Imperviousness
Surface Characteristics	(%)
Business:	
Downtown Areas	95
Suburban Areas	75
Residential lots (lot area only):	
Single-family	
2.5 acres or larger	12
0.75 – 2.5 acres	20
0.25 – 0.75 acres	30
0.25 acres or less	45
Apartments	75
Industrial:	·
Light areas	80
Heavy areas	90
Parks, cemeteries	10
Playgrounds	25
Schools	55
Railroad yard areas	50
Undeveloped Areas:	
Historic flow analysis	2
Greenbelts, agricultural	2
Off-site flow analysis (when land use not defined)	45
Streets:	
Paved	100
Gravel (packed)	40
Drive and walks	90
Roofs	90
Lawns, sandy soil	2
Lawns, clayey soil	2

 Table 6-3. Recommended percentage imperviousness values

TODD CREEK AND DFA 0052 WATERSHEDS OUTFALL SYSTEMS PLANNING STUDY

PRELIMINARY DESIGN REPORT

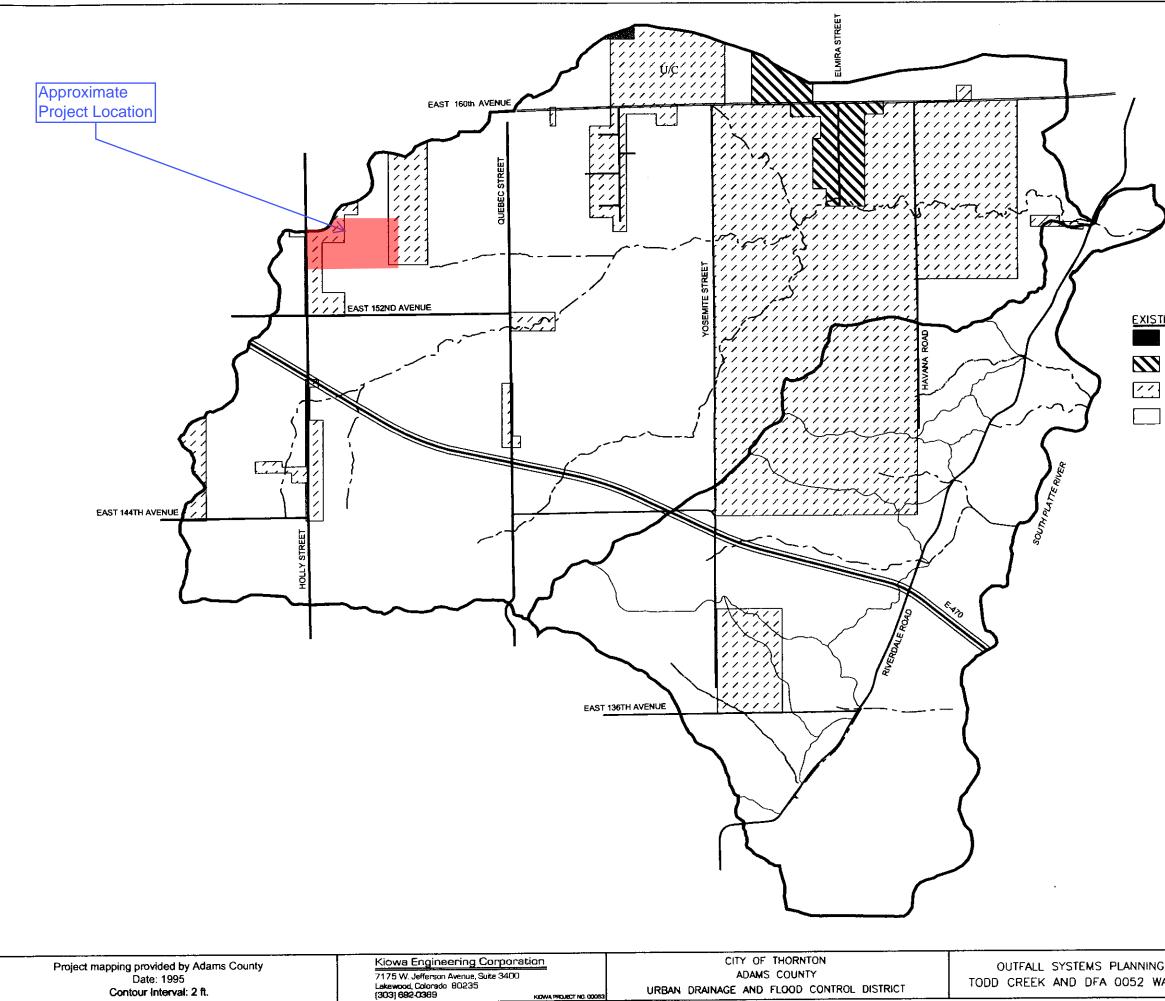


Prepared by:

Kiowa Engineering Corporation

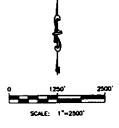
7175 West Jefferson Avenue, Suite 3400 Lakewood, Colorado 80235 www.kiowaengineering.com

Sponsored by:


ADAMS COUNTY

Urban Drainage and **Flood Control District**

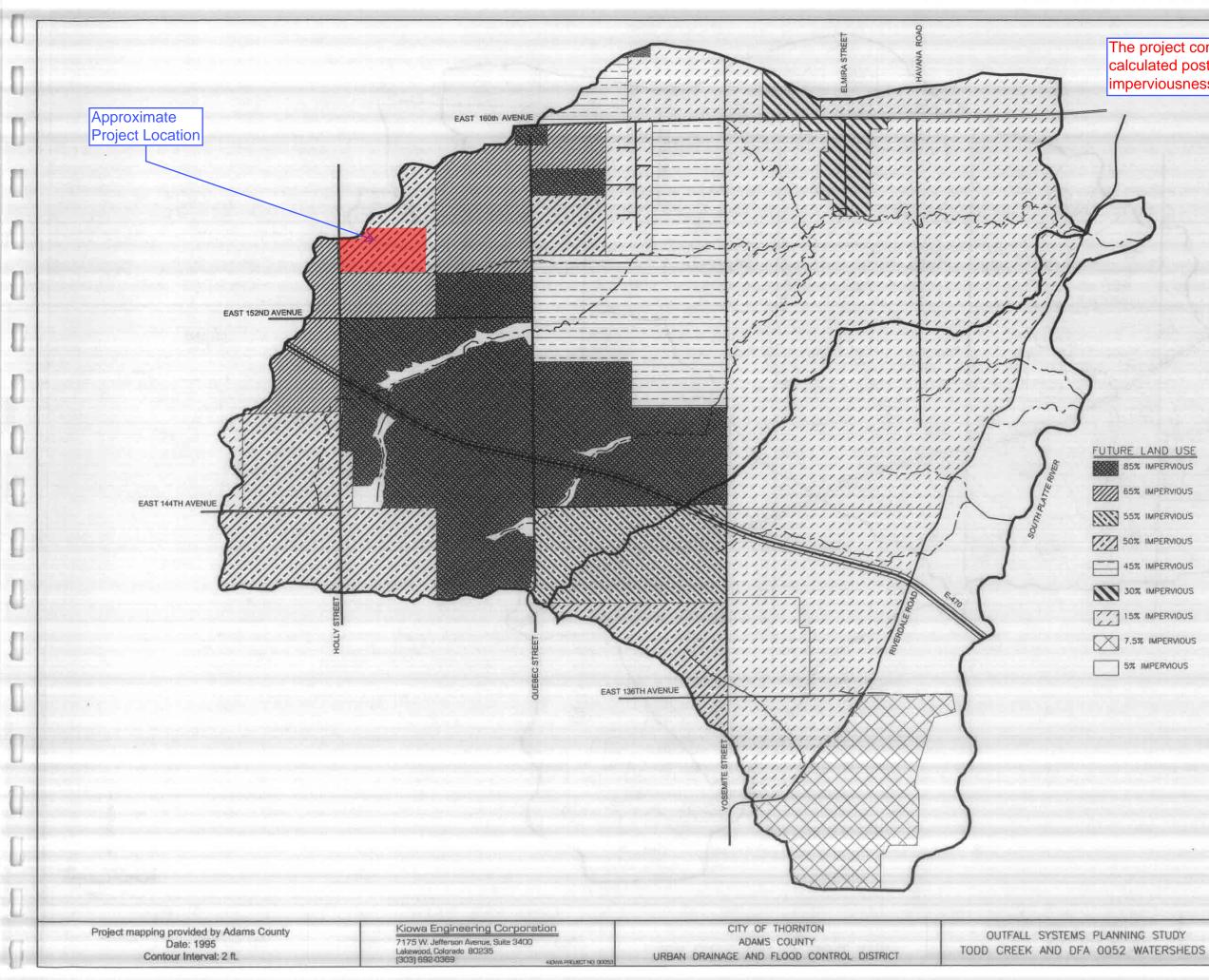
December 2003



Based on site visit and aerial imagery the existing imperviousness was calculated to be 3% and the project uses this value to be more conservative.

)

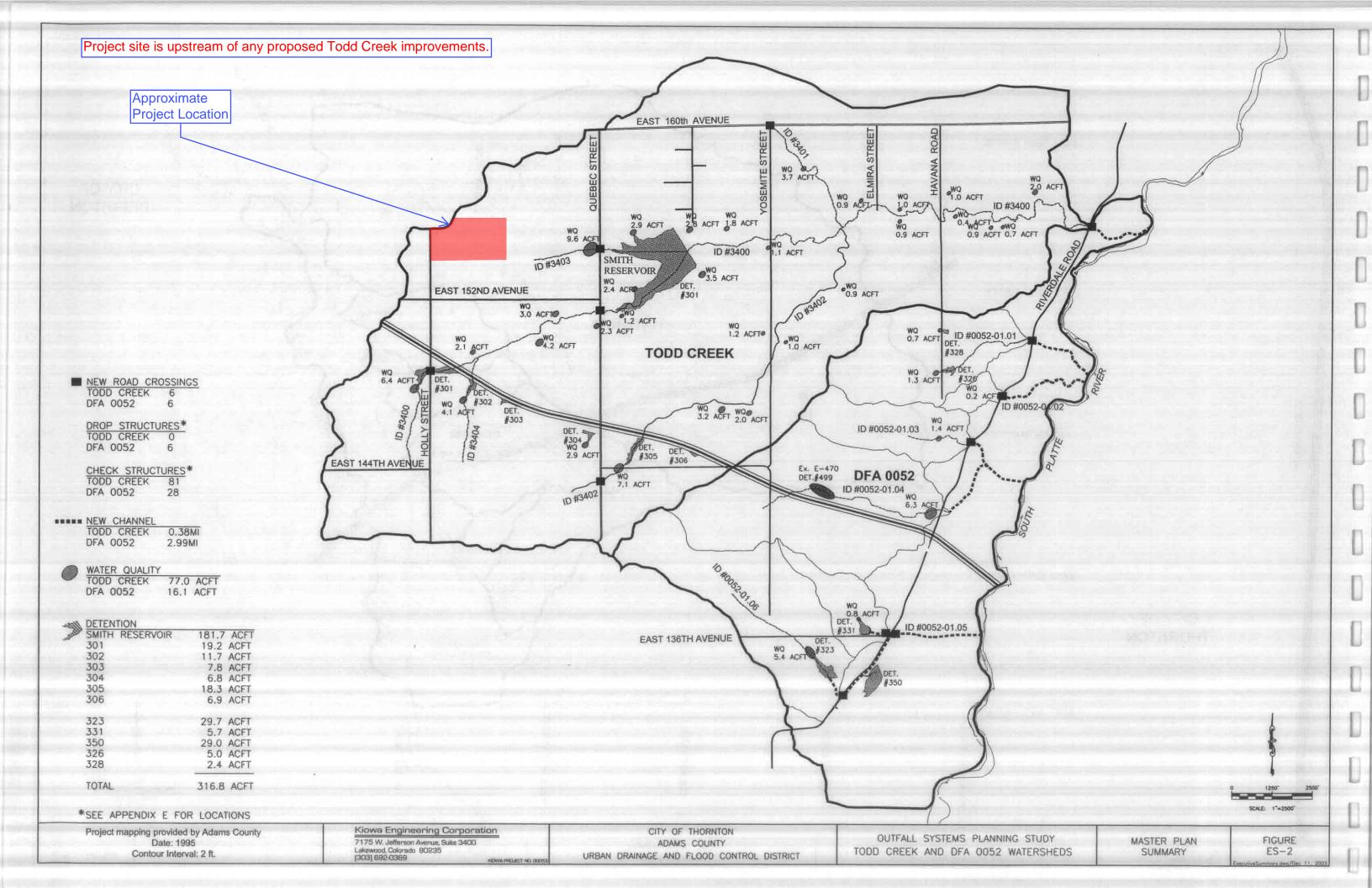
EXISTING LAND USE

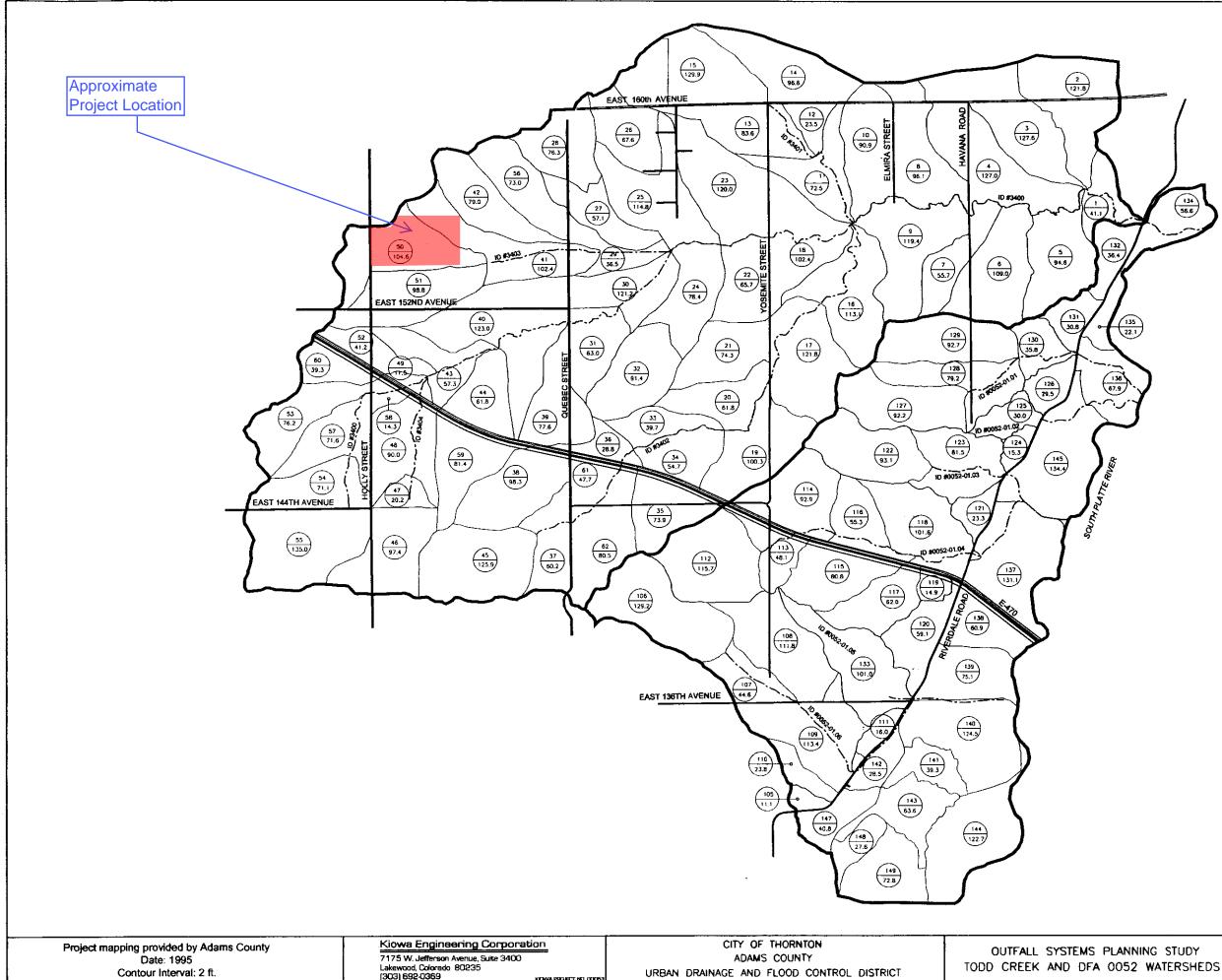

- 80% IMPERVIOUS
- 30% IMPERVIOUS
- 15% IMPERVIOUS
- 5% IMPERVIOUS

G	STUDY
٧A	TERSHEDS

EXISTING IMPERVIOUSNESS

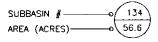
a imo.dwg/Der

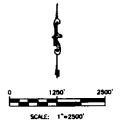

The project conforms with the OSP assumption with a calculated post-project composite percent imperviousness of 45%.


FUTURE LAND USE 85% IMPERVIOUS 65% IMPERVIOUS 55% IMPERVIOUS 50% IMPERVIOUS 45% IMPERVIOUS 30% IMPERVIOUS 15% IMPERVIOUS 7.5% IMPERVIOUS 5% IMPERVIOUS

> SCALE: 1"+2500"

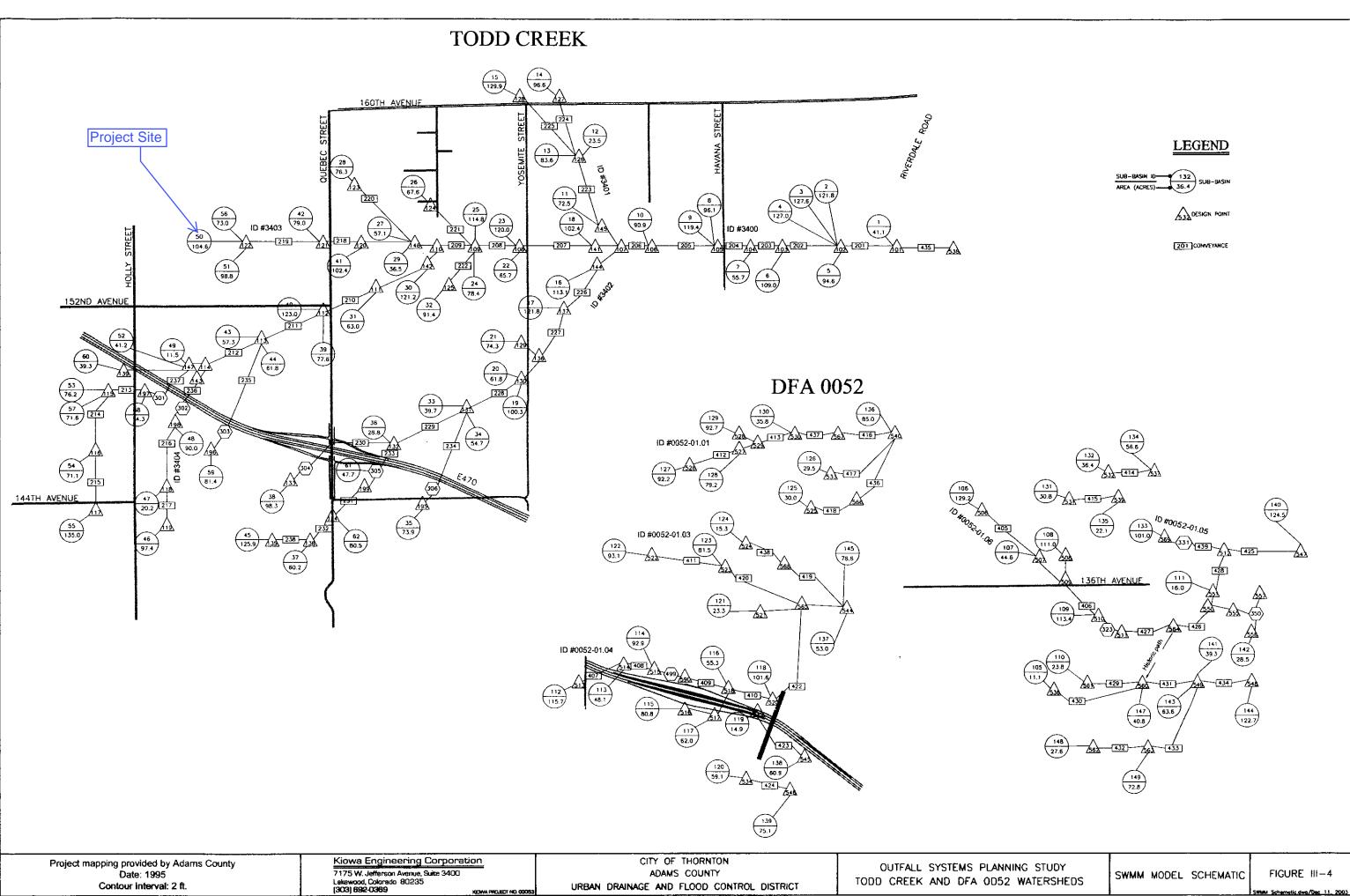
FUTURE IMPERVIOUSNESS


FIGURE III-2 re limp dag/Gel 03, 200


KIOWA PROJECT NO. 0005

LEGEND

~


DRAINAGEWAY

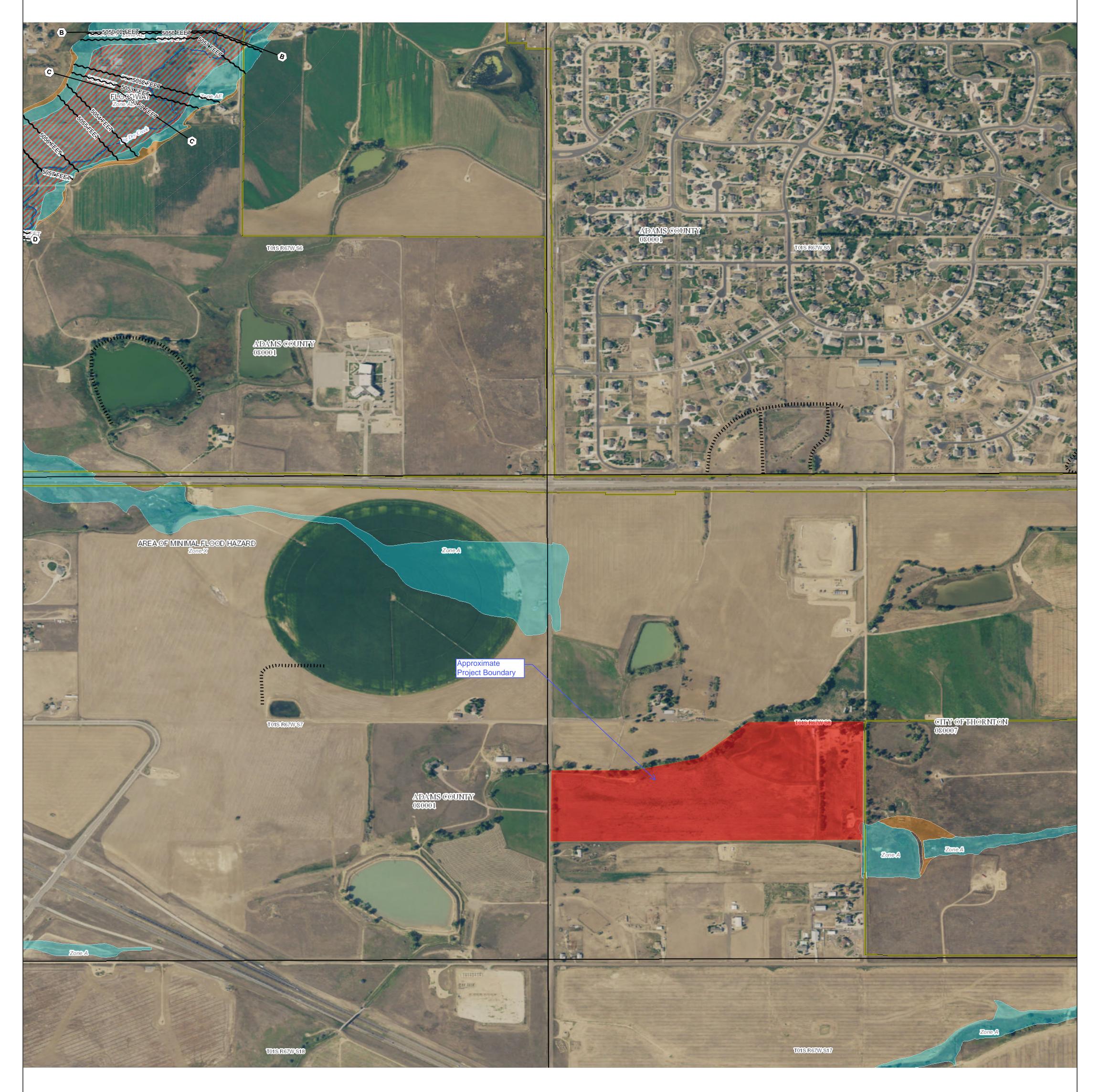
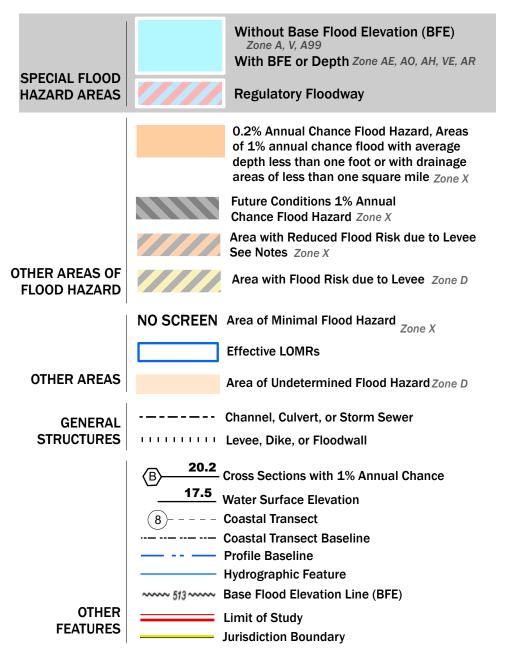

SUBWATERSHED DELINEATION

FIGURE III-3

tershed Debr.dwo/Dec 11



ł

FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

NOTES TO USERS

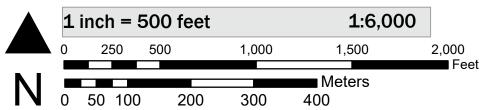
For information and questions about this Flood Insurance Rate Map (FIRM), available products associated with this FIRM, including historic versions, the current map date for each FIRM panel, how to order products, or the National Flood Insurance Program (NFIP) in general, please call the FEMA Map Information eXchange at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA Flood Map Service Center website at https://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the website.

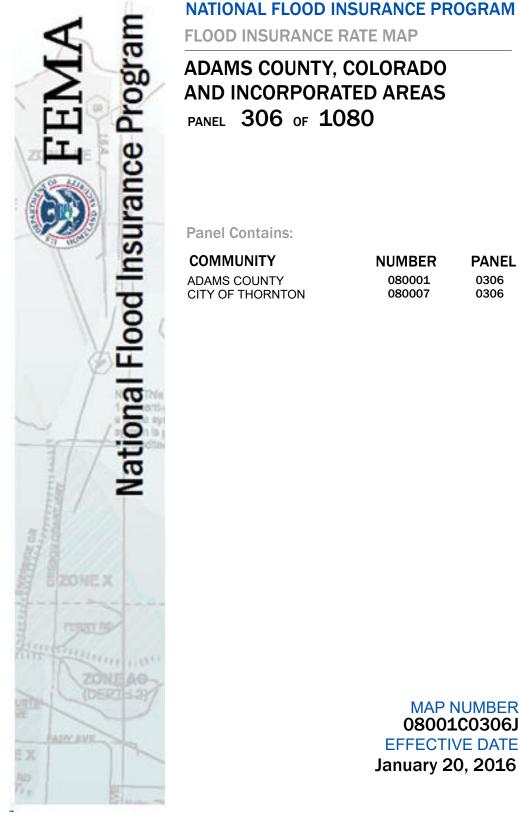
Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Flood Map Service Center at the number listed above.

For community and countywide map dates, refer to the Flood Insurance Study Report for this jurisdiction.

To determine if flood insurance is available in this community, contact your Insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

Basemap information shown on this FIRM was provided in digital format by USDA, Farm Service Agency (FSA). This information was derived from NAIP, dated April 11, 2018.

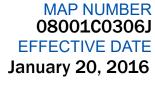

This map was exported from FEMA's National Flood Hazard Layer (NFHL) on 8/24/2020 4:40 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. For additional information, please see the Flood Hazard Mapping Updates Overview Fact Sheet at https://www.fema.gov/media-library/assets/documents/118418


This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date.

SCALE

Map Projection: GCS, Geodetic Reference System 1980; Vertical Datum: NAVD88 For information about the specific vertical datum for elevation features, datum

conversions, or vertical monuments used to create this map, please see the Flood Insurance Study (FIS) Report for your community at https://msc.fema.gov


FLOOD INSURANCE RATE MAP ADAMS COUNTY, COLORADO AND INCORPORATED AREAS PANEL 306 OF 1080

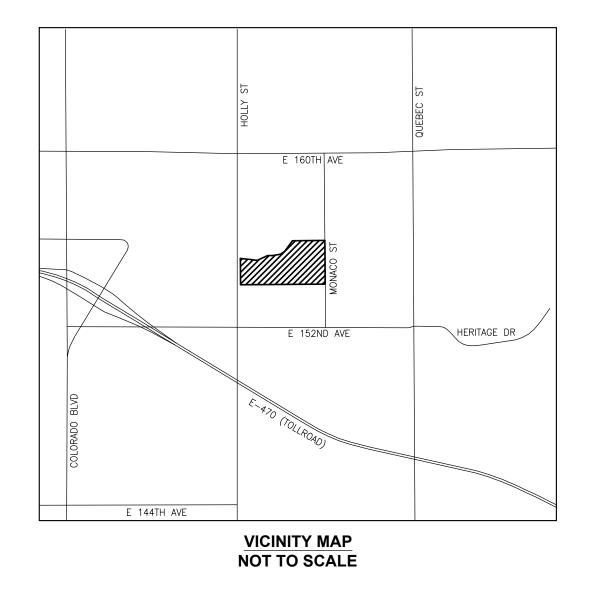
Panel Contains:

COMMUNITY ADAMS COUNTY CITY OF THORNTON

NUMBER PANEL 080001 0306 080007 0306

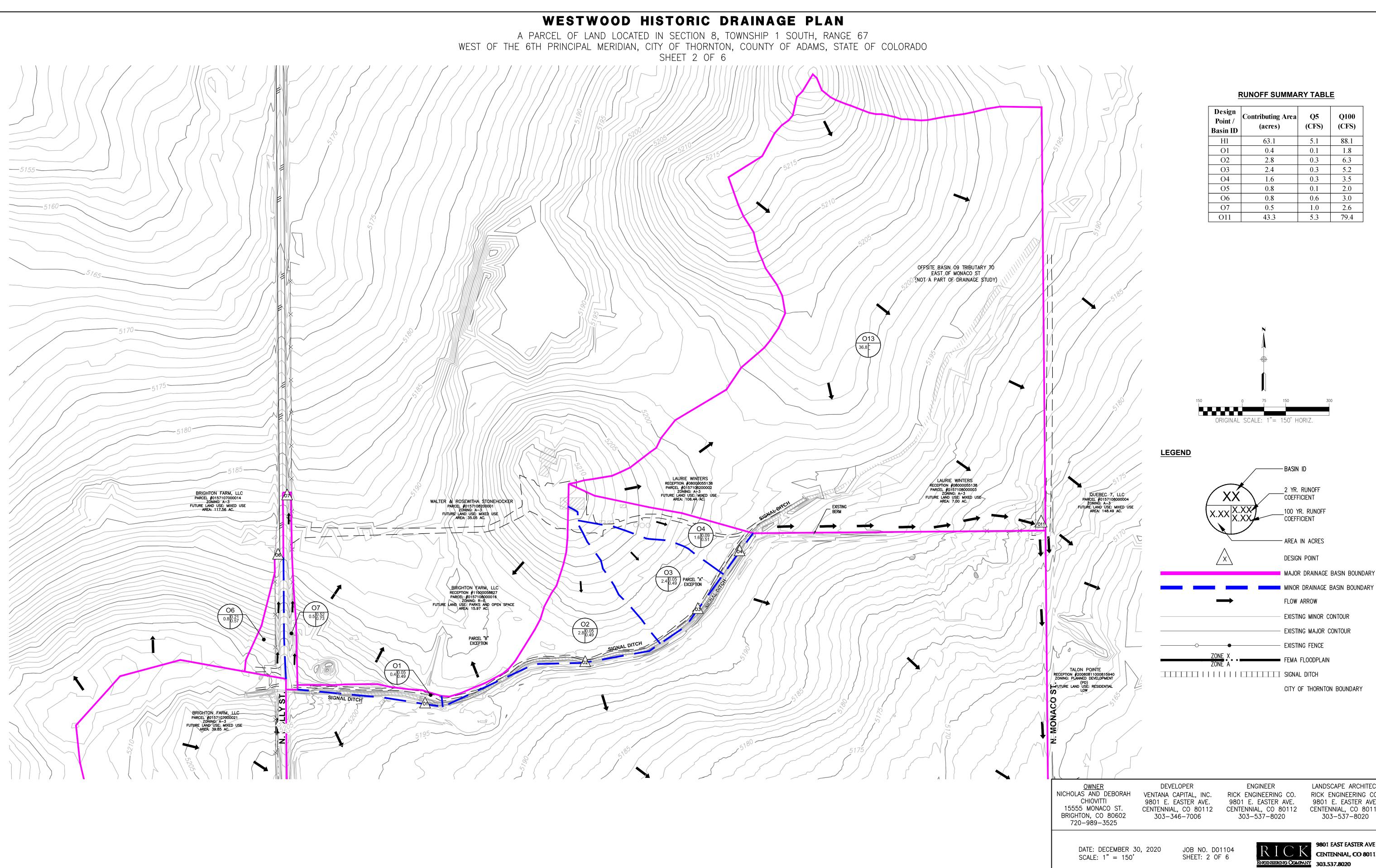
104°54'22.68"W 39°58'N

Appendix D


Drainage Plan

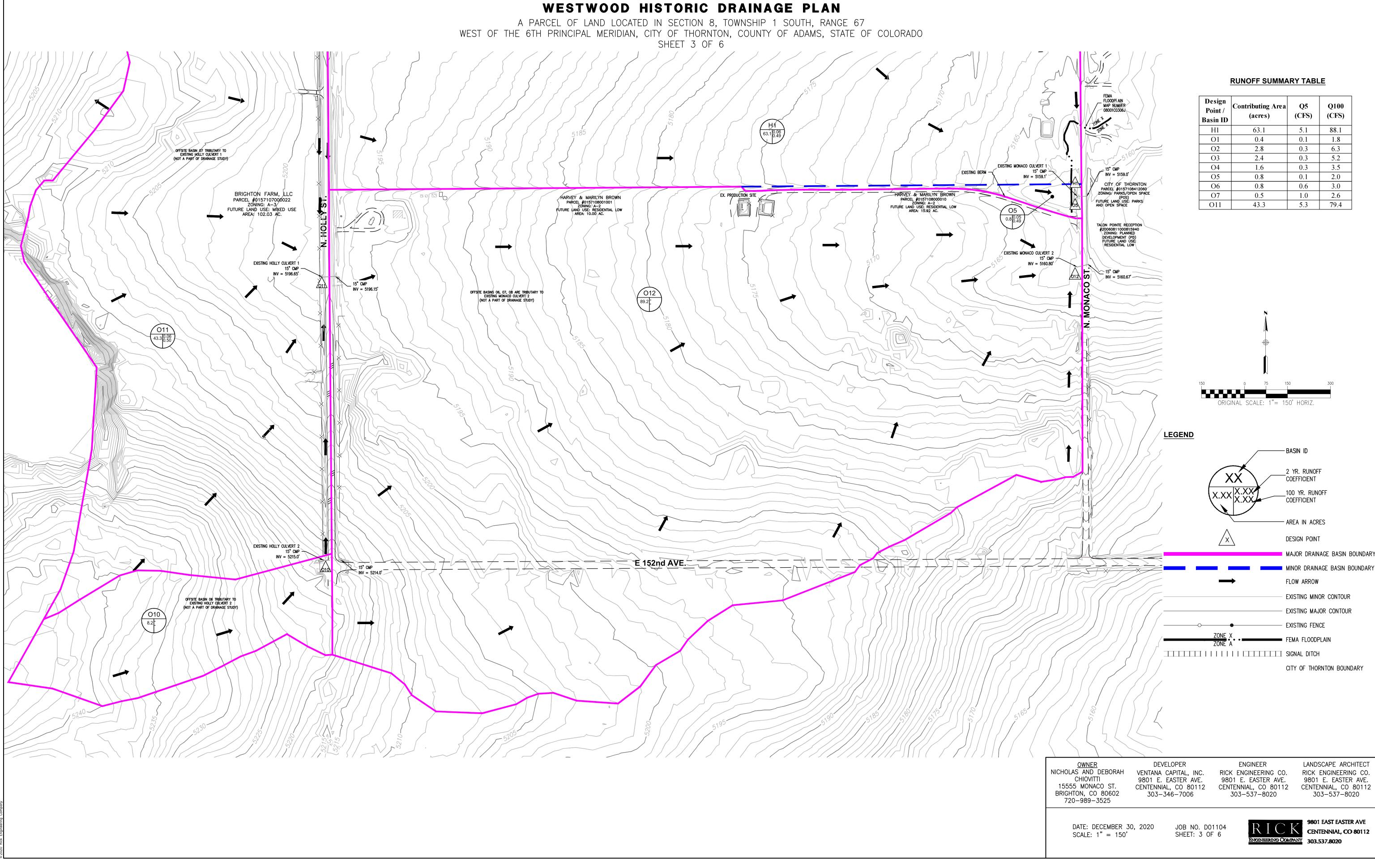
A PARCEL OF LAND LOCATED IN SECTION 8, TOWNSHIP 1 SOUTH, RANGE 67 WEST OF THE 6TH PRINCIPAL MERIDIAN, CITY OF THORNTON, COUNTY OF ADAMS, STATE OF COLORADO SHEET 1 OF 6

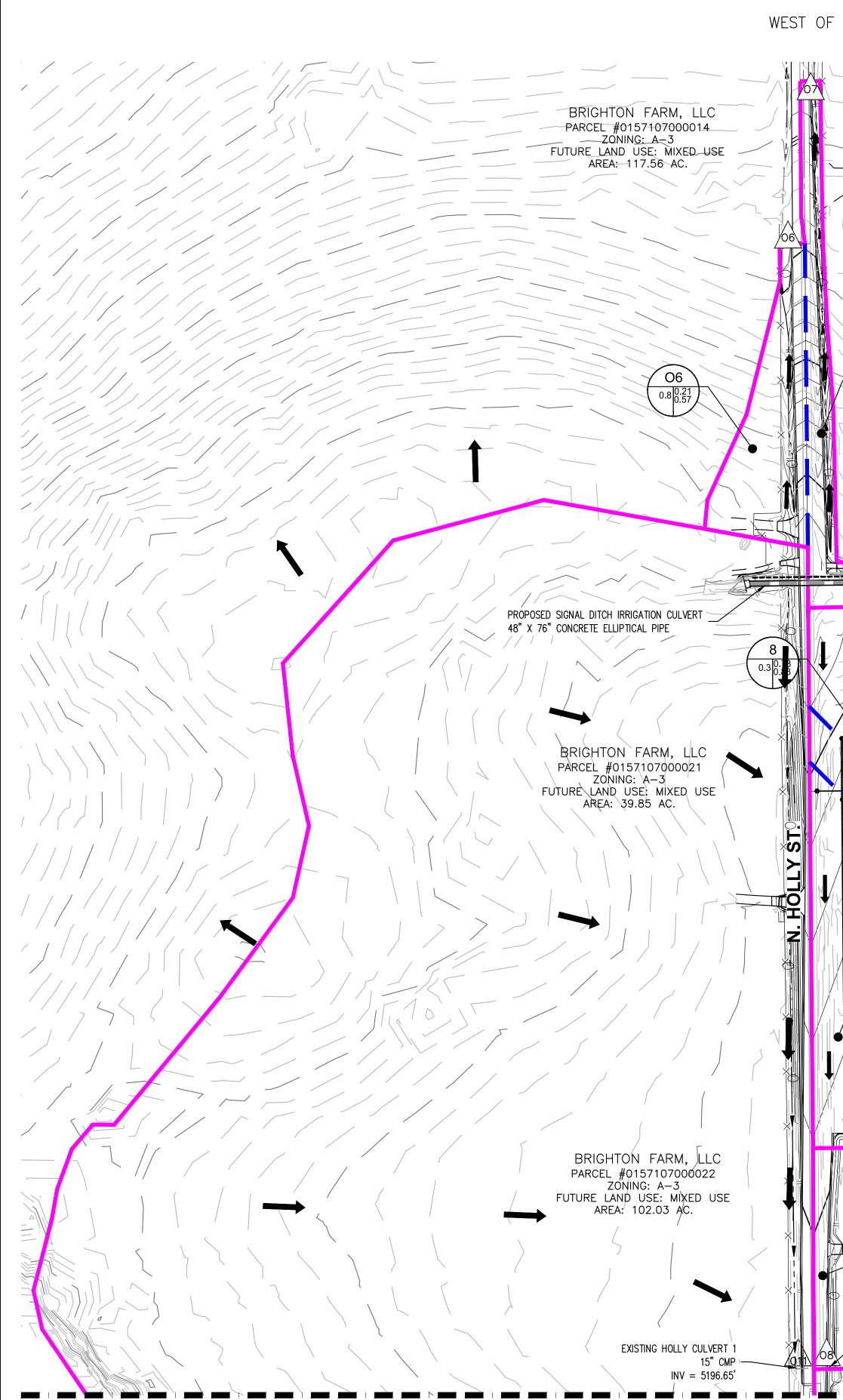
GENERAL NOTES


- 1. STORM DRAINAGE SHALL NOT ENTER ANY EXISTING IRRIGATION CHANNELS. THE DEVELOPER WILL BE RESPONSIBLE FOR BYPASSING THESE FACILITIES AS REQUIRED BY THE CITY AND THE APPROPRIATE DITCH COMPANY.
- 2. ALL OFF-SITE EASEMENTS REQUIRED TO CONVEY DEVELOPED DRAINAGE TO AN ACCEPTABLE OUTFALL LOCATION, AS DETERMINED BY THE CITY, SHALL BE ACQUIRED AND RECORDED BY THE DEVELOPER PRIOR TO APPROVAL OF THE SUBDIVISION PLAT. THE RECEPTION NUMBER(S) FOR THESE EASEMENTS SHALL BE SHOWN ON THE PLAT.
- 3. INFRASTRUCTURE SHALL BE PROVIDED TO ALLOW ALL UPSTREAM PARCELS WHO HISTORICALLY CONVEY DRAINAGE THROUGH THE DEVELOPMENT.
- 4. SEEPAGE ANALYSIS AND STRUCTURAL BANK INTEGRITY ANALYSIS FOR EACH EXISTING (IF IT IS UPSTREAM) AND EACH DRAINAGEWAY AND IRRIGATION DITCH WITHIN THE DEVELOPMENT SHALL BE SUBMITTED TO THE CITY WITH THE FIRST SUBDIVISION PLAT FOR THE PROPERTY.
- 5. NUISANCE FLOWS ARE NOT ANTICIPATED.
- 6. THE IMPROVEMENTS SHALL CONFORM TO THE CURRENT DRAINAGE MASTER PLAN AT THE TIME OF THE DEVELOPMENT. IF THERE IS NOT A MASTER PLAN AT THE TIME OF DEVELOPMENT, THE DEVELOPER WILL BE REQUIRED TO PREPARE A BASIN STUDY TO DETERMINE THE IMPACTS AND IDENTIFY MITIGATION MEASURE FOR THE PROPOSED PROJECT. APPROVAL IS REQUIRED FROM URBAN DRAINAGE AND FLOOD CONTROL DISTRICT (UDFCD) FOR THESE IMPROVEMENTS. STORM WATER QUALITY AND DETENTION ARE REQUIRED FOR ALL PORTIONS OF THE DEVELOPMENT INCLUDING THE ULTIMATE ROADWAY CONSTRUCTION.
- 7. CLOMR'S/LOMR'S WILL BE REQUIRED WITH THIS DEVELOPMENT FOR ANY ADJUSTMENTS TO THE FLOODPLAIN.
- 8. ALL WETLANDS AND BODIES OF WATER SHALL BE IDENTIFIED ON THE DRAINAGE PLAN. NO LOTS SHALL BE WITHIN A 50 FOOT RADIUS OF A DELINEATED WETLANDS AND 75 FOOT RADIUS OF ANY BODY OF WATER.
- 9. DETENTION PONDS SHALL BE COMBINED WHENEVER POSSIBLE AND SHALL BE SIZED USING CUHP OR AN EQUIVALENT INFLOW HYDROGRAPH METHOD.
- 10. ACCESS SHALL BE PROVIDED TO ALL DRAINAGEWAYS AND DETENTION PONDS FOR MAINTENANCE.

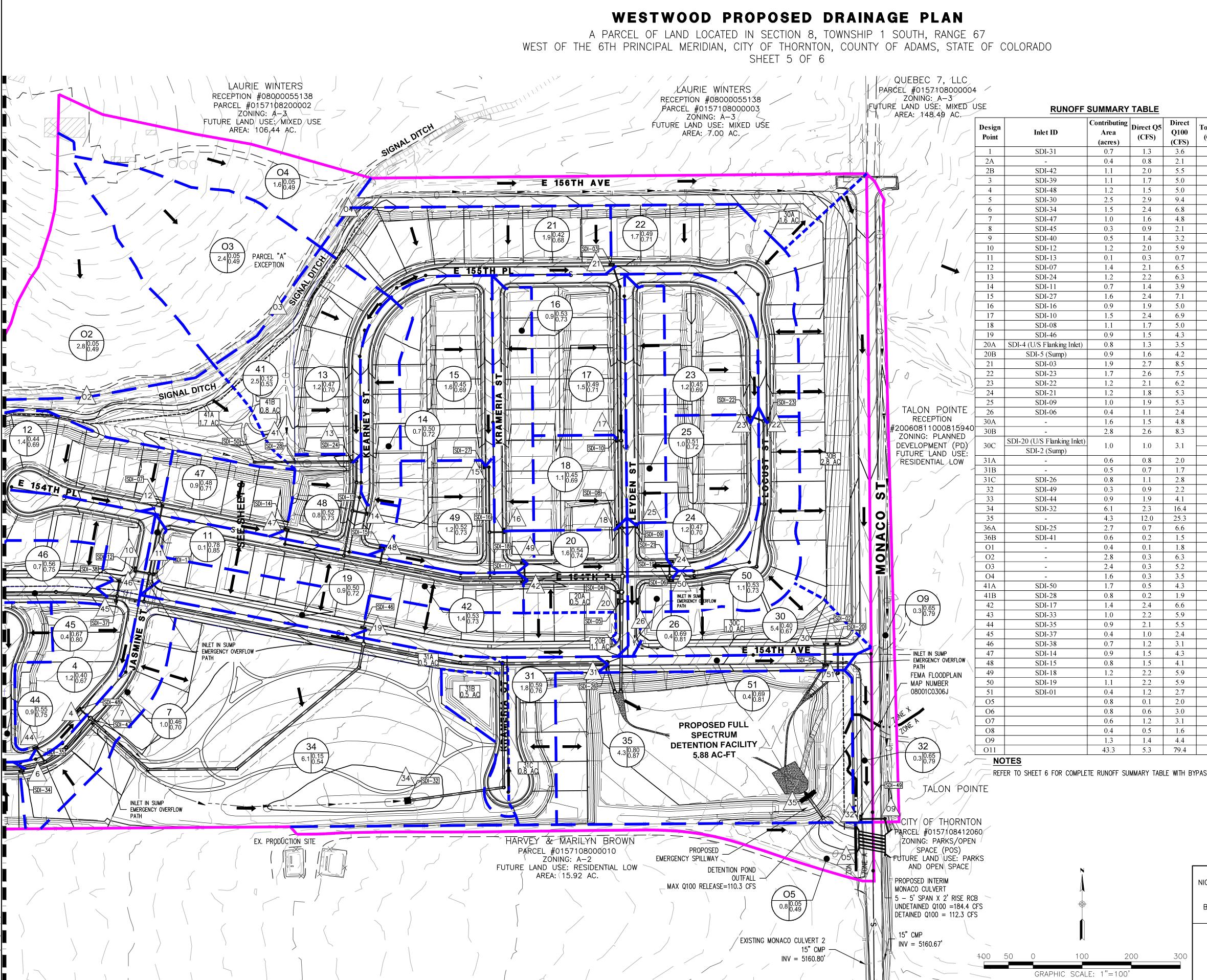
WESTWOOD DRAINAGE PLAN

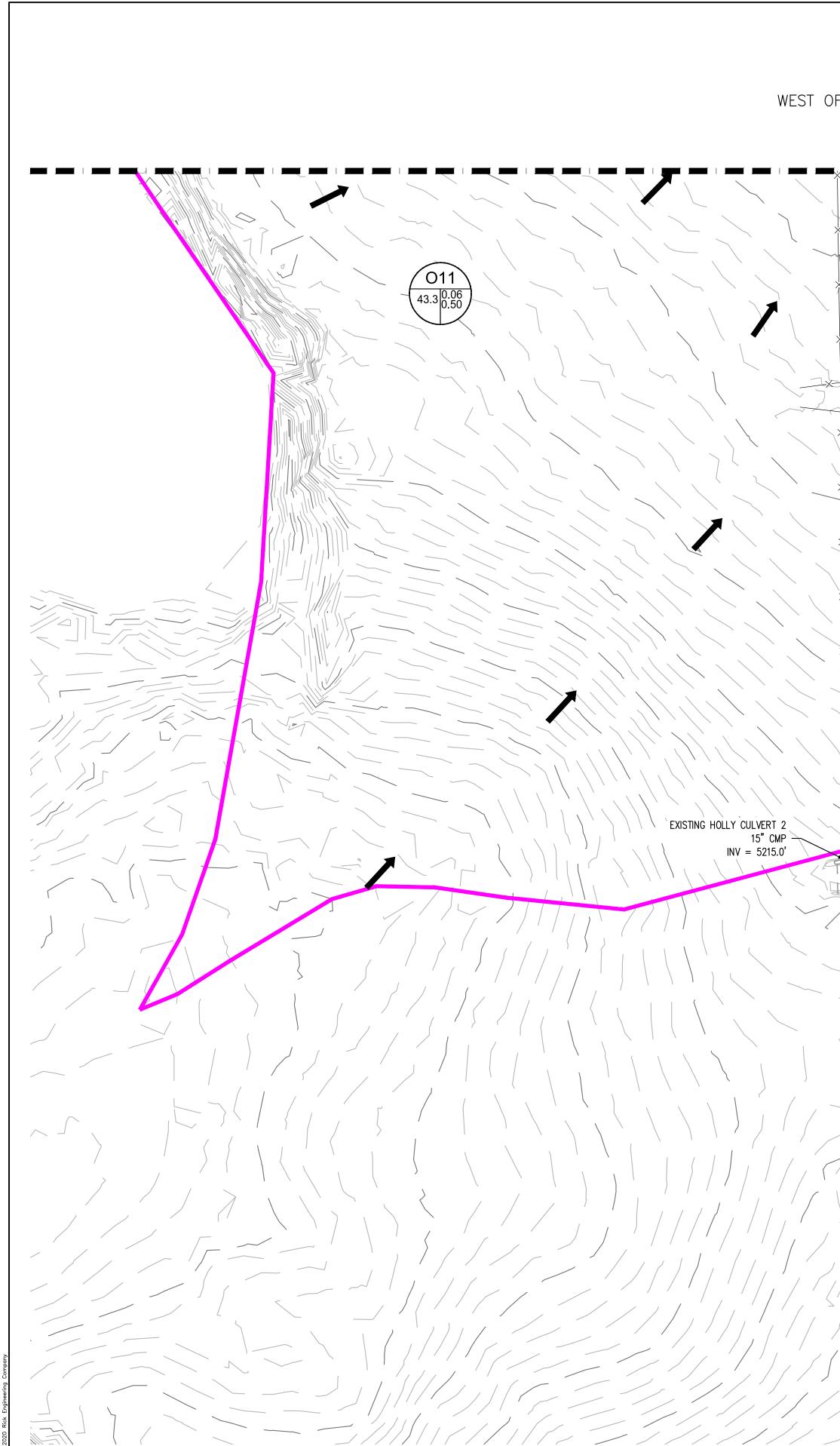
LEGEND DRAINAGE BASIN BOUNDARY FLOW ARROW \rightarrow - EXISTING MINOR CONTOUR - EXISTING MAJOR CONTOUR ● EXISTING FENCE FEMA FLOODPLAIN SIGNAL DITCH CITY OF THORNTON BOUNDARY TROY W. BALES, REGISTERED PROFESSIONAL ENGINEER STATE OF COLORADO, LICENSE NO. 50961 FOR AND ON BEHALF OF RICK ENGINEERING COMPANY <u>OWNER</u> DEVELOPER ENGINEER LANDSCAPE ARCHITECT NICHOLAS AND DEBORAH VENTANA CAPITAL, INC. RICK ENGINEERING CO. RICK ENGINEERING CO. CHIOVITTI 9801 E. EASTER AVE. 9801 E. EASTER AVE. 9801 E. EASTER AVE. CENTENNIAL, CO 80112CENTENNIAL, CO 80112CENTENNIAL, CO 80112303-346-7006303-537-8020303-537-8020 15555 MONACO ST. BRIGHTON, CO 80602 720-989-3525 9801 EAST EASTER AVE DATE: DECEMBER 30, 2020 JOB NO. D01104 RIU CENTENNIAL, CO 80112 SCALE: N/A SHEET: 1 OF 6 NGINEERING COMPANY 303.537.8020


na.com/brojects/D_SHARE/1104_Westwood/WaterResources/1104_DRN_PRE.dwa 2020-12-30 - 5:25PM - aparanthaman


Design Point / Basin ID	Contributing Area (acres)	Q5 (CFS)	Q100 (CFS)
H1	63.1	5.1	88.1
01	0.4	0.1	1.8
O2	2.8	0.3	6.3
03	2.4	0.3	5.2
O4	1.6	0.3	3.5
05	0.8	0.1	2.0
06	0.8	0.6	3.0
07	0.5	1.0	2.6
011	43.3	5.3	79.4

LANDSCAPE ARCHITECT RICK ENGINEERING CO. 9801 E. EASTER AVE. CENTENNIAL, CO 80112 303–537–8020

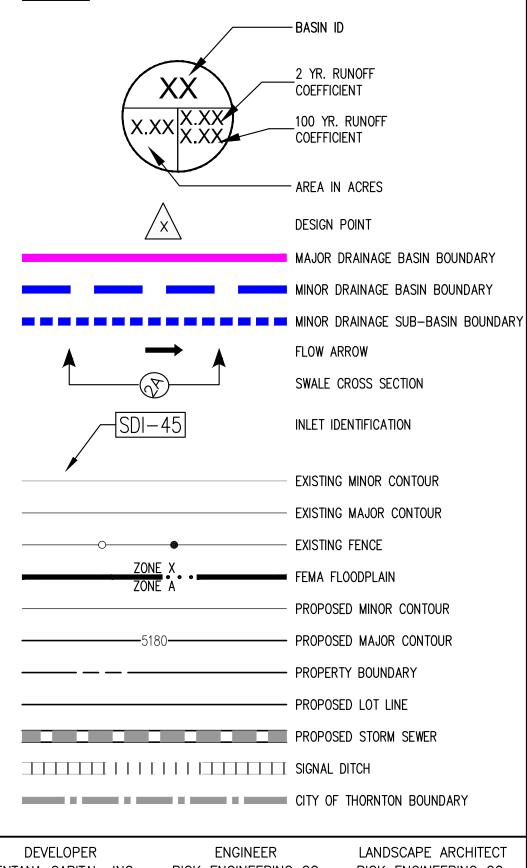

9801 EAST EASTER AVE CENTENNIAL, CO 80112

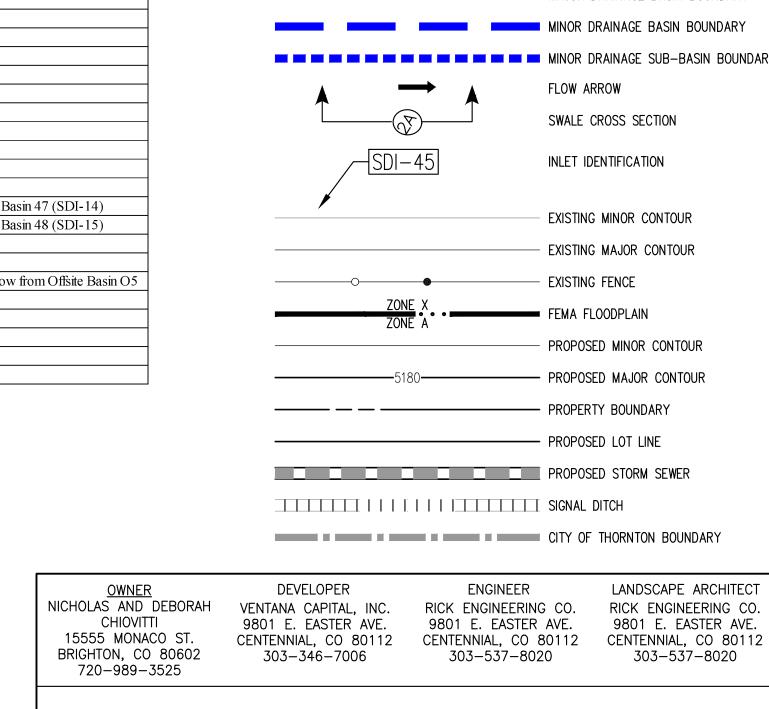


		WESTWOOD PROPOSED D		07				ſ				Due Dated	Sub Desir Of Deslum		
		6TH PRINCIPAL MERIDIAN, CITY OF THORNTON			_ORADO				Basin ID [1]	Area	-	Sub-Basin ID		Area	Rated Q5
	\								Unit		cfs			acres	cfs
				+					2	1.5	2.7	2B	SDI-42	1.1	2.0
				Design		Contributing Direct Q5	Direct		20	1.6	2.9				
			ZONING: A-3	Point		(acres) (CFS)	(CFS)	(CFS) (CFS)	36	3.3	0.9				
			AREA: 35.05 AC.	1					41	2.5	0.7	41A	SDI-50	1.7	0.5
						1.1 2.0	5.5	2.7 7.6							
	T =			- 4	SDI-48	1.2 1.5	5.0	1.5 6.5	30	5.4	5.0				
				$\begin{bmatrix} 5 \\ 6 \end{bmatrix}$											
				7	SDI-47	1.0 1.6	4.8	1.6 6.4	31	1.8	2.6	31B		0.5	
				9	SDI-40	0.5 1.4	3.2	1.4 3.2				31C	SDI-26	0.8	1.1
				10								Pro-Rated S	ub-Basin Q100 Backup		
	$\backslash \ \backslash$				SDI-07	1.4 2.1	6.5	2.1 6.5	Basin ID		Basin	Sub-Basin			
			RCEL #0157108000016	14	SDI-11	0.7 1.4	3.9	1.4 3.9	[1]	[2]	[3]			[5]	[6]
) USE: PARKS AND OPEN SPACE 🔍						Unit			2A	-		
	0.0	0.75	AREA: 15.97 AC.	17	SDI-10	1.5 2.4	6.9	2.4 6.9	2	1.5		2B		1.1	5.5
				19	SDI-46	0.9 1.5	4.3	1.5 4.3	20	1.6	7.7	20B	SDI-5 (Sump)	0.9	4.2
			PARCEL "B"		U				36	3.3	8.0				
	<u> </u>		EXCEPTION	- 21	SDI-03	1.9 2.7	8.5	2.7 7.0	41	2.5	6.3		SDI-50		4.3
				23	SDI-22	1.2 2.1	6.2	2.1 6.2				30A		1.6	4.8
				1					30	5.4	16.2		- SDI-20 (U/S Flanking		
				26		0.4 1.1	2.4	1.1 5.0					Inlet) & SDI-2 (Sump)		
					-				31	1.8	6.5	31B		0.5	1.7
				30C SI		1.0 1.0	3.1					31C	SDI-26	0.8	2.8
		JIGNAL DITCH			-			0.8 2.0		LEG	END				
													BASIN ID		
	////												2 YR. RU	NOFF	
		2.7 AC		34		6.1 2.3	16.4	2.3 16.4					COEFFICIE		
Notes Notes <th< td=""><td>VH1</td><td>SDI-45</td><td>0.6 AU</td><td></td><td>- SDI-25</td><td></td><td></td><td></td><td></td><td></td><td></td><td>$\mathbf{X} \mathbf{X} \mathbf{X}$</td><td>XX 100 YR. F XX COEFFICIE</td><td></td><td></td></th<>	VH1	SDI-45	0.6 AU		- SDI-25							$\mathbf{X} \mathbf{X} \mathbf{X}$	XX 100 YR. F XX COEFFICIE		
			<u>SDI-41</u> 1.2[0.48]										/		
	8			O2		2.8 0.3	6.3	0.3 6.3				`	AREA IN .	ACRES	
100 100 <td></td> <td></td> <td>9</td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>X</td> <td>DESIGN P</td> <td>DINT</td> <td></td>			9	<u> </u>								X	DESIGN P	DINT	
1 1													MAJOR DF	AINAGE BASIN	BOUNDARY
Image: Construction			INLET IN SUMP 7	42	SDI-17	1.4 2.4	6.6	2.4 6.6					MINOR DR	AINAGE BASIN	BOUNDARY
11.4.4 11.4.4													MINOR DR	AINAGE SUB-E	BASIN BOUNDARY
1 1												\rightarrow	FLOW ARF	WOW	
1 1				47	SDI-14	0.9 1.5	4.3	1.7 7.2			<u> </u>	-(7)		OSS SECTION	
Still Still <th< td=""><td></td><td></td><td></td><td>r </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				r											
03 03 03 04 03 04 03 04 03 04 03 04 05 04<											Ŀ	נד וענ			
33 0 0 KB 12 0 1 2 0 1 0 3 1.0 10 0 0 1 0 1 1 3 1 4 4 4 4 1 4 4 4 4 4 4 4 4 4 4 4				05	551 01	0.8 0.1	2.0	64.1 184.4			/		EXISTING	MINOR CONTOL	JR
OR Or<													EXISTING	MAJOR CONTO	UR
OIL 433 53 794 734 794 733 794 734 794 733 794 733 794 733 794 733 794 734 734 794 734 734 734 734 734 734 734 7	IVII'	0.9 0.76 0.85 SDI-42						0.5 1.7				•	Existing	FENCE	
MILES MILES PROPOSED MANR CONTOUR BUELT 6 15837 9000520 MAUR CONTOUR 15000 15837 9000520 MAUR CONTOUR 9000520 MAUR CONTOUR 9000520 Lot Lue 9000520 Lot Lue 9000520 Lot Lue 9000520 Lot Lue 9000520 STORM SEMER 9000520 STORM SEMER 200100 Lot Lake 200100 Lot Lake 9000 ESTORM SEMER 200100 Lot Lake 200100 Lot Lake 600000 CONTOUR 008 9001 E ESTOR CONTOUR 9001 E ESTOR MURCE 9001 E ESTOR MURCE 000100 Lot Lake 00000 CONTOUR 9001 E ESTOR MURCE 9001 E ESTOR MURCE 9001 E ESTOR MURCE 15° COMP 15° COMP 1500 CONTOUR 9001 E ESTOR MURCE				011				5.3 79.4			<u>.</u>	ZONE X	FEMA FLO	ODPLAIN	1
08 00<								ELOW NOTES				ZUNE A	PROPOSEI	MINOR CONT	OUR
03 03 04 <td< td=""><td></td><td>SDI-301-7-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1</td><td></td><td></td><td>LET O TOK COMPLETE KO</td><td>NOT SUMMART TABLE WIT</td><td>I DIFA33</td><td>TEOW NOTES.</td><td></td><td></td><td></td><td></td><td>PROPOSEI</td><td>) MAJOR CONT</td><td>OUR</td></td<>		SDI-301-7-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			LET O TOK COMPLETE KO	NOT SUMMART TABLE WIT	I DIFA33	TEOW NOTES.					PROPOSEI) MAJOR CONT	OUR
HARVEY & MARILYN BROWN PARCEL #01571080001001 ZONING: A-2 FUTURE LAND USE: RESIDENTIAL LOW AREA: 10.00 AC. HARVEY & MARILYN BROWN PARCEL #0157108001001 ZONING: A-2 FUTURE LAND USE: RESIDENTIAL LOW AREA: 10.00 AC. Image: Comparing the c			1.5 0.48										PROPERTY	BOUNDARY	
HARVEY & MARILLYN BROWN PARCEL #01571080001001 ZONING: A-2 FUTURE LAND USE: RESIDENTIAL LOW AREA: 10.00 AC.	33			 											
HARVEY & MARILEYN BROWN PARCE				-											R
20NING: A-2 FUTURE LAND USE: RESIDENTIAL LOW AREA: 10.00 AC. CITY OF THORNTON BOUNDARY 08 08[257] 000000000000000000000000000000000000			PARCEL #0157108001001												
AREA: 10.00 AC. AREA: 10.00 AC. $OR = 0.03 \frac{OV}{0.5}$ $OR = 0.03 \frac{OV}{0.5}$ $OR = 0.03 \frac{OV}{0.5}$ $OR = 0.00 \frac{OV}{0.$			ZONING: A-2 E LAND USE: RESIDENTIAL LOW												INDARY
$\frac{08}{0.80.27}$ $\frac{0.8}{0.80.27}$ $\frac{0.8}{0.80.27}$ $\frac{0.8}{0.57}$ $\frac{0.8}{0.5}$ 0	₿/ ∕						_								
$\begin{array}{c} 0.8 \begin{pmatrix} 0.21\\ 0.57 \\ 0.57 \\ 15555 \\ \text{MONACO ST.} \\ \text{Brighton, co 80602} \\ 720 - 989 - 3525 \end{array} \xrightarrow{9801 \text{ E. EASTER AVE.} \\ 15555 \\ \text{MONACO ST.} \\ \text{Brighton, co 80602} \\ 720 - 989 - 3525 \\ \text{MOLERATION COMPANY} \end{array} \xrightarrow{9801 \text{ E. EASTER AVE.} \\ 15^{\circ} \text{ CMP} \\ \text{INV = 5196.15' \\ \text{SCALE: 1" = 100'} \\ \text{SCALE: 1" = 100'} \\ \text{SCALE: 1" = 100'} \xrightarrow{9801 \text{ E. EASTER AVE.} \\ \text{SHEET: 4 OF 6} \\ \text{SCALE: 1" = 100'} \\ $)]				Ĩ				RAH \/			C. RICK			
BRIGHTON, CO 80602 720-989-3525 BRIGHTON, CO 80602 720-989-3525 DATE: DECEMBER 30, 2020 SCALE: 1" = 100' BRIGHTON, CO 80602 720-989-3525 DATE: DECEMBER 30, 2020 SCALE: 1" = 100' SCALE: 1"	+	0.8 0.21						CHIOVITTI	9	801 E. E	ASTER AVI	E. 980	1 E. EASTER AVE.	9801 E. E	ASTER AVE.
15" CMP INV = 5196.15' DATE: DECEMBER 30, 2020 JOB NO. D01104 SCALE: 1" = 100' JOB NO. D01104 SCALE: 1" = 100' JOB NO. D01104 SHEET: 4 OF 6 SHEET: 4 OF 6 SH				_	•			BRIGHTON, CO 8060	02						
INV = 5196.15' 100 50 0 100 200 300 DATE: DECEMBER 30, 2020 JOB NO. D01104 SHEET: 4 OF 6 SCALE: 1" = 100' SHEET: 4 OF 6				- -				120-303-3323							
100 50 0 100 200 300 SCALE: 1" = 100' SHEET: 4 OF 6 ENGINEERING COMPANY 303.537.8020				.				DATE: DECEME	3ER 30, 2				RICK		
				100 50	0 100	200	300						ENGINEERING COMPAN		·
					GRAPHIC SCAL	E: 1"=100'									

		Basin ID	Basin	Basin Q5	Sub-Basin	Sub-Basin Q5 B	-	Sub-Basin	Sub-Basin Pro-
		[1]	Area [2]	[3]	ID [4]	Inlet I	D	Area [5]	Rated Q5 [6]
		Unit	acres	cfs				acres	cfs
		2	1.5	2.7	2A 2B	- SDI-42	2	0.4	0.8
		20	1.6	2.9	20A	SDI-4 (U/S Flar	ıking Inlet)	0.8	1.3
					20B 36A	SDI-5 (Su SDI-2:	· ·	0.9	1.6 0.7
Total Q5	Total Q100	36	3.3	0.9	36B	SDI-4	1	0.6	0.2
(CFS)	(CFS)	41	2.5	0.7	41A 41B	SDI-50 SDI-22		<u> </u>	0.5
1.3 0.8	3.6				30A	-		1.6	1.5
2.7	7.6	30	5.4	5.0	30B	- SDI-20 (U/S 1	Flanking	2.8	2.6
<u> </u>	5.0				30C 31A	Inlet) & SDI-2	2 (Sump)	0.6	0.9
2.9	9.4	31	1.8	2.6	31A 31B	-		0.5	0.8
2.4	<u>8.7</u> 6.4				31C	SDI-20	5	0.8	1.1
0.9	2.1				Dro Datad S	ub-Basin Q100 l	Doolyun		
1.4	<u>3.2</u> 5.9	Basin ID	Basin	Basin	Sub-Basin		Баскир	Sub-Basin	Sub-Basin Pro-
0.3	0.7	[1]	Area [2]	Q100 [3]	ID [4]	Inlet II	D	Area [5]	Rated Q100 [6]
2.1	<u>6.5</u> 6.3	Unit	acres	cfs				acres	cfs
1.4	3.9	2	1.5	7.6	2A 2B	- SDI-42)	0.4	2.1 5.5
2.4	7.1	20	1.6	7.7	20A	SDI-4 (U/S Flar	nking Inlet)	0.8	3.5
2.4	6.9				20B 36A	SDI-5 (Su SDI-2	1 /	0.9	4.2
<u> </u>	5.7	36	3.3	8.0	36B	SDI-4	1	0.6	1.5
2.9	10.3	41	2.5	6.3	41A 41B	SDI-50 SDI-28		<u> </u>	4.3
0.5	<u>6.2</u> 7.0				30A	-	-	1.6	4.8
2.6	7.1	30	5.4	16.2	30B	- SDI-20 (U/S 1	Flanking	2.8	8.3
2.1	<u>6.2</u> 8.0				30C	Inlet) & SDI-2	•	1.0	3.1
1.9	5.3	31	1.8	6.5	31A 31B	-		0.6	2.0
1.1 1.5	5.0				31C	SDI-20	5	0.8	2.8
4.1	13.1		LEG	END					
4.0	8.1						Basin id		
0.8	2.0								
0.7	<u> </u>					· · · · · · · · · · · · · · · · · · ·	2 YR. RUN		
0.9	2.2			1		VV A	COEFFICIEN		
1.9 2.3	4.1				X X X X	XX XX	100 YR. RU COEFFICIEN		
64.0	182.4								
0.8	8.4				\		AREA IN A	CRES	
0.1	1.8				\wedge		DESIGN PO	INT	
0.3	<u>6.3</u> 5.2							AINAGE BASIN	
0.3	3.5							INAGE BASIN	
0.8	10.6 10.6								
2.4	6.6 7.8								BASIN BOUNDARY
2.2	8.4			A		A	FLOW ARRO	W	
1.0 1.2	2.4 4.0				-(2)		SWALE CRO	DSS SECTION	
1.2	7.2			<u>ل</u> ے	SDI-45		INLET IDEN	TIFICATION	
1.7	<u>8.7</u> 8.3								
2.2	6.6			/			EXISTING M	INOR CONTOU	JR
<u> </u>	3.7						EXISTING M	AJOR CONTO	UR
0.6	3.0			0			EXISTING F	FNCF	
1.2	3.1				ZONE X		FEMA FLOC		
1.4	4.4				ZONE A				
5.3	79.4							MINOR CONT	
SS FLOW	NOTES.						PROPOSED	MAJOR CONT	Tour
							PROPERTY	BOUNDARY	
							PROPOSED	LOT LINE	
							PROPOSED	STORM SEWE	ER
							SIGNAL DIT	CH	
			_				CITY OF TH	IORNTON BOU	JNDARY
ICHOLAS	<u>)WNER</u> AND DEBC		ENTANA C	LOPER CAPITAL, IN	C. RICK	ENGINEER K ENGINEERING	CO.	RICK ENGI	E ARCHITECT NEERING CO.
15555	HOVITTI MONACO S	98 T. CE	801 E. E INTENNIAL	EASTER AVI _, CO 801	E. 980 12 CENT)1 E. EASTER (TENNIAL, CO 8	0112	CENTENNIAL	EASTER AVE. ., CO 80112
BRIGHTO	N, CO 806 989-3525	502		46-7006		303-537-8020			37-8020
	TE: DECEM ALE: 1" =			JOB NO. [SHEET: 5			СK	CENTENNI	EASTER AVE
30	,, —	,00		J., EE1. U	2. 0	ENGINEERI	IG COMPANY	303.537.80)20

WESTWOOD PROPOSED DRAINAGE PLAN


A PARCEL OF LAND LOCATED IN SECTION 8, TOWNSHIP 1 SOUTH, RANGE 67 WEST OF THE 6TH PRINCIPAL MERIDIAN, CITY OF THORNTON, COUNTY OF ADAMS, STATE OF COLORADO SHEET 6 OF 6


				<u> </u>	NUNUFI	SUMMA		
42 ()	Design Point	Inlet ID	Contributing Area (acres)	Direct Q5 (CFS)	Direct Q100 (CFS)	Total Q5 (CFS)	Total Q100 (CFS)	Notes
	1	SDI-31	0.7	1.3	3.6	1.3	3.6	No bypass flow received
	2A 2B		0.4	0.8	2.1	0.8		No bypass flow received Bypass flow from Sub-Basin 2A
	3	SDI-39	1.1	1.7	5.0	1.7	5.0	No bypass flow received
	4	SDI-48 SDI-30	1.2 2.5	1.5 2.9	<u>5.0</u> 9.4	1.5 2.9		Bypass flow from Basin 44 (SDI-35) No bypass flow received
	6	SDI-34	1.5	2.9	6.8	2.9		Bypass flow from Basin 5 (SDI-30)
	7	SDI-47	1.0	1.6	4.8	1.6		Bypass flow from Basin 6 (SDI-34)
	8	SDI-45 SDI-40	0.3	0.9	2.1 3.2	0.9		No bypass flow received No bypass flow received
	10	SDI-12	1.2	2.0	5.9	2.0	5.9	No bypass flow received
	11	SDI-13 SDI-07	0.1	0.3	0.7 6.5	0.3		No bypass flow received No bypass flow received
	12	SDI-07 SDI-24	1.4	2.1	6.3	2.1		No bypass flow received
	14	SDI-11	0.7	1.4	3.9	1.4	3.9	No bypass flow received
	15 16	SDI-27 SDI-16	1.6 0.9	2.4 1.9	7.1 5.0	2.4 1.9		No bypass flow received No bypass flow received
	10	SDI-10	1.5	2.4	6.9	2.4		No bypass flow received
	18	SDI-08	1.1	1.7	5.0	1.7		Bypass flow from Basin 17 (SDI-10)
	19 20A	SDI-46 SDI-4 (U/S Flanking Inlet)	0.9	1.5 1.3	4.3	1.5 2.9		No bypass flow received Bypass flow from Basin 18 (SDI-08) + Basin 42 (SDI-17) + Basin 49 (SDI-18)
	20A	SDI-4 (0/S Planking met) SDI-5 (Sump)	0.8	1.6	4.2	0.5		Bypass flow from Basin 19 (SDI-06) + Basin 42 (SDI-17) + Basin 49 (SDI-18) Bypass flow from Basin 19 (SDI-46) + Sub-Basin 20A (SDI-04)
	21	SDI-03	1.9	2.7	8.5	2.7		No bypass flow received
	22	SDI-23 SDI-22	1.7 1.2	2.6 2.1	7.5 6.2	2.6 2.1		Bypass flow from Basin 21 (SDI-03) No bypass flow received
	23	SDI-22 SDI-21	1.2	1.8	5.3	2.0		Bypass flow from Basin 23 (SDI-22)
	25	SDI-09	1.0	1.9	5.3	1.9		No bypass flow received
$\langle \rangle \rangle \langle \rangle$	26 30A	SDI-06	0.4	1.1 1.5	<u>2.4</u> 4.8	1.1 1.5		Bypass flow from Basin 24 (SDI-21) + Basin 25 (SDI-09) + Basin 50 (SDI-19) No bypass flow received
	30B	-	2.8	2.6	8.3	4.1	13.1	Bypass flow from Sub-Basin 30A
	30C	SDI-20 (U/S Flanking Inlet)	1.0	1.0	3.1	4.0		Bypass flow from Sub-Basin 30B (this already includes flow from Sub-Basin 30A) Bypass flow from SDI-20 (U/S Flanking Inlet)
	31A	SDI-2 (Sump)	0.6	0.8	2.0	0.8		No bypass flow received
	31B	-	0.5	0.7	1.7	0.7	1.7	No bypass flow received
	31C 32	SDI-26 SDI-49	0.8	1.1 0.9	2.8 2.2	2.6 0.9		Bypass flow from Sub-Basin 31A & 31B No bypass flow received
$\langle \ \rangle \langle \ \rangle \langle \ \rangle$	33	SDI-44	0.9	1.9	4.1	1.9		No bypass flow received
	34	SDI-32	6.1	2.3	16.4	2.3		No bypass flow received
15" CMP	35 36A	SDI-25	4.3	12.0 0.7	25.3 6.6	64.0 0.8		Total Flow = Peak inflow for the detention basin from UD-Detention Spreadsheet Bypass flow from Offsite Basin O1
INV = 5214.0'	36B	SDI-41	0.6	0.2	1.5	0.2	1.5	No bypass flow received
	O1 O2	-	0.4	0.1	<u>1.8</u> 6.3	0.1		No bypass flow received No bypass flow received
52nd AVE	O3	-	2.4	0.3	5.2	0.3		No bypass flow received
	04 41A	- SDI-50	1.6 1.7	0.3	3.5 4.3	0.3		No bypass flow received Bypass flow from Offsite Basin O2
	41A 41B	SDI-30	0.8	0.2	1.9	0.8		Bypass flow from Offsite Basin O2 Bypass flow from Offsite Basin O3 & O4
	42	SDI-17	1.4	2.4	6.6	2.4		No bypass flow received
	43	SDI-33 SDI-35	1.0 0.9	2.2 2.1	5.9 5.5	2.2 2.1		Bypass flow from Basin 1 (SDI-31) + Basin 2 (SDI-42) Bypass flow from Basin 43 (SDI-33) + Basin 3 (SDI-39)
		SDI-37	0.4	1.0		2.1	0.1	
	45	3DI-37	0.1	1.0	2.4	1.0		No bypass flow received
	46	SDI-38	0.7	1.2	3.1	1.2	2.4 4.0	No bypass flow received Bypass flow from Basin 9 (SDI-40)
							2.4 4.0 7.2	No bypass flow received Bypass flow from Basin 9 (SDI-40) Bypass flow from Basin 12 (SDI-07)
	$ \begin{array}{r} 46 \\ 47 \\ 48 \\ 49 \\ \end{array} $	SDI-38 SDI-14 SDI-15 SDI-18	0.7 0.9 0.8 1.2	1.2 1.5 1.5 2.2	3.1 4.3 4.1 5.9	1.2 1.7 1.7 2.2	2.4 4.0 7.2 8.7 8.3	No bypass flow received Bypass flow from Basin 9 (SDI-40) Bypass flow from Basin 12 (SDI-07) Bypass flow from Basin 13 (SDI-24) + Basin 14 (SDI-11) + Basin 47 (SDI-14) Bypass flow from Basin 15 (SDI-27) + Basin 16 (SDI-16) + Basin 48 (SDI-15)
	$ \begin{array}{r} 46 \\ 47 \\ 48 \\ 49 \\ 50 \end{array} $	SDI-38 SDI-14 SDI-15 SDI-18 SDI-19	0.7 0.9 0.8 1.2 1.1	1.2 1.5 1.5 2.2 2.2	3.1 4.3 4.1 5.9 5.9	1.2 1.7 1.7 2.2 2.2	2.4 4.0 7.2 8.7 8.3 6.6	No bypass flow received Bypass flow from Basin 9 (SDI-40) Bypass flow from Basin 12 (SDI-07) Bypass flow from Basin 13 (SDI-24) + Basin 14 (SDI-11) + Basin 47 (SDI-14) Bypass flow from Basin 15 (SDI-27) + Basin 16 (SDI-16) + Basin 48 (SDI-15) Bypass flow from Basin 22 (SDI-23)
	$ \begin{array}{r} 46 \\ 47 \\ 48 \\ 49 \\ \end{array} $	SDI-38 SDI-14 SDI-15 SDI-18	0.7 0.9 0.8 1.2	1.2 1.5 1.5 2.2	3.1 4.3 4.1 5.9	1.2 1.7 1.7 2.2	2.4 4.0 7.2 8.7 8.3 6.6 3.7	No bypass flow received Bypass flow from Basin 9 (SDI-40) Bypass flow from Basin 12 (SDI-07) Bypass flow from Basin 13 (SDI-24) + Basin 14 (SDI-11) + Basin 47 (SDI-14) Bypass flow from Basin 15 (SDI-27) + Basin 16 (SDI-16) + Basin 48 (SDI-15) Bypass flow from Basin 22 (SDI-23) Bypass flow from Basin 31 (SDI-26)
	$ \begin{array}{r} $	SDI-38 SDI-14 SDI-15 SDI-18 SDI-19	0.7 0.9 0.8 1.2 1.1 0.4 0.8 0.8	1.2 1.5 2.2 2.2 1.2 0.1 0.6	3.1 4.3 4.1 5.9 5.9 2.7 2.0 3.0	1.2 1.7 1.7 2.2 2.2 1.2 64.1 0.6	2.4 4.0 7.2 8.7 8.3 6.6 3.7 184.4 3.0	No bypass flow received Bypass flow from Basin 9 (SDI-40) Bypass flow from Basin 12 (SDI-07) Bypass flow from Basin 13 (SDI-24) + Basin 14 (SDI-11) + Basin 47 (SDI-14) Bypass flow from Basin 15 (SDI-27) + Basin 16 (SDI-16) + Basin 48 (SDI-15) Bypass flow from Basin 22 (SDI-23) Bypass flow from Basin 31 (SDI-26) Total Flow = Undetained Q100 from the detention basin + Flow from Offsite Basin No bypass flow received
	$ \begin{array}{c c} $	SDI-38 SDI-14 SDI-15 SDI-18 SDI-19	$\begin{array}{c} 0.7 \\ 0.9 \\ 0.8 \\ 1.2 \\ 1.1 \\ 0.4 \\ 0.8 \\ 0.8 \\ 0.6 \\ \end{array}$	1.2 1.5 1.5 2.2 2.2 1.2 0.1 0.6 1.2	3.1 4.3 4.1 5.9 5.9 2.7 2.0 3.0 3.1	$ \begin{array}{r} 1.2 \\ 1.7 \\ 1.7 \\ 2.2 \\ 2.2 \\ 1.2 \\ 64.1 \\ 0.6 \\ 1.2 \\ \end{array} $	2.4 4.0 7.2 8.7 8.3 6.6 3.7 184.4 3.0 3.1	No bypass flow received Bypass flow from Basin 9 (SDI-40) Bypass flow from Basin 12 (SDI-07) Bypass flow from Basin 13 (SDI-24) + Basin 14 (SDI-11) + Basin 47 (SDI-14) Bypass flow from Basin 15 (SDI-27) + Basin 16 (SDI-16) + Basin 48 (SDI-15) Bypass flow from Basin 22 (SDI-23) Bypass flow from Basin 31 (SDI-26) Total Flow = Undetained Q100 from the detention basin + Flow from Offsite Basin No bypass flow received No bypass flow received
	$ \begin{array}{r} $	SDI-38 SDI-14 SDI-15 SDI-18 SDI-19	0.7 0.9 0.8 1.2 1.1 0.4 0.8 0.8	1.2 1.5 2.2 2.2 1.2 0.1 0.6	3.1 4.3 4.1 5.9 5.9 2.7 2.0 3.0	1.2 1.7 1.7 2.2 2.2 1.2 64.1 0.6	$ \begin{array}{r} 2.4\\ 4.0\\ 7.2\\ 8.7\\ 8.3\\ 6.6\\ 3.7\\ 184.4\\ 3.0\\ 3.1\\ 1.7 \end{array} $	No bypass flow received Bypass flow from Basin 9 (SDI-40) Bypass flow from Basin 12 (SDI-07) Bypass flow from Basin 13 (SDI-24) + Basin 14 (SDI-11) + Basin 47 (SDI-14) Bypass flow from Basin 15 (SDI-27) + Basin 16 (SDI-16) + Basin 48 (SDI-15) Bypass flow from Basin 22 (SDI-23) Bypass flow from Basin 31 (SDI-26) Total Flow = Undetained Q100 from the detention basin + Flow from Offsite Basin No bypass flow received

100 100 50 0 200 GRAPHIC SCALE: 1"=100'

	Pro-Rated Sub-Basin Q5 Backup											
Basin ID [1]	Basin Area [2]	Basin Q5 [3]	Sub-Basin ID [4]	Inlet ID	Sub-Basin Area [5]	Sub-Basin Pro Rated Q5 [6]						
Unit	acres	cfs			acres	cfs						
2	1.5	2.7	2A	-	0.4	0.8						
2	1.5	2.7	2B	SDI-42	1.1	2.0						
20	1.6	2.9	20A	SDI-4 (U/S Flanking Inlet)	0.8	1.3						
20	1.0	2.9	20B	SDI-5 (Sump)	0.9	1.6						
36	3.3	0.9	36A	SDI-25	2.7	0.7						
50	5.5	0.9	36B	SDI-41	0.6	0.2						
41	2.5	0.7	41A	SDI-50	1.7	0.5						
41	2.5	0.7	41B	SDI-28	0.8	0.2						
			30A	-	1.6	1.5						
30	5.4	5.0	30B	-	2.8	2.6						
50	3.4	5.0	30C	SDI-20 (U/S Flanking Inlet) & SDI-2 (Sump)	1.0	0.9						
			31A	-	0.6	0.8						
31	1.8	2.6	31B	-	0.5	0.7						
			31C	SDI-26	0.8	1.1						

			Pro-Rated S	ub-Basin Q100 Backup		
Basin ID [1]	Basin Area [2]	Basin Q100 [3]	Sub-Basin ID [4]	Inlet ID	Sub-Basin Area [5]	Sub-Basin Pro- Rated Q100 [6]
Unit	acres	cfs			acres	cfs
2	1.5	7.6	2A	-	0.4	2.1
2	1.5	7.0	2B	SDI-42	1.1	5.5
20	1.6	7.7	20A	SDI-4 (U/S Flanking Inlet)	0.8	3.5
20	1.0	1.1	20B	SDI-5 (Sump)	0.9	4.2
36	3.3	8.0	36A	SDI-25	2.7	6.6
30	3.3	8.0	36B	SDI-41	0.6	1.5
41	2.5	6.3	41A	SDI-50	1.7	4.3
41	2.5	0.5	41B	SDI-28	0.8	1.9
			30A	-	1.6	4.8
20	5 /	16.2	30B	-	2.8	8.3
30	5.4	10.2	30C	SDI-20 (U/S Flanking Inlet) & SDI-2 (Sump)	1.0	3.1
			31A	-	0.6	2.0
31	1.8	6.5	31B	-	0.5	1.7
			31C	SDI-26	0.8	2.8

LEGEND

RICK ENGINEERING CO. 9801 E. EASTER AVE.

9801 EAST EASTER AVE

CENTENNIAL, CO 80112

DATE: DECEMBER 30, 2020 JOB NO. D01104 R I C SHEET: 6 OF 6 ENGINEERING COMPANY 303.537.8020

SCALE: 1" = 100'